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Femtoscopic study of coupled-channels N� and �� interactions
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The momentum correlation functions of S = −2 baryon pairs (p�− and ��) produced in high-energy pp
and pA collisions are investigated on the basis of the coupled-channels formalism. The strong interaction is
described by the coupled-channels HAL QCD potential obtained by lattice QCD simulations near physical quark
masses, while the hadronic source function is taken to be a static Gaussian form. The coupled-channels effect,
the threshold difference, the realistic strong interaction, and the Coulomb interaction are fully taken into account
for the first time in the femtoscopic analysis of baryon-baryon correlations. The characteristic features of the
experimental data for the p�− and �� pairs at the Large Hadron Collider are reproduced quantitatively with a
suitable choice of nonfemtoscopic parameters and the source size. The agreement between theory and experiment
indicates that the N� (��) interaction is moderately (weakly) attractive without having a quasibound (bound)
state.
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I. INTRODUCTION

Dibaryons in the strangeness S = −2 sector have long at-
tracted theoretical and experimental attention [1–3]. Among
others, the Pauli blocking among valence quarks does not
operate and the color-spin interaction is attractive for the
H (uuddss) dibaryon with (I, Jπ ) = (0, 0+), and then it was
suggested to be a possible deeply bound state below the ��

threshold in the flavor SU(3) limit [4]. While the discovery
of the double � hypernuclei [5,6] ruled out the deeply bound
H , the existence and the mass of the H are still under debate
in connection with the interactions of the S = −2 baryon-
baryon pairs, �� and N�, which couple with the H dibaryon.
Because the baryon-baryon interactions are the basic inputs
to construct the equation of state of baryonic matter, such
studies are also crucial for identifying the role of � and �− in
neutron star matter at several times the nuclear matter density
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in relation to the so-called hyperon puzzle in neutron star
structure originally pointed out in Ref. [7], as well as to the
observed constraints on mass and radius of neutron stars [8].
We need precise knowledge on the two-body interactions in
the strangeness sector at finite and zero densities to improve
the theoretical predictions.

As for the existence of the H dibaryon, there are three
possibilities: the H exists as a loosely bound state below the
�� threshold, as a quasibound state between the �� and
N� thresholds, or neither a bound nor a quasibound state
exists as shown in Fig. 1. Weak decay was observed for the
double hypernucleus 6

��He, where the binding energy of 2�

particles is B��( 6
��He) = 6.91 MeV. If the bound H with

mass MH < 2M� − B��( 6
��He) exists, 6

��He needs to decay
strongly by emitting H . Thus the mass region of a bound H
state is limited to 2M� − B��( 6

��He) < MH < 2M�. Also,
recent femtoscopic studies of the �� correlation functions
favor the attractive scattering length, and therefore disfavor
the existence of a bound state below the �� threshold [9–11].
Moreover, the latest (2 + 1)-flavor lattice QCD simulations
close to the physical point indicate that there is no bound state
below �� [12].

Hence the current interest in the S = −2 dibaryons is
shifted to the higher energy region around the N� thresh-
old in the same isospin-spin (I, Jπ ) = (0, 0+) channel, which
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FIG. 1. Categories of the H dibaryon mass region. The bound H
region is defined as MH < 2M�. The “quasibound” state is defined
as a physical state between the �� and N� thresholds, and it is a
bound state of N� and a resonance state of ��. For a quasibound
state, the eigenmomenta q in N� channels need to have positive
imaginary parts, so that the asymptotic wave function ∝ exp(iqr)/r
converges to zero. The imaginary part of the eigenmomentum in the
�� channel needs to be negative, and the resonance wave function
diverges asymptotically. If these eigenmomentum conditions are not
satisfied for a pole, that pole does not represent a physical state and
is called a virtual pole. See Appendix B for details.

couples to �� (see Fig. 1). The N� interaction is considered
to be moderately attractive as indicated by the existence of
the � hypernucleus 15

� C [13–15], by femtoscopic studies of
the N� interaction [16,17], by chiral effective field theory
calculations [18,19], and by lattice QCD simulation [12]. This
attractive interaction may drive a quasibound state between
the �� and N� thresholds or a resonance above the N�

thresholds. Therefore, it is of great importance to make a
quantitative comparison between theoretical analysis and the
experimental data with the N�-�� coupled-channels frame-
work and the state-of-the-art baryon-baryon interactions (e.g.,
[20,21]).

It has been known that the correlation function in high-
energy collisions is sensitive to the interaction when the
absolute value of the scattering length (a0) is comparable to or
larger than the emission source size R of hadronic pairs, where
R � 1–5 fm depending on the reactions (pp, pA, or AA) [9,22–
28]. It has been also argued that the source size dependence of
the correlation function is useful to deduce the existence or
nonexistence of hadronic bound states [27,28].

In the present paper, we focus on the momentum cor-
relations of N� and �� in pp and pA collisions. Recent
experimental measurements of such correlations have opened
a new way to probe the hyperon interactions which are not
accessible in the standard scattering experiments [29]. The-

oretically, the correlation function can be described by the
convolution of the source function and the relative wave func-
tion in the pair rest frame [30–34].

We consider the coupled-channels formalism
(p�−-n�0-�� for J = 0 and p�−-n�0 for J = 1) with
the latest HAL QCD coupled-channels potential in the s-wave
obtained from the (2 + 1)-flavor lattice QCD simulations
at almost physical quark masses [12]. The threshold
differences and the Coulomb interaction are taken into
account simultaneously. For the source function in pp and pA
reactions, we take a static and spherically symmetric Gaussian
form with a source size R. Our theoretical calculations are
then compared with the experimental data of p�− and ��

correlation functions in pp and pA collisions at the Large
Hadron Collider (LHC) [10,11,16,17]. Similar analysis
with all ingredients (coupled channels, threshold difference,
realistic strong interaction, and Coulomb interaction) was
recently performed for the S = −1 meson-baryon system
(K̄N-π�-π�) for the first time [28].

This article is organized as follows. In Sec. II, we briefly
review the S = −2 baryon-baryon potential from lattice QCD
calculations. In Sec. III, the theoretical framework to calculate
the p�− and �� correlation functions in the coupled-
channels framework is discussed in detail. In Sec. IV, we show
the determination of the phenomenological parameters from
the experimental data at LHC on the basis of the formalism
in the previous section. In Sec. V, our theoretical results
of p�− and �� correlation functions and the experimental
data are compared. Section VI is devoted to a summary and
concluding remarks. The low energy scattering parameters
from a modified HAL QCD potential, the location of the
virtual pole near the N� threshold, and an analytic model of
the correlation function with Gamow factor are discussed in
Appendices A–C, respectively.

II. S = −2 COUPLED-CHANNELS POTENTIAL
FROM LATTICE QCD

Throughout this paper, we employ the state-of-the-art
coupled-channels N�-�� potential below the �� threshold
obtained by (2 + 1)-flavor lattice QCD simulations near the
physical point (mπ = 146 MeV and mK = 525 MeV) [12]. It
is the local and energy-independent potential in the leading-
order of the derivative expansion at low energies [35,36]. The
coupled-channels N�-�� potential is fitted in terms of a
combination of Gaussian, Yukawa, and squared-Yukawa func-
tions with the pion and kaon masses on the lattice mentioned
above [12]. Shown in Fig. 2 are the results of the fitted po-
tentials in the isospin-spin basis with the notation 2I+1,2s+1LJ

with the isospin I and the spin s. The statistical error of the
potentials originating from the Monte Carlo simulations is
evaluated by the standard jackknife method and is denoted
by the colored shadows, while the systematic error originating
from the truncation of the derivative expansion is estimated by
the t dependence of the potentials, with t being the temporal
distance between source and sink operators in the lattice unit
[12]. The important features of the HAL QCD potential are
(i) a large attraction in the I = s = 0 N� channel (the upper
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FIG. 2. The s-wave coupled-channels HAL QCD potential for three temporal distances, t = 11, 12, and 13 at almost physical quark masses
[12]. The colored shadow denotes the statistical error of each potential.

left panel), (ii) a weak mixing between N� and �� (the upper
right panel) at low energy, and (iii) a weak attraction in the
�� channel (the upper middle panel).

As low energy constants characterizing the strong interac-
tion, we calculate the scattering length a0 and the effective
range reff in the s-wave by solving the Schrödinger equa-
tion with the HAL QCD potential in Fig. 2 without the
Coulomb interaction. Here we take the nuclear and atomic
physics convention, where the s-wave phase shift at low en-
ergies is given by

q cot δ0(q) = − 1

a0
+ 1

2
reffq

2 + · · · , (1)

with q being the relative momentum. Table I summarizes
the results where the central values of a0 and reff are ob-
tained from t = 12 with the statistical errors evaluated by the
jackknife method and the systematic errors estimated from
t = 11 and 13. Unlike the procedure in Ref. [12] where baryon
masses measured on the lattice are used in the kinetic part
of the Schrödinger equation, we use the experimental baryon
masses of p, n,�,�−, and �0.1

Note that a0 in ��(J = 0) and n�0(J = 1) channels in
Table I are strictly real since there are no two-baryon states
below, while those in p�−(J = 0) and n�0(J = 0) channels
are complex due to the coupling to the lower �� channel.

1In Appendix A, we show the results of a0 and reff with the experi-
mental baryon masses in the kinetic term and a modified HAL QCD
potential in which mπ,K in the fitted potential are replaced by the
isospin-averaged experimental values of the pion and kaon masses.
The results in this procedure are consistent with those of Table I
within statistical and systematic errors.

Also, a0 in the p�−(J = 1) channel is complex in principle
due to the coupling to the lower n�0(J = 1) channel.

Solving the Schrödinger equation, we find that neither
bound H dibaryon below the �� threshold nor a quasibound
state below the N� threshold are allowed with the HAL
QCD potential, although the interactions in both channels
are attractive. Also, the large |a0| in the n�0(J = 0) channel
indicates that this system is close to the unitary regime. In fact,
there appears a virtual pole in the complex energy plane (see
Appendix B). The imaginary part of a0 in the p�− (J = 1)
channel is essentially zero, which implies that the transition
between p�− to n�0 is very weak: This is partly due to the
fact that the N� potential in I = 0 (the lower middle panel of
Fig. 2) and that in I = 1 (the lower right panel of Fig. 2) are
very close to each other.

III. COUPLED-CHANNELS CORRELATION FUNCTION
WITH COULOMB INTERACTION

In high-multiplicity events of pp and pA collisions as well
as in high-energy AA collisions, the hadron production yields
are well described by the statistical model, which implies
that the hadrons are produced independently. In such a situ-
ation, the momentum correlations between outgoing particles
are generated by the quantum statistics and the final state
interactions. Consider two particles, a and b, with relative
momentum q = (mb pa − ma pb)/(ma + mb) observed in the
final state. Let this two-particle state be fed by a set of coupled
channels, each denoted by j. In the pair rest frame of the two
measured particles, their correlation function C(q) is given by
[34]

C(q) =
∫

d3r
∑

j

ω jS j (r)|� (−)
j (q; r)|2, (2)
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TABLE I. The scattering length (a0) and the effective range (reff ) defined in Eq. (1) in the p�−, n�0, and �� channels calculated by using
the HAL QCD potential. The Coulomb interaction is switched off. Note that we use the nuclear physics convention for a0 where the positive
(negative) real part corresponds to the repulsive or strongly attractive (weakly attractive) interaction. The statistical and systematic errors are
shown in the first and second parentheses, respectively.

Total spin Baryon pair a0 (fm) reff (fm)

p�− −1.22(0.13)(+0.08
−0.00 ) − i1.57(0.35)(+0.18

−0.23 ) 3.7(0.3)(+0.1
−0.1 ) − i2.7(0.2)(+0.1

−0.3 )
J = 0 n�0 −2.07(0.39)(+0.28

−0.35 ) − i0.14(0.08)(+0.00
−0.01 ) 1.5(0.3)(+0.0

−0.0 ) − i0.2(0.0)(+0.0
−0.1 )

�� −0.78(0.22)(+0.00
−0.13 ) 5.4(0.8)(+0.1

−0.5 )
p�− −0.35(0.06)(+0.09

−0.07 ) − i0.00 8.3(1.0)(+2.8
−1.2 ) + i0.0(0.1)(+0.1

−0.0 )
J = 1

n�0 −0.35(0.06)(+0.09
−0.07 ) 8.4(1.0)(+2.7

−1.2 )

where the wave function �
(−)
j in the jth channel is written

as a function of the relative coordinate r in that channel, with
outgoing boundary condition on the measured channel. S j (r)
and ω j are the normalized source function and its weight
in the jth channel, respectively:

∫
d3rS j (r) = 1 and ω1 = 1,

where we label the measured channel as channel 1. The latter
normalization of the source weight follows from the fact that
the correlation function must be unity for any momentum q in
the noninteracting limit Vi j → 0 [34]. In this study, we use
the static Gaussian SR(r) ≡ exp(−r2/4R2)/(4πR2)3/2 with
source size R for the hadron source function. In this case,
the correlation function only depends on q = |q|. Thus the
correlation function contains information on both the hadron
source and the hadron-hadron interactions. We call Eq. (2)
the Koonin-Pratt-Lednicky-Lyuboshits-Lyuboshits (KPLLL)
formula after the series of works [30–34].

There are essentially four theoretical ingredients to fully
utilize the KPLLL formula and to compare with the ex-
perimental data: (i) the coupled-channels wave functions,
(ii) threshold differences, (iii) the modern hadron-hadron in-
teractions, and (iv) the Coulomb interaction. A comprehensive
analysis with all these ingredients was recently carried out for
the first time in the case of the K− p correlation function in
high-energy nuclear collisions on the basis of the K̄N-π�-π�

coupled-channels framework [28]. In the subsections below,
we generalize this approach applicable to the N�-�� system.

A. Coupled-channels formalism

Let us first illustrate some features of the coupled-channels
wave function for nonidentical particles. We focus on the
small momentum region and assume that the strong inter-
action modifies only the s-wave part of the wave function.
The coupled-channels wave function �

(−)
j with the outgoing

boundary condition can be written as

�
(−)
j (q; r) = (φ(q; r) − φ0(qr))δ1 j + ψ

(−)
j (q; r), (3)

where r = |r|, φ(q; r) is the wave function without the strong
interaction, φ0(qr) is its s-wave component, and ψ

(−)
j (q; r) is

the total wave function in the s wave affected by the strong
interaction.

The wave function ψ
(−)
j (q; r) in Eq. (3) can be obtained by

solving the coupled-channels Schrödinger equation,

∑
j

(
− ∇2

2μi
δi j + Vi j (r)

)
ψ j (q; r) = Eiψi(q; r), (4)

where Ei = E − �i with μi and �i representing the reduced
mass in channel i and the threshold energy difference between
channel i and channel 1, respectively. Since �1 = 0, we have
E = E1 and q ≡ √

2μ1E = q1. Note that Ei>1 can be positive
or negative depending on the scattering energy, while E � 0
for physical scattering.

Unlike the case of the standard scattering problem where
the flux of the incoming wave is normalized, the outgoing
wave in the measured channel needs to be normalized in the
present case under the boundary condition:

ψ
(−)
j (q; r) −−−→

r→∞
1

2iq j

[
δ1 j

u(+)
j (q jr)

r
+ Aj (q)

u(−)
j (q jr)

r

]
.

(5)

Here q j = √
2μ jE j for open channels (Ej � 0) and

q j = −iκ j = −i
√

2μ j (−Ej ) for closed channels (Ej < 0).
Through these relations, all the momenta qj can be expressed
as functions of q. Also, u(±)

j (q jr) denotes the outgoing
(+) or incoming (−) asymptotic wave; it is the spherical
wave e±iq j r for channels without the Coulomb force,
while the Coulomb wave function needs to be used for
charged particles, uC(±)

j (q jr) = ±e∓iσ j [iF (q jr) ± G(q jr)]
with σ j = arg�(1 + iη j ), η j = −μ jα/q j , and F (x) [G(x)]
being the regular [irregular] Coulomb wave function.

In the following subsections, we discuss the coupled-
channels treatment with p�− and �� as measured channels.

B. p�− correlation function

Let us consider the p�− correlation function and assign
the channel indices i = 1, 2, and 3 as p�−, n�0, and ��,
respectively. For the p�− pair, there are two s-wave channels,
spin 0 (singlet) and spin 1 (triplet). The former couples to the
singlet n�0 and �� channels, while the latter couples only
to the triplet n�0 channel. What we observe in experiments is
the spin-averaged correlation function given by

Cp�− (q) = 1
4Csinglet

p�− (q) + 3
4Ctriplet

p�− (q). (6)
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FIG. 3. The p�− correlation function with the HAL QCD poten-
tial. The solid (dashed) line corresponds to the case with (without)
the Coulomb interaction. The statistical error from the lattice QCD
data is shown by the shaded area. The correlation function only with
the Coulomb interaction is shown by the dotted line.

For p�−, it is necessary to treat the Coulomb interaction
carefully because it distorts the wave function significantly in
the small momentum region. We introduce the Coulomb po-
tential VC(r) = −α/r to the diagonal component of the p�−
channel as V QCD

p�− (r) + VC(r). Since the long-range Coulomb
force affects all the partial waves while the short-range strong
force affects only the s wave at low energies, the wave func-
tion in channel 1 (p�−) in Eq. (3) should be written as [23]

�
(−)
1 (q; r) = (

φC(q; r) − φC
0 (qr)

) + ψ
(−)
1 (q; r), (7)

where φC(q; r) is the free Coulomb wave function and
φC

0 (qr) is its s-wave component. The boundary condition for
ψ

(−)
j (q; r) must be given by the the Coulomb wave function

uC(±)
j (q jr) for j = 1 and the spherical wave e±iq j r for j = 2

and 3 in Eq. (5). Then the KPLLL formula can be written as

C(q) =
∫

d3r S1(r)
[|φC(q; r)

∣∣2 − |φC
0 (qr)

∣∣2]

+
3∑

j=1

∫ ∞

0
4πr2dr ω jS j (r)|ψ (−)

j (q; r)|2. (8)

In Fig. 3, we show the fully coupled-channels results of
the p�− correlation function with and without the Coulomb
attraction (the solid line and the dashed line, respectively),
together with the case of pure Coulomb attraction (the dotted
line). Here we use the N�-�� coupled-channels potential
at t = 12 given in Fig. 2. To see the qualitative behavior
of Cp�− (q), we take a common source function of Gaussian
shape for all channels S j (r) = SR(r) with R = 1.2 fm and
ω j = 1 for all j. The error bands for the solid and dashed

lines estimated by the jackknife method reflect the statistical
errors of the lattice QCD data. Compared to the pure Coulomb
case, the correlation function shows a large enhancement
by the strong interaction in the low momentum region,
q < 100 MeV.

To see the individual contribution in the j sum in Eq. (8),
we plot in the left panel of Fig. 4 the three cases for Cp�− (q)
with the same parameters as Fig. 3: j = 1 (p�− only), j = 1
and 3 (p�− + ��), and j = 1, 2, and 3 (p�− + n�0 + ��).
For simplicity, the statistical errors are not shown. One finds
that the major enhancement of Cp�− (q) over the pure Coulomb
case comes from the N� attraction, while the channel cou-
pling to �� is negligible. Further decomposition into spin
singlet Csinglet

p�− (q) and spin triplet Ctriplet
p�− (q) are shown in the

middle and right panels of Fig. 4, respectively. Due to the
larger negative scattering length in the spin-singlet channel, its
enhancement is stronger, although the spin degeneracy factor
is smaller. Also, we find that the contribution from the n�0

channel source to the singlet correlation function gives a small
enhancement, while the �� source is almost negligible. For
the triplet correlation function, the contribution from the n�0

source is almost invisible.

C. �� correlation function

To study the �� correlation function, we assign the chan-
nel indices i = 1, 2, and 3 to ��, n�0, p�−, respectively. For
identical particles, the wave function (3) is distorted by the
quantum statistical effect. Then the wave function in channel
1 (��) can be decomposed in the even parity (spin-singlet)
and the odd parity (spin-triplet) components as

�
(−)
1,E (q; r) = 1√

2
[� (−)

1 (q; r) + �
(−)
1 (q; −r)] (9)

=
√

2[[cos(q · r) − φ0(qr)] + ψ
(−)
1 (q; r)],

(10)

�
(−)
1,O (q; r) = 1√

2
[� (−)

1 (q; r) − �
(−)
1 (q; −r)] (11)

=
√

2i sin(q · r). (12)

Since we consider only the s-wave distortion by the strong
interaction, the scattering wave function ψ j appears only in
the even parity part. Thus the even and odd parity correlation
functions are given by

CE(q) =
∫

d3r
3∑

j=1

ω jS j (r)|� (−)
j,E (q; r)|2 (13)

= 1 + exp(−4q2R2)

+ 2
∫

d3r
3∑

j=1

ω jS j (r)[|ψ (−)
j (q; r)|2

− |φ0(qr)|2δ1 j], (14)

CO(q) =
∫

d3r
3∑

j=1

ω jS j (r)|� (−)
j,O (q; r)|2 (15)

= 1 − exp(−4q2R2). (16)
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FIG. 4. The breakdown of the p�− correlation function. The left panel shows the spin-averaged correlation function given by Eq. (6). The
middle and right panels show the correlation function of spin single and triplet channels, respectively. The dashed lines denote the correlation
function calculated only with the p�− wave function. The dash-dotted line and solid line denote the results with the contributions of p�−+��

and p�−+n�0+�� channels, respectively.

Taking into account the spin degrees of freedom, the final
form of the �� correlation function reads

C��(q) = 1

4
CE(q) + 3

4
CO(q) (17)

= 1 − 1

2
exp(−4q2R2) + 1

2

∫
d3r

3∑
j=1

ω jS j (r)

× [|ψ (−)
j (q; r)|2 − |φ0(qr)|2]. (18)

The �� correlation is always suppressed by
(1/2) exp(−4q2R2) by the quantum statistical effect, which is
independent of the interactions.

We note here that, if the energy is above the p�− threshold
(E3 > 0), p�− is an open channel and the asymptotic wave
function is given by the Coulomb wave function as

ψ
(−)
3 (q; r) −−−→

r→∞
A3(q)

2iq3

uC(−)
3 (q3r)

r
. (19)

If the energy is less than the p�− threshold (E3 < 0), q3

should be replaced by −iκ3 in the above expression, so that
we have uC(−)

3 (q3r) = eiπ |η3|/2W|η3|,1/2(2κ3r) with Wk,�+1/2(z)
being the Whittaker function [37,38].

In Fig. 5, we show the fully coupled-channels result of
the �� correlation function (the solid line) together with the
case of pure quantum statistics contribution (the dotted line).
The coupled-channels potentials at t = 12 given in Fig. 2 are
employed, and a common source function of Gaussian shape
is assumed for all channels as in the case of Fig. 3. The error
band for the solid line reflecting the statistical errors of the
lattice QCD data is estimated by the jackknife method.

Compared to the case of pure quantum statistics, C��(q)
shows a strong enhancement by the strong interaction in the
low momentum region: q < 100 MeV. Also, two cusps cor-
responding to the n�0 threshold at 2254 MeV and the p�−
threshold at 2260 MeV are found as previously pointed out in
Ref. [26]. Such a threshold cusp is indeed found experimen-
tally in the K− p correlation function [26,28,39]. In the present
case, these cusps are rather moderate due to the weak coupling

between �� and N�, and it would be a challenging problem
to find them experimentally.

To see the individual contribution in the j sum in Eq. (18),
we plot in Fig. 6 the three cases for C��(q) with the same
parameters as Fig. 5: j = 1 (�� only), j = 1 and 2 (�� +
n�0), and j = 1, 2, and 3 (�� + n�0 + p�−). For simplicity,
the statistical errors are not shown. The figure shows that the
n�0 and p�− sources only affect the cusp region, and make
little contribution to the other momentum region. Neverthe-
less, solving the coupled-channels Schrödinger equation (4)
is important to take into account the extra �� attraction due
to the coupling with N� states.

FIG. 5. The �� correlation function. The statistical error of the
lattice QCD data is shown by the shaded area. The result of pure
quantum statistics without strong interaction is shown by dotted line.
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FIG. 6. The breakdown of the �� correlation function. The
dashed line denotes the correlation function calculated only with
the �� wave function component. The dash-dotted (the solid line)
denote the results in which the contribution from the n�0 (all the cou-
pled channels) are added. The dotted line denotes the pure quantum
statics case, where all the final state interactions are switched off.

IV. DETERMINATION OF PARAMETERS

A. Source function and weight

For pp and pA collisions, a spherical and static Gaussian
source function works well to reproduce the data. In the
present analysis of the correlation functions in pp and pA
collisions we adopt the static Gaussian source function:

S j (r) = 1(
4πR2

j

)3/2 exp

(
− r2

4R2
j

)
. (20)

Here, the effective source size Rj would depend on hadron
pairs and reactions [40]. In experiments, the source size
has been studied by using the correlation function of
the pp pairs for which the elaborated strong interaction
potential is available. For the pp pairs, the ALICE Collab-
oration has previously determined Rpp to be RALICE

pp (pp) =
1.182 ± 0.008(stat)+0.005

−0.002(syst) fm in pp collisions at 13
TeV and RALICE

pp (pPb) = 1.427 ± 0.007(stat)+0.001
−0.014(syst) fm

in pPb collisions at 5.02 TeV [11,16]. On the other hand,
smaller source sizes are reported for p�− and p�− pairs:
RALICE

p�− (pp) = 1.02 ± 0.05 fm and RALICE
p�− (pp) = 0.95 ± 0.06

fm [17]. In the present paper, we assume that the source sizes
of N� pairs and �� pairs are the same (Rj = R), since their
total masses are close to each other and the contribution from
the coupled-channels sources is not large.

In the theoretical analysis in Sec. III, we set ω j = 1 for
simplicity. In actual high energy collisions, the source weights
depend on the channel and the reaction. In general, the ratio of
the source weights in channels i and j is written in terms of the

particle yields N as ω j

ωi
= α j N ( j1 )N ( j2 )

αiN (i1 )N (i2 ) with i1, i2, j1, and j2 be-
ing the labels of particles in each channel and αi representing
the ratio of the number of particle pairs assigned to channel i
among N (i1) × N (i2) pairs. For the K− p correlation function
analyses in Ref. [28], a statistical model [41,42] provides a
reasonable estimate of the source weights. Accordingly, we
evaluate the ratio in terms of thermal Boltzmann factor with
the corresponding baryon mass,

ω j

ωi
= α j

αi
exp

[(
mi1 + mi2 − mj1 − mj2

)
/T∗

]
, (21)

where T∗ = 154 MeV is the hadronization temperature
[41,42]2. The factors α j,i are given by the spin degree and the
ratio of particle pairs: α�� = 1/2 due to its identical particle
nature and αN�(J=0) = 1/4 (αN�(J=1) = 3/4) due to its spin
degeneracy.

It should be noted that the analysis of the correlation func-
tion from AA collisions requires more detailed information
on the source function, e.g., asymmetrical distribution shape
and flow effects [9]. Also, in small collision systems, the
detailed feature of the hadronization process may contribute
to the source function. In practice, it is not easy to construct
a theoretical model which describes dynamical evolution of
heavy-ion collisions and the femtoscopic data simultaneously
[43,44]. One of the alternative ways is to rely on the system-
atics. For example, ALICE Collaboration proposes a common
baryon source in high-multiplicity pp collisions [40], where
a common core source size is given as a function of the
transverse mass, the effect of strong resonance decay is taken
into account, and the effective static Gaussian source size is
evaluated. Then the correlation functions of several different
pairs are successfully explained. Thus the details of the source
are expected to be renormalized into the effective source
size in the present precision of the hadron interactions with
strangeness.

B. Fitting procedure

The experimental data of the correlation functions contain
not only the physical effect of the final state interactions but
also contaminations from the particle misidentification, the
feed-down effect from weak and electromagnetic decays of
other particles, and the nonfemtoscopic effect such as the
minijet contribution. To take into account those effects, we
adopt the following fitting function proposed by the ALICE
Collaboration [10,16]:

Cfit (q) = (a + bq)[1 + λ(Cth(q) − 1)]. (22)

Here the first factor in the right-hand side parametrizes
non-femtoscopic backgrounds. The particle misidentification
and the feed-down effect are represented by the pair purity
probability λ which are estimated in Refs. [11,16] and are
recapitulated in Table II. Other correlations feeding into the

2Equation (21) gives a slightly different relative weight ωN�/ω��

from the statistical model due to the approximation that holds for
mj1 mj2/(mi1 mi2 ) ∼ 1. We have checked that this factor does not
change the following qualitative results and the pictures.
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TABLE II. The pair purity λ, nonfemtoscopic parameters a and b, and the effective source size R in the fitting function Cth (q). The
parameters a and b in pp (�� pairs) and pPb (p�− and �� pairs) collisions and R in pp collisions are the actual fitting parameters. Numbers
with references are taken from Refs. [11,16,17], and the number with (∗) is estimated from other other parameters. See the text for details.

Collision Pair λ a b [(MeV/c)−1] R (fm)

pp p�− 1 [17] 1 [17] 0 [17] 1.05
(13 TeV) �� 0.338 [11] 0.95 1.28 × 10−4

pPb p�− 0.513 [16] 1.09 −2.56 × 10−4 1.27(∗)

(5.02 TeV) �� 0.239 [11] 0.99 0.29 × 10−4

present channels are assumed to be flat. For the theoretical
two-particle correlation function Cth(q), we employ the re-
sults of the HAL QCD potential in Sec. III. We note here
that the experimental data for the p�− correlation function
in pp collisions given in Ref. [17] are obtained after the
subtraction of the nonfemtoscopic background, the particle
misidentification, and the feed-down effect, so that we should
take (λ, a, b) = (1, 1, 0) as indicated in Table II.

We carry out a simultaneous fit of the ALICE data of p�−
and �� correlations in pp collisions [11,17] by using Cfit (q)
in Eq. (22). There are three fitting parameters, a��, b��, and
R(pp); other parameters are fixed as given in Table II. Then
we found a�� = 0.95, b�� � 10−4(MeV/c)−1, and R(pp) =
1.05 fm with χ2/(d.o.f.) � 1. Our source size is in good
agreement with RALICE

p�− (pp) = 1.02 ± 0.05 fm [17].
For p�− and �� correlation functions in pA collisions

[11,16], large uncertainties of the data do not allow us to de-
termine the source size R(pPb) precisely. Indeed, χ2/(d.o.f.)
depends on R only weakly and stays above 1. Thus we esti-
mate R(pPb) by combining our R(pp) and the ALICE results
on the system dependence of the pp pairs: R(pPb) = R(pp) ×
RALICE

pp (pPb)/RALICE
pp (pp) = 1.27 fm. 3 After fixing R(pPb) in

this way, we carry out a simultaneous fit of the ALICE data of
the p�− and �� correlation functions in pPb collisions with
the four fitting parameters a��, b��, ap�− , and bp�− to obtain
the values in Table II.

Some remarks about the fitting procedure are in order here.
(i) The statistical and systematic errors of the experimental
data are added in quadrature in our fit. (ii) We use the data up
to q = 300 MeV/c for the p�− pairs in pp collisions, while
the data up to q = 500 MeV/c are used in other cases. This
is because the nonfemtoscopic backgrounds are subtracted

3We note that we have realized that the event types are differ-
ent among the correlation functions analyzed here. The correlation
function of p�− from pp collisions [17] is obtained from the high-
multiplicity events, while other correlation functions (the �� [11]
correlation function from pp collisions and the p�− [16] and ��

[11] correlation functions from pPb collisions) are from minimum
bias events. Since the source size generally increases with increasing
multiplicity, the present source size, R(pp) for �� and R(pPb) for
p�− and ��, may overestimate the realistic ones. This is consistent
with the fact that the χ 2 is smaller with a smaller source size for
pPb collisions. It should be noted, however, that χ2/(d.o.f.) values
are not very different and then the correlation functions shown below
look similar to those with a little smaller source size, and thus we use
the above explained source size.

in the former case, while we need high-momentum data to
determine a and b in the latter case. (iii) We take the HAL
QCD potential with t = 12 to carry out the fit Cth. Uncer-
tainties arising from this statistical and systematic errors of
the HAL QCD potential are also considered in the final results.

V. COMPARISON WITH EXPERIMENTAL DATA

A. p�− correlation function

In the upper panels of Fig. 7, our final results of the p�−
correlation functions are compared with the p�− data in pp
collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [16,17]. The solid lines denote our
final results with statistical and systematic errors of the HAL
QCD potential. The former is estimated by the jackknife
method with the t = 12 data, and the latter is estimated by the
potentials for t = 11 and 13. The dotted green lines are the
results with the Coulomb potential only. Shown by the shaded
region is the larger one among the statistical and systematic
errors.

The solid lines explain not only the strong enhancement at
small q but also the q dependence of Cp�− (q). The enhance-
ment over the pure Coulomb potential implies the attractive
nature of the strong N� interaction. Such an observation has
been already reported in the previous works [16,17,24,26].
However, our paper provides for the first time the coupled-
channels analysis with the threshold difference, the strong
interaction, and the Coulomb interaction taken into account.
(Neither the coupled-channels effect nor the threshold differ-
ence was considered in Refs. [16,17,24], while the Coulomb
interaction was not considered in Ref. [26].) We note that the
agreement of the correlation function in Refs. [16,17] and that
in the present work comes from the fact that the coupled-
channels effects are not significant in the p�− correlation
function due to weak transition between p�− and ��.

B. �� correlation function

In the lower panels of Fig. 7, our final results of the ��

correlation functions are compared with the �� data in pp
collisions at 13 TeV (the left panel) and in pPb collisions at
5.02 TeV (the right panel) [11]. The solid lines denote our
final results with statistical and systematic errors of the HAL
QCD potential. The dotted green lines are the results with
only the quantum statistics effect. Although there are large
uncertainties of the experimental data at small q region, the
agreement of the solid line with the data indicates a weak
attraction in the �� channel without a deep bound state. This
is consistent with the conclusions in Refs. [10,11].
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FIG. 7. Experimental and theoretical correlation functions of the p�− pairs (the upper panels) and the �� pairs (the lower panels). The
blank squares are the ALICE data taken from Refs. [11,16,17]; the statistical error and systematic error are denoted by the vertical line and the
shaded bar, respectively. Solid lines are the theoretical results with statistical and systematic uncertainties represented by the shaded region.
The left (right) panels correspond to the results in pp collisions at 13 TeV (pPb collisions ar 5.02 TeV). The dotted lines show the results
with only Coulomb interaction (only quantum statistics) for the p�− (��) correlation functions. The dash-dotted lines show the correlation
function calculated with the LL formula.

The correlation functions calculated with the Lednicky-
Lyuboshits (LL) formula for identical spin-half baryon pairs
[33] are also plotted in the lower panels of Fig. 7 by the
dash-dotted line:

C(q) = 1 − 1

2
e−4q2R2 + 1

2
�C(q), (23)

�C(q) = | f (q)|2
2R2

F3

(
reff

R

)
+ 2Re f (q)√

πR
F1(2qR)

− Im f (q)

R
F2(2qR), (24)

where F1(x) = ∫ x
0 dt et2−x2

/x, F2(x) = (1 − e−x2
)/x, F3(x) =

1 − x/2
√

π , and we make the effective range expansion
of single channel �� scattering amplitude f (q) with a0 =
−0.78 fm and reff = 5.4 fm given in Table I. The same non-
femtoscopic parameters and the pair purity listed in Table II

are used. We find that the single-channel LL formula gives a
good approximation to the fully coupled-channels results for
a wide range of q in both pp and pPb collisions. It would
be interesting to see whether high precision data for C��(q)
in the future may reveal cusp structures at the n�0 and p�−
thresholds as expected from the coupled-channels effect.

C. System size dependence

The enhancement of C(q) for fixed R alone cannot con-
clude whether a bound or quasibound state is generated by
the strong interaction. This can be demonstrated by using an
analytic model for neutral and nonidentical particles C(q) =
1 + �C(q) with reff = 0, which is obtained from Eq. (24) as

�C(q) = 1

x2 + y2

[
1

2
− 2y√

π
F1(2x) − xF2(2x)

]
, (25)
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FIG. 8. The contour plot of the correlation function C(q) in the
LL analytic model at reff = 0 as a function of x = qR and y = R/a0.

with x = qR and y = R/a0. Shown in Fig. 8 is a contour plot
of C(q) in the x-y plane. The strongly enhanced region C(q) >

2 indicated by the white area extends to both negative and
positive sides of y for x < 0.5. (Even if one introduces the
Coulomb attraction as in the case of p�−, this situation does
not change qualitatively, as discussed in Appendix C.)

Scanning through the y axis by changing the system size R
would provide further experimental information on the sign of
y. To demonstrate this, we show the p�− and �� correlation
functions for several different source sizes (R = 0.9, 1.2, 1.5,
and 3 fm) in Fig. 9 with the HAL QCD potential (the thick
lines) and without the HAL QCD potential (the thin lines).

For the p�− correlation function, Fig. 9 implies that the
enhancement of C(q) due to strong interaction over the pure
Coulomb attraction is significant around R = 1 fm but is grad-
ually reduced toward the larger values of R. This is consistent
with the fact that we are in the negative y region as indicated
by Fig. 8. If the scattering length is in the bound region
(y = R/a0 > 0), we would expect that C(q) undershoots the
Coulomb contribution and may form a dip as a function of
x = qR. Thus the experimental studies of the p�− correlation
function in heavy-ion collisions corresponding to larger R are
of particular interest.

For the �� correlation function, Fig. 9 shows that the
enhancement of C(q) due to strong interaction over the pure
quantum statistics has characteristic nonmonotonic behavior
for q smaller than the N� threshold. However, to have quan-
titative discussions for large R corresponding to the heavy-ion
collisions, more realistic source shape as well as the flow
effect need to be taken into account [9], since the effect of
quantum statistics is particularly important in the �� corre-
lation.

We note here that a high-momentum tail of the �� cor-
relation function above the N� threshold was observed in
Au + Au collisions at the Relativistic Heavy Ion Collider
(RHIC) [45], and a residual source having a small size (Rres �

FIG. 9. Source size dependence of the p�− and �� correlation
functions. The thick lines denote the results with full coupled-
channels calculation. For comparison, the calculations with the pure
Coulomb cases (pure quantum statics cases) are shown for p�−

(��) correlation function by thin lines.

0.5 fm) was introduced in previous works [9,22,45]. Although
it was suggested in Ref. [46] that the coupled-channels effects
may explain the high-momentum tail in Au + Au collisions,
the present analysis shows that such a tail does not appear
unless R is smaller than 1 fm, as shown in Fig. 9. Thus this
issue is still left open for future studies.

VI. SUMMARY

We studied the p�− and �� femtoscopy in pp and
pPb collisions at LHC by using the latest N�-�� coupled-
channels HAL QCD potential. A moderate N� attraction of
this potential produces a virtual pole below the n�0 threshold.
On the basis of the KPLLL formula for the momentum cor-
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TABLE III. Same with Table I but with the pion and kaon masses in the fitted HAL QCD potential in Ref. [12] by the isospin averaged
physical masses, mπ = 137.3 MeV and mK = 495.6 MeV.

Total spin Baryon pair a0 (fm) reff (fm)

J = 0 p�− −1.25(0.03)(+0.12
−0.00 ) − i2.00(0.40)(+0.16

−0.31 ) 3.7(0.3)(+0.0
−0.1 ) − i2.4(0.2)(+0.1

−0.3 )
n�0 −2.76(0.63)(+0.33

−0.66 ) − i0.15(0.12)(+0.00
−0.03 ) 1.5(0.3)(+0.0

−0.1 ) − i0.1(0.0)(+0.0
−0.0 )

�� −0.99(0.30)(+0.00
−0.17 ) 4.9(0.70)(+0.1

−0.5 )
J = 1 p�− −0.47(0.08)(+0.11

−0.09 ) − i0.0(0.00)(+0.00
−0.00 ) 6.7(0.7)(+1.4

−0.9 ) + i0.0(0.1)(+0.0
−0.0 )

n�0 −0.47(0.08)(+0.11
−0.09 ) 6.8(0.7)(+1.4

−0.9 )

relations of hadron pairs, we considered the coupled-channels
effect, the threshold difference, the strong interaction, and the
Coulomb interaction at the same time to analyze the p�− and
�� correlation functions. After evaluating the parameters of
the nonfemtoscopic effects and the source function, theoret-
ical results of the correlation functions are compared with
the experimental data by the ALICE Collaboration; they are
found to be in good quantitative agreement. From this com-
parison, we concluded that negative scattering lengths in the
N� system are implied by the strong enhancement of the p�−
correlation function over the Coulomb contribution. Also, we
found that the �� correlation function may show a twin
cusp near the n�0 and p�− thresholds due to channel cou-
pling, which would be interesting see in future high precision
data.

Studies with femtoscopic techniques in different collision
systems will help us to unravel the physics of hadron-hadron
interactions further. For example, it is interesting to examine
the N� correlation function in nucleus-nucleus collisions by
changing the impact parameter, so that one can utilize the
idea of the “small-to-large ratio” to extract the strong inter-
action effect without much contamination from the Coulomb
interaction [23]. A femtoscopic study of the hadron-deuteron
correlation functions [47–50] is another feasible and valuable
direction to pursue. The production of the S = −2 system
through the (K−, K+) reaction with nuclear target is also
an alternative and promising approach to study the N�-��

system in a controlled fashion [51–53].
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APPENDIX A: LOW ENERGY CONSTANTS FROM
MODIFIED HAL QCD POTENTIAL

The HAL QCD potential used in the text is constructed
at mπ � 146 MeV and mK � 525 MeV which are slightly
away from the physical point [12]. To estimate the effect of
this discrepancy, we replace mπ and mK in the parametrization
of the HAL QCD potential by the isospin-averaged physical
masses, 137.3 and 495.6 MeV, respectively. Resulting scatter-
ing lengths and effective ranges are shown in Table III. The
numbers are consistent with those given in Table I within the
errors, although the central values of the scattering length a0

are slightly larger due to slight increase of the attraction by
the smaller pion and kaon masses.

APPENDIX B: VIRTUAL POLE AND N� INTERACTION

Here we summarize the relation between the two-body
interaction and the behavior of the pole of the scattering
amplitude in the s wave, and discuss the pole near the n�0

threshold in the HAL QCD potential. The eigenmomentum
q of the generalized eigenstate of the Hamiltonian is ex-
pressed by the pole of the scattering amplitude [54]. In the
single-channel problem with a sufficiently attractive s-wave
interaction, a bound state pole lies on the imaginary momen-
tum q axis in the upper half of the complex q plane. This pole
goes down along the imaginary q axis to the lower half-plane
with decreasing attraction [55,56]. The pole in the lower half-
plane (the virtual pole) represents the virtual state, which is
not interpreted as a physical state because its wave function
is not normalized in the usual sense [54]. In the complex
energy E = q2/2μ plane, both the bound and virtual poles are
mapped onto the negative real axis, but they are distinguished
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FIG. 10. A schematic picture of the s-wave pole position gen-
erated by the strong interaction in the complex energy plane. The
upper left (bottom left) figure shows the pole in the (+) [(−)] sheet
of the single channel case and the upper right [bottom right] right fig-
ure shows that in the (−, +) [(+, −)] sheet of the coupled-channels
case (see the text for the notation of the Riemann sheets). Energy re-
gion where the pole corresponds to physical eigenstate is denoted by
the blue lines. As the attractive interaction becomes weaker from the
bound (quasibound) region, the bound (quasibound) pole becomes
the virtual pole.

by the first (+) and second (−) Riemann sheets, correspond-
ing respectively to the Im q > 0 and Im q < 0 regions. In the
complex energy plane, the bound state pole moves toward
the threshold by decreasing the attraction, crosses the branch
cut on Re E > 0 to go to the second Riemann sheet, and
then becomes a virtual state moving away from the threshold
(Fig. 10).

When there are decay channels at lower energy, the relation
between the interaction and the pole position is modified from
the single-channel case. First, with the coupling to the decay
channel, the eigenenergy of the bound state is shifted to the
complex energy plane, where the imaginary part represents
the half decay width. Such an unstable state is called the
quasibound state (would-be bound state in the absence of
the decay channel). In addition, to specify the sign of the
imaginary part of the eigenmomentum for each channel, the
complex energy plane is defined on the 2n-sheeted Riemann
surface in the n-coupled-channels system [54]. In the simplest
two-channel system, the Riemann sheet is specified by the
notation (±,±), representing the sign of the imaginary part
of the eigenmomentum of each channel. The quasibound state
should lie in the most adjacent Riemann sheet to the physi-
cal (+,+) sheet with negative imaginary part, which is the
(−,+) sheet in the energy region between two thresholds. By
decreasing the attraction of the potential of the higher energy
channel, the pole moves toward the higher energy threshold,
turns around the branch point at the threshold, and moves to
the (+,−) sheet with the positive imaginary part (Fig. 10).
Thus, we can find a similar behavior for a pole lying near the
threshold energy.

As indicated by the negative real part of the ��, n�0 and
p�− scattering lengths in Table I in the case of HAL QCD
potential, the strong interaction does not generate bound or

FIG. 11. Same as Fig 8 but with Gamow factor. For
given (x, y) = (qR, R/a0), η = −μα/q is calculated as η(x, y) =
−α|μya0|/x where we adopt μa0 = μp�− aN�(J=0)

0 = −3.32.

quasibound states near the ��, n�0, and p�− thresholds.
Instead, by solving the Schrödinger equation, we find a virtual
pole lying at Epole = 2250.5 ± i0.3 MeV in the (+,−,+)
sheet (in the order of ��, n�0, and p�−) in the J = 0
channel: The real part of Epole is just below the n�0 threshold
by −3.93 MeV. For the N� quasibound state to emerge, the
corresponding pole should appear below the n�0 threshold
in the (−,+,+) sheet. The near-threshold virtual pole in
the (+,−,+) sheet still contributes to the enhancement of
the scattering length in the n�0 channel. We note here that,
if we use the modified HAL QCD potential associated with
Table III, the virtual pole moves closer to the threshold energy
of n�0, Epole = 2251.8 ± i0.2 MeV. This is due to the fact that
the attraction becomes slightly stronger in this case and the
virtual pole moves toward the n�0 threshold in the complex
E plane, as seen from Fig. 10.

APPENDIX C: LL MODEL WITH GAMOW FACTOR

When the Coulomb attraction operates on top of the strong
interaction, C(q) is enhanced in the low q region and the
suppression found in Fig. 8 with a0 > 0 (without the Coulomb
potential) is expected to appear as a dip of C(q) when the
source size R is comparable to a0. This is illustrated in
Fig. 11 where the Coulomb effect is considered qualita-
tively by multiplying the Gamow factor given as AGamow(η) =
2πη/[exp(2πη) − 1]. On the other hand, in the negative a0 re-
gion without the bound state, the dip structure is not expected
in C(q) for wide range of R = 1–5 fm. Recent preliminary
data from Au + Au collisions [57] seem to show no dip in the
p�− correlation function, which is consistent with the HAL
QCD potential where there is no quasibound state of p�−
generated by the strong interaction.
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