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The beam energy dependence of the directed flow is a sensitive probe for the properties of strongly interacting
matter. Hybrid models that simulate dense (core) and dilute (corona) parts of the system by combining the fluid
dynamics and hadronic cascade model describe well the bulk observables, strangeness productions, and radial
and elliptic flows in high-energy heavy-ion collisions in the high baryon density region. However, the beam
energy dependence of the directed flow cannot be described in existing hybrid models. We focus on improving
the corona part, i.e., the nonequilibrium evolution part of the system, by introducing the mean-field potentials
into a hadronic cascade model. For this purpose, we consider different implementations of momentum-dependent
hadronic mean fields in the relativistic quantum molecular dynamics (RQMD) framework. First, Lorentz scalar
implementation of a Skyrme type potential is examined. Then, full implementation of the Skyrme type potential
as a Lorentz vector in the RQMD approach is proposed. We find that scalar implementation of the Skyrme force
is too weak to generate repulsion explaining observed data of sideward flows at

√
sNN < 10 GeV, while vector

implementation gives collective flows compatible with the data for a wide range of beam energies 2.7 <
√

sNN <

20 GeV. We show that our approach reproduces the negative proton directed flow at
√

sNN > 10 GeV discovered
by experiments. We discuss the dynamical generation mechanisms of the directed flow within a conventional
hadronic mean field. A positive slope of proton directed flow is generated predominantly during compression
stages of heavy-ion collisions by the strong repulsive interaction due to high baryon densities. In contrast, at
the expansion stages of the collision, the negative directed flow is generated more strongly than the positive one
by the tilted expansion and shadowing by the spectator matter. At lower collision energies

√
sNN < 10 GeV, the

positive flow wins against the negative flow because of a long compression time. On the other hand, at higher
energies

√
sNN > 10 GeV, negative flow wins because of shorter compression time and longer expansion time.

A transition beam energy from positive to negative flow is highly sensitive to the strength of the interaction.

DOI: 10.1103/PhysRevC.105.014911

I. INTRODUCTION

The phase structure of QCD matter for a wide range of
baryon density is of fundamental interest [1]. Understanding
the equation of state (EoS) for QCD matter is a primary goal.
In particular, a first-order phase transition and a critical point
at finite baryon densities are predicted by several effective
models [2]. The properties of QCD matter have been explored
experimentally using high-energy nuclear collisions under
various conditions: beam energy, centrality, and system size
dependence. Currently, high-energy heavy-ion experiments
represent one of the most active areas: heavy-ion experiments
are being performed from a few GeV to TeV beam energies
in the same era. We now have a vast body of data including
different centralities and system sizes from many experiments
by accelerators such as the SIS heavy-ion synchrotron [3], the
Alternating Gradient Snychrotron (AGS) [4], the Super Proton
Synchrotron (SPS) [5], the Relativistic Heavy Ion Collider
(RHIC) [6], the Large Hadron Collider (LHC) [7], and so
on. Future facilities such as the Facility for Antiproton and
Ion Research (FAIR) [8], the Nuclotron-based Ion Collider
fAcility (NICA) [9], the High Intensity Heavy-ion Acceler-

ator Facility (HIAF) [10], and the J-PARC Heavy Ion Project
(J-PARC-HI) [11] are being constructed or are planned to
perform high precision measurements.

Anisotropic collective flows are considered to be a good
probe to extract the EoS of dense QCD matter [12–16].
Noncentral collisions create azimuthally asymmetric excited
matter, and subsequent collective expansion results in az-
imuthally anisotropic emission of particles. The distribution
can be analyzed from the coefficients in the Fourier expan-
sion of measured particle spectra [17]. The directed flow is
defined by the first coefficient v1 = 〈cos φ〉, and the second
coefficient v2 = 〈cos 2φ〉 is called the elliptic flow, where φ

is the azimuthal angle of an outgoing particle with respect
to the reaction plane. These flows have been measured by
various experiments, and now we have excitation functions
of flows from

√
sNN ≈ 2 GeV to 5 TeV. The proton elliptic

flow is negative below
√

sNN ≈ 3 GeV due to a shadowing
of spectator matter (squeezed out) and it becomes positive
at higher beam energies [14,18]. Transport theoretical models
describe this sign change of the elliptic flow [14,18]. On the
other hand, the data show that the slope of the proton v1(y)
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with respect to rapidity y is positive (normal or positive flow)
dv1/dy > 0 up to the beam energy of

√
sNN ≈ 10 GeV, and

then it becomes negative (antiflow or negative flow) above
10 GeV at mid-rapidity [19–21].

It has been argued that the negative directed flow could be
an effect of the softening of the EoS, and it may be a signa-
ture of a first-order phase transition [22–24]. Fluid dynamical
simulations and microscopic transport models predict that the
softening happens at around a beam energy less than 5 GeV
[22–26], which is inconsistent with the experimental data. On
the other hand, antiflow at beam energies above 27 GeV is
naturally explained by the transport models [27] by the com-
bination of space-momentum correlations together with the
correlation between the position of a nucleon in the nucleus
and its stopping [28]. The direct reason for the negative slope
is the tilted matter created in noncentral collisions, which
generates antiflow predominately over the normal flow during
the expansion stage. The color glass condensate model also
predicts twisted matter [29]. The tilted source was used in
the initial condition of the hydrodynamical evolution to ex-
plain negative directed flow at the top RHIC energy [30]. The
transport models describe the directed flow below 7.7 GeV
or above 27 GeV [27,31,32]. The three-fluid dynamics (3FD)
model [33] reproduces the rapidity dependence of the directed
flow at 11.5 GeV with the crossover and first-order phase
transition scenario. A transport calculation with attractive
trajectory prescription [34] also fits the data at 11.5 GeV.
However, none of the fluid models explain the beam energy
dependence of the slope so far.

An alternative way to understand the space-time evolu-
tion of the matter created in high-energy nuclear collisions is
to utilize microscopic transport models such as Boltzmann-
Uehling-Uhlenbeck (BUU) [35,36] and quantum molecular
dynamics (QMD) [37,38] approaches and their relativistic
versions, RBUU [39,40] and RQMD [31,32,41–45], which
have been developed and successfully employed to understand
the nonequilibrium collision dynamics of high-energy nuclear
collisions. The main two ingredients of the microscopic trans-
port model are the Boltzmann type collision term and the
mean-field interaction. Later, hybrid models were developed
by combining fluid dynamics into a microscopic transport
model (in the cascade mode) [46–52] to describe heavy-ion
collisions in high baryon density regions. The inclusion of
fluid dynamics improves the particle multiplicities, especially
strangeness particle and antibaryon yields, and reproduces the
beam energy dependence of the elliptic flow by changing the
shear viscosity [48,52]. Thus, hybrid models describe well
the radial and elliptic flows. However, hybrid models do not
reproduce the beam energy dependence of the directed flow
[47,52].

We have developed a dynamically integrated hybrid
JAM+hydro model [51] by utilizing the dynamical initial-
ization of the fluid [53–56], which shows the importance
of the separation of the dense and dilute part (core-corona
separation) of the system. In other words, the nonequilibrium
evolution of the system exists for all stages of the collision
at the collision energy of the high baryon density region.
Recently, it was found in Ref. [56] that this is also true even
for the LHC energies. However, all hybrid models use cascade

models for the nonequilibrium evolution, in which EoS is
an ideal gas of hadrons up to small corrections from strings.
Thus, the corona part described by the particles does not have
the correct EoS effects. It is well known that the cascade
model lacks the magnitude of pressure, and mean-field ef-
fects are necessary to reproduce the experimentally observed
anisotropic flows [14,15].

Thus none of the existing dynamical models including
fluid, hadronic cascade, hybrid, and integrated models explain
the beam energy dependence of the slope of the directed flow
so far. Now the question arises, what is the reason for the tran-
sition from positive to negative slope at around 10 GeV? From
the discussions above, the mean field in the nonequilibrium
evolution in a hybrid model should improve the description
of the collision dynamics in the high baryon density regions.
Especially, the mean field in the nonequilibrium compression
stages of the collision may significantly alter the dynamics.
Another important aspect is the formation of tilted matter,
which induces the negative flow in the expansion stage. The
balance of the positive flow from large pressure in the com-
pression stage and the negative flow from the formed tilted
matter may cause the nonmonotonic beam energy dependence
of the directed flow slope.

It should be noted that the origin of the nonmonotonic
behavior of the directed flow slope is relevant to the onset
energy, at which the partonic degrees of freedom becomes
significant during heavy-ion collisions. The fraction of par-
tonic matter is expected to increase gradually with increasing
beam energy, since the system volume is finite in heavy-ion
collisions and a sharp phase transition will not take place
even if it exists in the thermodynamic limit. In hybrid models
(the 3FD model), a large part of the fluid (participant fluid)
represents the partonic matter, while the cascade part (the
spectator fluid) describes hadronic matter. Since a part of the
core can be hadronic, the dominance of the core part or the
negative flow may be regarded as the lower bound of the onset
energy. We consider that a significant part of matter would still
be hadronic at the colliding energies studied in this article,√

sNN = 2.7–20 GeV, while partonic degrees of freedom can
appear to some extent.

In this work, we shall concentrate on the nonequilibrium
evolution of the system by employing a newly developed
microscopic transport model, JAM2. We employ an RQMD
approach to take account of the mean-field effects. It is well
known that collective flows are highly sensitive to the mean-
field interactions at high baryon density regions [15,57]. The
RQMD model is an N-body theory, which describes the mul-
tihadron interactions, which are realized by the interactions
among N particles. Boltzmann-type collision terms are also
incorporated in RQMD.

We extend our version of the RQMD (RQMD/S) model,
which was developed by incorporating momentum-dependent
potential [45] into the RQMD/S model [44]. In Ref. [45], we
showed that the RQMD/S model describes both directed and
elliptic flow for a wide range of beam energies, emphasizing
the importance of the momentum-dependent potential. How-
ever, we found a mistake that the density-dependent part of
the force was overestimated by a factor of 2. After correcting
this mistake, it turns out that the flow from the RQMD/S
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model is not as large as the experimental data. Thus, one of
the purposes of this paper is to update our previous results.
Then, we shall propose a more consistent implementation of
the Skyrme potential as a Lorentz scalar into the RQMD ap-
proach, which we call RQMDs. The main differences between
RQMD/S and RQMDs are the following: RQMD/S uses an
EoS which is obtained by a fully nonrelativistic treatment of
the potential, and potentials are implemented in the RQMD
framework under some assumptions to simplify the model. We
correct these defects in RQMDs: it uses EoS from the scalar
potential, and it is consistently implemented into the RQMD
framework. We found that the RQMDs model predictions
agree with the RQMD/S results.

Another goal of this paper is to develop further a new
RQMD approach, in which the Skyme potential is treated as
a fully Lorentz vector (RQMDv). We shall show that RQMDs
generally predicts less pressure required to explain the exper-
imental flow data, while RQMDv generates stronger pressure
and describes well the beam energy dependence of anisotropic
flows. We will also examine in detail the collision dynam-
ics to understand the generation mechanisms of antiflow at
mid-rapidity.

This paper is organized as follows. In Sec. II we first ex-
plain our EoS for three different treatments: the nonrelativistic
potential which is used by RQMD/S, the scalar potential for
RQMDs, and the vector potential for RQMDv. In Sec. III,
we present how to implement the above constructed EoS into
a framework of the RQMD approach. Then, in Sec. IV, we
compare the directed and elliptic flows from our models with
the experimental data and discuss the generation mechanisms
of the directed flow in our model. Section VI is devoted to
the study of mean-field effects on the bulk observables. The
summary is given in Sec. VII.

II. EQUATION OF STATE

We start with a short review of equation of state, which is
used in our previous model [45], based on the so-called sim-
plified relativistic quantum molecular dynamics (RQMD/S)
approach. Then, we present the EoS using Lorentz scalar and
vector potentials, which will be used in the new version of
RQMD.

A. Nonrelativistic potential

We use a Skyrme type density-dependent potential together
with the momentum-dependent potential. The single-particle
potential is given by

U (ρ, p) = Usk (ρ) + Um(p). (1)

The baryon-density ρ dependent part Usk (ρ) is assumed to
have the following density dependence:

Usk (ρ) = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

, (2)

where the normal nuclear density is taken to be ρ0 =
0.168 fm−3. The momentum-dependent part Um(p) is as-
sumed to be given as the momentum folding with the

Lorentzian form factor

Um(p) = C

ρ0

∫
d3 p′ f (x, p′)

1 + [(p − p′)/μ]2
, (3)

where f (x, p) is the single-particle distribution function for
a nucleon. In the case of symmetric nuclear matter at zero
temperature, it is given by

f (x, p) = gN

(2π )3
θ (p f − |p|) (4)

with gN = 4 being the degeneracy factor for spin and isospin
of nucleons, and p f = ( 6π2ρ

gN
)1/3 is a Fermi momentum. The

energy density at zero temperature is obtained as [58]

e = ekin + epot, (5)

ekin = gN

(2π )3

∫ p f

0
d3 p

√
m2 + p2

= gN

16π2

[
2p3

f e f + m2
N e f p f − m4

N ln

(
e f + p f

mN

)]

�
[

3

5

p2
f

2mN
+ mN

]
ρ, (6)

epot =
∫ ρ

0
Usk (ρ ′)dρ ′ + 1

2

∫
d3 pUm(p) f (x, p)

= αρ2

2ρ0
+ βργ+1

(γ + 1)ργ

0

+ Cρ2

2ρ0
Fm

(
2p f

μ

)
, (7)

Fm(x) = 6

x2

[
3

2
− 4arctan x

x
− 1

x2
+ (3x2+1) ln(1+x2)

x4

]
, (8)

with mN being a nucleon mass and e f =
√

m2
N + p2

f . The total

potential energy V with density ρ(r) and phase space f (r, p)
distributions is given by

V =
∫

d3r

(
α

2ρ0
ρ2 + β

(γ + 1)ργ

0

ργ+1

)

+ C

2ρ0

∫
d3rd3 pd3 p′ f (r, p) f (r, p′)

1 + [(p − p′)/μ]2
. (9)

It should be noted that the single particle potential (or the real
part of the momentum-dependent optical potential) is related
to the total potential energy V via the relation

Uopt (r, p) = δV

δ f (r, p)
. (10)

The total energy per nucleon measured from the mass is ob-
tained by

E

A
= e

ρ
− mN . (11)

We compare the single-particle potential at the normal
nuclear density,

Uopt (p) = U (ρ0, p) = α + β + Um(p), (12)

with the Schrödinger-equivalent optical potential from the
Dirac phenomenology [59]. The parameters of the potentials
are fixed by the five conditions. The first three conditions are
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TABLE I. Parameter sets for the Skyrme type potential in the nonrelativistic, scalar, and vector implementations. The range parameters
in the momentum-dependent part are taken to be μ1 = 2.02 fm−1 and μ2 = 1.0 fm−1 for MH2 and MS2, independent of the implementation
scheme. For MH1 and MS1, we adopt μ1 = 3.173 fm−1 (nonrelativistic), μ1 = 5.18 fm−1 (scalar), and μ1 = 3.23 fm−1 (vector). The optical
potential is controlled by the two parameters p0 and U∞ via the relations Uopt (ρ0, p = p0) = 0 and Uopt (ρ0, p = 1.7 GeV) = U∞. In the
nonrelativistic and vector implementations, we take (p0,U∞) = (0.65 GeV, 60 MeV). In the scalar implementation, we take (p0,U∞) =
(0.685 GeV, 60 MeV) for MH1 and MS1 and (p0,U∞) = (0.685 GeV, 50 MeV) for MH2 and MS2.

Nonrelativistic Scalar Vector

K α β C1 C2 α β C1 C2 α β C1 C2

Type (MeV) (MeV) (MeV) γ (MeV) (MeV) (MeV) (MeV) γ (MeV) (MeV) (MeV) (MeV) γ (MeV) (MeV)

H 380 −125 70.7 2.003 −123.8 68.75 2.124
S 210 −311 256 1.203 −262.1 206.4 1.265
MH1 380 38.6 41.7 2.280 −169.8 168.0 49.30 2.286 −295.2 38.95 41.71 2.273 −169.8
MS1 210 −207 287 1.120 −169.8 −14.16 230.8 1.179 −295.2 −233.1 313.7 1.109 −169.8
MH2 380 −6.56 82.2 1.723 −386.6 343.9 −147.5 282.3 1.309 −850.0 1050.9 −13.12 88.85 1.674 −399.0 367.3
MS2 210 −315.1 388.4 1.113 −386.6 343.9 −1740 1874.7 1.035 −850.0 1050.9 −515.7 590.6 1.071 −399.0 367.3

given by the saturation properties: saturation at normal nuclear
density ρ = ρ0 = 0.168 fm−1, the nuclear matter saturation
energy B = −16 MeV at saturation, and the nuclear incom-
pressibility K = 9ρ2 ∂2

∂ρ2 ( e
ρ

) = 380 MeV (hard) or 210 MeV
(soft). The other two conditions come from the energy depen-
dence of the optical potential. The optical potential is required
to take the values

Uopt (ρ0, p = 1.7 GeV) = U∞, (13)

Uopt (ρ0, p = p0) = 0 MeV, (14)

where we adopt U∞ = 60 MeV and p0 = 0.65 GeV
in the nonrelativistic implementation. Saturation condition
P = ρ2 ∂

∂ρ
( e
ρ

) = 0, and the saturation energy e/ρ − mN = B
at ρ = ρ0 leads to the Weisskopf relation√

m2
N + p2

f + α + β + Um(p f ) = mN + B. (15)

We first fix the parameters in the momentum-dependent po-
tential and U0 = α + β by using Eqs. (13)–(15). Next the
parameters of the density-dependent part (α, β, and γ ) are
fixed by using the saturation density and the incompressibility.
The details of the fitting procedure are found in Appendix B.

We adopt a two-range Lorentzian-type momentum-
dependent potential [45,60] for the parameter sets MH2 and
MS2 with the range parameters μ1 = 2.02 fm−1 and μ2 =
1.0/fm−1. These parameters lead to γ < 2, which has softer
baryon density dependence than the hard EoS without a
momentum-dependent part (γ = 2) at high densities. As an
alternative parametrization, we assume one range Lorentzian
for momentum-dependent potential, which leads to slightly
harder EoS (MH1) and softer EoS (MS1) at high densities.
Parameters are summarized in Table I. The effective mass
for MH2 at the Fermi surface is m∗ = pF /vF = pF / ∂e

∂ p |pF
=

0.877mN (formula given by Refs. [61,62]), while m∗ =
0.705mN for MH1. The left-upper panel of Fig. 1 compares
the energy dependence of the optical potential, Eq. (12), with
the real part of the global Dirac optical potential [59]. Here
we assume that the incident kinetic energy Elab = E − mN is
related to the momentum in the argument of the potential by
the relation (E − Uopt )2 − p2 = m2

N . It is seen that all of the

parameter sets (see Table I) well describe the data except for
the momentum-independent parametrization (H and S).

In the left-lower panel of Fig. 1, the baryon-density depen-
dence of the energy per nucleon is shown for hard (K = 380
MeV) and soft (K = 210 MeV) EoSs. Parameter set MH2
yields a softer EoS than the sets MH1. This behavior can be
also confirmed by comparing the values of the γ in Table I as
well as the effective mass m∗/mN . When the effective mass
at saturation density is smaller, the EoS becomes harder at
high densities. The same trend is observed also in the rela-
tivistic mean field theory, which demonstrates that the energy
dependence of the optical potential modifies the EoS at high
densities even if the incompressibility is fixed.

B. Lorentz scalar potential

In this section, we consider scalar potentials to construct
EoS. We assume the single-particle energy to be

e∗ =
√

p2 + m∗2, m∗ = m + Us + Um. (16)

The energy density of the nuclear matter for the scalar poten-
tial is given by [61,63]

e =
∫

d3 p

(
e∗ − 1

2

m∗

e∗ Um(p)

)
f (x, p)

− ρsUs(ρs) +
∫ ρs

0
Us(ρ

′
s)dρ ′

s, (17)

where the scalar density is defined as

ρs =
∫

d3 p
m∗

e∗ f (x, p). (18)

The density dependent scalar Skyrme potential is a function
of the scalar density, not the baryon density. The momentum-
dependent part of the potential takes the form

Um(p) = C

ρ0

∫
d p′ m

∗

e∗
f (x, p′)

1 + [(p − p′)/μ]2
. (19)

The main difference between the previous and present ap-
proaches is the form of prefactor m∗/e∗, which is also
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FIG. 1. Incident energy dependence of the optical potential in comparison with the real part of the global Dirac optical potential [59] (upper
panels) and the energy per nucleon as a function of the baryon density (normalized by ρ0) (lower panels) for different parametrizations. Left,
middle, and right panels show the results in the nonrelativistic potential treatment, the scalar potential implementation, and the vector potential
implementation, respectively.

introduced in the momentum-dependent potential. A com-
putation of the nuclear incompressibility K for the scalar
potential is given in Appendix C.

In Table I, we present EoS parameter sets for scalar im-
plementation of the Skyrme potential. We compare the Dirac
optical potential [59] with the single-particle energy of a nu-
cleon, subtracting kinetic energy [61,64,65]:

Uopt (p) = e∗ −
√

m2
N + p2 (20)

This optical potential approaches zero in the high momentum
limit, since the vector potential is not included. As shown in
the middle-upper panel of Fig. 1, the optical potential vanishes
at about Elab ≈ 100 GeV.

We obtain the MH2 EoS which is slightly softer than that
in the nonrelativistic approach when μ1 and μ2 are fixed to be
2.02 and 1.0 fm−1. We also provide MH1 and MS1 which
have a closer density dependence to the original hard and
soft EoSs without momentum dependence as depicted in the
middle-lower panel of Fig. 1.

C. Lorentz vector potential

Next, we consider the vector implementation of the Skyrme
type density-dependent mean field and a Lorentzian type
momentum-dependent mean field. The energy density of the
nuclear matter has the following form [63]:

e =
∫

d3 p

(
e∗ + U 0

m − 1

2

p∗
μ

e∗ U μ
m (p)

)
f (p) +

∫ ρ

0
U 0

sk(ρ ′)dρ ′,

(21)

where The momentum-dependent part of the potential takes
the form

U μ
m (p) = C

ρ0

∫
d3 p′ p∗′μ

e∗
f (x, p′)

1 + [(p − p′)/μk]2
, (22)

We replace the argument of the momentum-dependent po-
tential with the relative momentum in the two-body center-
of-mass (c.m.) frame or the rest frame of a particle in the
simulation.

We list our parameter set in Table I for the vector potential,
too. Energy dependence of the optical potential and baryon
density dependence of the energy per nucleon are plotted in
the right panels of Fig. 1.

III. RELATIVISTIC QUANTUM MOLECULAR DYNAMICS

The RQMD model is a nonequilibrium transport model
which can simulate the space-time evolution of the N particles
interacting via the potentials based on the constrained Hamil-
tonian dynamics [66].

In this section, we first give a brief explanation of basics
in the RQMD model. Next we give the equations of motion
for the RQMD/S approach with the nonrelativistic potential
implementation, and then present the equation of motion for
RQMD with scalar-vector implementation of potentials in the
on-mass-shell constraints.

A. Preliminaries

In the RQMD approach, 8N phase space variables are
reduced by the 2N constraints to obtain the physical 6N phase
space, φi ≈ 0 (i = 1, . . . , 2N ), with ≈ representing the weak
equality satisfied on the realized evolution path. According to
Dirac’s constrained Hamiltonian formalism, the Hamiltonian
is given by a linear combination of 2N − 1 constraints,

H =
2N−1∑
i=1

uiφi. (23)

Among the 2N constraints, the first N (i = 1, . . . , N) are
the on-mass-shell constraints and the latter N (i = N +
1, . . . , 2N) represent the time fixation of the particles. Since
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one of the time fixation constraints defines the evolution tem-
poral parameter t , we use 2N − 1 constraints in Eq. (23). The
equations of motion are

dqμ
i

dt
= [

H, qμ
i

] ≈
2N−1∑

j=1

u j
∂φ j

∂ piμ
, (24)

d pμ
i

dt
= [

H, pμ
i

] ≈ −
2N−1∑

j=1

u j
∂φ j

∂qiμ
, (25)

where the Poisson brackets are defined as

[A, B] =
∑

k

(
∂A

∂ pμ

k

∂B

∂qkμ

− ∂A

∂qμ

k

∂B

∂ pkμ

)
. (26)

The Lagrange multipliers (ui) are determined by requiring
that the constraints remain satisfied. For i = 1, . . . , 2N − 1,
φi is assumed not to explicitly contain the evolution time
parameter t ; then we find

dφi

dt
= [H, φi] =

2N−1∑
j=1

Ci, ju j ≈ 0, (27)

Ci, j = [φ j, φi]. (28)

By comparison, φ2N is assumed to explicitly contain t ,

dφ2N

dt
= [H, φ2N ] + ∂φ2N

∂t

=
2N−1∑

j=1

C2N, j u j + ∂φ2N

∂t
≈ 0. (29)

Thus, by defining u2N = 0, the Lagrange multipliers are ob-
tained by solving the following linear equation:

2N∑
j=1

Ci, ju j = −δi,2N
∂φ2N

∂t
, (30)

→ ui = −C−1
i,2N

∂φ2N

∂t
. (31)

We adopt the time fixation constraints

ui+N = â · (qi − qN ) ≈ 0 (i = 1, . . . , N − 1), (32)

u2N = â · qN − t ≈ 0. (33)

where â = P/
√

P2, and P = ∑n
i=1 pi is the total momentum

[67]. In this choice, the time coordinates of all particles be-
comes the same in the overall center-of-mass system as â
becomes the unit vector (1, 0) in this frame, which allows us
to obtain the Lagrange multipliers analytically [44]. By re-

placing p0
i in the potential with the kinetic energy,

√
p2

i + m2,

the matrix Ci, j and its inverse C−1
i, j are found to have the form

Ci, j =
( ∗ −D

DT 0

)
, C−1

i, j =
( ∗ (D−1)T

−D−1 0

)
. (34)

In the overall center-of-mass system, the matrix D is ob-
tained as Di, j = [φi, φN+ j] = ∂φi/∂ p0

i − δiN∂φN/∂ p0
N ( j =

1, . . . , N − 1) and Di,N = δiN∂φN/∂ p0
N . In the case where the

on-mass-shell constraint is given as φi = p2
i − m2

i − Fi(p, q)

with Fi representing the potential effects, the inverse of D ma-
trix is found to be D−1

i, j = δi j (1 − δiN )/2p0
i + δi,N/2p0

N . Then
the Lagrange multiplier is found to be

ui = − 1

2p0
i

∂φ2N

∂t
= 1

2p0
i

(i = 1, . . . , N ), (35)

ui = 0 (i = N + 1, . . . , 2N − 1). (36)

In the following subsections, we compare the results of on-
mass-shell constraints in the nonrelativistic, scalar, and vector
implementations of the potentials.

B. Equations of motion for the RQMD/S model

In this section, we present the equations of motion for the
RQMD/S model [45]. In the RQMD/S model, the EoS in the
nonrelativistic implementation is used, and the on-mass-shell
constraint is given as φi = p2

i − m2
i − 2miVi ≈ 0. Thus the

one-particle energy for the ith particle takes the form

p0
i =

√
p2

i + m2
i + 2miVi. (37)

Then the above ansatz leads to the equations of motion for
an N particle system in the RQMD/S approach [44],

dqμ
i

dt
= pμ

i

p0
i

−
N∑

j=1

mj

p0
j

∂Vj

∂ piμ
,

d pμ
i

dt
=

N∑
j=1

mj

p0
j

∂Vj

∂qiμ
. (38)

The suppression factor mi/p0
i appearing in the equations of

motion is the direct consequence of scalar implementation of
the potential in Eq. (37). Furthermore, we make an ansatz that
the potential of the ith particle in RQMD/S depends on the
scalar density of the form [41]

ρi =
N∑

j �=i

ρi j =
N∑

j �=i

1

(4πL)3/2
exp

(
q2

Ti j

4L

)
, (39)

where qTi j = qi j − (qi j · ui j )ui j is the distance in the two-
body center-of-mass frame of particles i and j, where qi j =
qi − q j and ui j = (pi + p j )/

√
(pi + p j )2.

The one-particle potential Vi in the RQMD/S framework is
not really the single particle potential, but the sum of Vi gives
the total potential energy in the nonrelativistic limit. Thus
we need to consider the ith particle contribution to the total
potential energy given in Eq. (9). By assuming the Gaussian
profile in the QMD approach,

ρ̃i(r) = 1

(2πL)3/2
exp

(
− (r − ri )2

2L

)
, (40)

the scalar density Eq. (39) is obtained as the sum of density
overlap ρi j ,

〈ρi〉 ≡
∑
j( �=i)

∫
d3rρ̃i(r)ρ̃ j (r) =

∑
j( �=i)

ρi j = ρi, (41)

ρi j = 1

(4πL)3/2
exp

[
− (ri − r j )2

4L

]
. (42)

Note that q2
Ti j = −(ri − r j )2 in the center-of-mass frame of

ith and jth particles. We further assume that the momentum
spread of the wave packet is small enough. Then we obtain
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the total potential energy is given as the sum of ith particle
contributions,

V =
∑

i

Vi �
∑

i

(
α

2ρ0
ρi + β

(γ + 1)ργ

0

ρ
γ
i

+ C

2ρ0

∑
j( �=i)

ρi j

1 + (pi − p j )2/μ2

)
. (43)

We have made an approximation for the second term:

∫
d3r

(∑
i

ρ̃i(r)

)γ+1

�
∑

i

(∑
j( �=i)

∫
d3rρ̃i(r)ρ̃ j (r)

)γ

.

(44)

This is an approximation adopted in most of the QMD codes.
It is possible to change the width for calculating this repulsive
part to justify this approximation [60,68]. Since our purpose
in this paper is not an extraction of the equation of state, we
do not make such a modification. Accordingly, the density
and momentum dependences of the one-particle potential for
the ith particle in the RQMD/S approach Vi = Vsk,i + Vm,i are
taken to be

Vsk,i = α

2ρ0
ρi + β

(1 + γ )ργ

0

ρ
γ
i , (45)

Vm,i =
N∑
j �=i

Vm,i jρi j, Vm,i j = C

2ρ0

1

1 − (pTi j/μ)2
. (46)

We also use the relative momentum pT,i j = pi j − (pi j · ui j )ui j

in the center-of-mass frame of two particles in the momentum-
dependent potential, where pi j = pi − p j . In Appendix A we
present corrections to the previous paper [45] regarding the
implementation of these equations of motion in the code.

We now argue that the above potential energy plays the
role of the potential energy in Hamilton’s equations of mo-
tion. The nonrelativistic limit was checked in Refs. [41,45].
Here, we follow a different way. In order to take account of
the relativistic effects, it is useful to consider the following
Hamiltonian [44]:

H =
N∑

i=1

Ei, Ei =
√

p2
i + m2

i + 2miVi. (47)

The usual Hamilton equations of motion from H are the
same as the spatial part of the RQMD/S equations of motion,
Eq. (38), in the overall center-of-mass system after substi-
tuting the on-mass-shell constraint, p0

i = Ei. Therefore the
Hamiltonian dynamics using H is found to be equivalent to
RQMD/S, which is a framework of the Dirac’s constrained
Hamiltonian dynamics with the on-mass-shell constraint and
the global time-fixation constraint in the center-of-mass sys-
tem. The nonrelativistic limit is obvious:

H �
N∑

i=1

(
p2

i

2mi
+ Vi + mi

)
. (48)

From these discussions, the potential energy in the RQMD/S
treatment is equivalent to the mean-field potential energy in

the nonrelativistic limit. We note that a similar approach has
been discussed in the framework of RBUU in Ref. [63].

C. The equations of motion for scalar-vector potentials

We present both scalar and vector implementations of the
above phenomenological potentials within the framework of
the RQMD approach [41].

We impose on-mass shell condition,

Hi = p∗2
i − m∗2

i = (pi − Vi )
2 − (mi − Si )

2 = 0 (49)

for ith particles, where V μ
i and Si are the one-particle vector

and scalar potentials, together with the time fixation con-
straints give by Eqs. (32) and (33). Then, the equations of
motion are given by

dqμ
i

dt
= 2ui p

∗μ
i − 2

N∑
j=1

u j

(
m∗

j

∂m∗
j

∂ piμ
+ p∗ν

j

∂Vjν

∂ piμ

)
, (50)

d pμ
i

dt
= 2

N∑
j=1

u j

(
m∗

j

∂m∗
j

∂qiμ
+ p∗ν

j

∂Vjν

∂qiμ

)
. (51)

We need to invert numerically an N × N matrix to obtain
the Lagrangian multipliers ui at each time step. Within those
constraints together with the assumption that the arguments
of the potentials are replaced by the free one, the Lagrangian
multipliers become ui = 1/2p∗0

i in the overall center-of-mass
frame. Then one obtains the equations of motion for ithe
particle as

dqμ
i

dt
= p∗μ

i

p∗0
i

−
∑

j

(
m∗

j

p∗0
j

∂m∗
j

∂ piμ
+ v∗ν

j

∂Vjν

∂ piμ

)
,

d pμ
i

dt
=

∑
j

(
m∗

j

p∗0
j

∂m∗
j

∂qiμ
+ v∗ν

j

∂Vjν

∂qiμ

)
, (52)

where v
∗μ
i = p∗μ

i /p∗0
i . The equations of motion for the ki-

netic momentum p∗
i = pi − V i may be obtained by adding the

derivative of the vector potential:

V̇ μ
i =

∑
j

(
ẋν

j

∂V μ
i

∂xν
j

+ ṗν
j

∂V μ
i

∂ pν
j

)
. (53)

The explicit form of the equations of motion for both RQMDs
and RQMDv can be found in Appendix E.

In RQMD, the one-particle potentials Si and V μ
i are de-

pendent on the scalar density ρsi and the baryon current Jμ
i ,

respectively, which are obtained by

ρs,i =
∑
j �=i

m∗
j

p∗0
j

ρi j, Jμ
i =

∑
j �=i

B jv
∗μ
j ρi j, (54)

where Bj is the baryon number of the jth particle and ρi j

is the so-called interaction density (overlap of density with
another hadron wave packet) which will be specified below.
The vector potential is defined by using the baryon current
[69,70]

V μ
i = Bi

Vi(ρBi )

ρBi
Jμ

i , (55)
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where ρBi = √
Jμ

i Jiμ is the invariant baryon density. The
momentum-dependent part of the one-particle potential in the
vector implementation is given by

V μ
mi(pTi j ) =

∑
k=1,2

Ck

2ρ0

∑
j �=i

p∗μ
j

p∗0
j

ρi j

1 − [pTi j/μk]2
(56)

while the scalar implementation is

Vmi(pTi j ) =
∑

k=1,2

Ck

2ρ0

∑
j �=i

m∗
j

p∗0
j

ρi j

1 − [pTi j/μk]2
, (57)

where pTi j is the relative momentum between particle i and
j, which will be specified below. As the equations of motion
are obtained by assuming that the argument of the potentials
is replaced by the free one, we also replace m∗

j and p∗μ in the
definition of the scalar density and baryon current as well as
the momentum-dependent potentials with the free one.

We now discuss the form of the interaction density in the
RQMD approach. As a first option, we use the following
interaction density:

ρi j = γi j

(4πL)3/2
exp

(
q2

Ti j/4L
)
, (58)

where qTi j is the distance in the center-of-mass frame of the
particles i and j,

qTi j = qi j − (qi j · ui j )ui j, ui j = Pi j
/√

P2
i j, (59)

qi j = qi − q j, Pi j = pi + p j, (60)

and γi j = P0
i j/

√
P2

i j is the Lorentz γ factor to ensure the

correct normalization of the Gaussian [71]. We obtain the
RQMD/S model which follows the original RQMD [41,42],
by replacing the normalization factor γi j with γ j = p0/mj to
obtain Eq. (39), which is the Lorentz scalar. With this replace-
ment, we lose a correct normalization of the Gaussian, but this
would not be a problem as one may adjust the width param-
eter of the Gaussian because we have only scalar potentials.
The same approximation was used in Ref. [43] for both the
scalar density and the baryon current for low energy heavy-ion
collisions, Elab < 2A GeV. We found that this approximation
overestimates the vector density significantly at relativistic
energies. Thus, the predictions from this approach are not
reliable at relativistic energies.

Another approach is to use the rest frame of a particle j,

q2
R,i j = (qi − q j )

2 − [(qi − q j ) · u j]
2, ui = p j/mj, (61)

for the definition of the two-body distance in the argument of
the potential. This is used in the relativistic Landau-Vlasov
model [72], in which Gaussian shape is used to solve the
relativistic Boltzmann-Vlasov equation. In this case, the in-
teraction density takes the form

ρi j = γ j

(4πL)3/2
exp

(
q2

R,i j

/
4L

)
, (62)

where γ j = p0
j/mj , When we substitute this interaction den-

sity into Eq. (54), the Lorentz factor in front of the Gaussian
cancels the factor in the scalar density, and the scalar density
becomes manifestly Lorentz scalar, and the baryon current is

also a covariant vector without loss of the correct normaliza-
tion of the Gaussian:

ρs,i =
∑
i �= j

ρ̂i j, Jμ
i =

∑
i �= j

B ju j ρ̂i j, (63)

where ρ̂i j = (1/
√

4π )3/2 exp[q2
R,i j/4L], and u j is a four-

velocity: u j = γ j (1, p j/p∗0
j ) = (γ j, p j/mj ). The derivatives

of the transverse distances can be found in Appendix D.
Numerically, the main difference between the two-body

distance at the c.m. of two particles qT,i j and the rest frame
of a particle qR,i j in the estimation of the interaction density
ρi j is using the different shapes of the Gaussian. So we expect
that if a violation of the Lorentz invariance is not signifi-
cant, two different choices may yield the same results with
a possible different choice of the Gaussian width. Numerical
study indicates that Eq. (62) needs generally smaller Gaussian
width than Eq. (58) to obtain a similar result at ultrarelativistic
energies, as shown below.

D. Numerical implementation

The mean-field models mentioned above have been imple-
mented in the JAM2 Monte Carlo event generator. The physics
of the collision term in JAM2 is the same as in the previous
version of JAM [73], in which particle productions are mod-
eled by the resonance (up to 2 GeV) and string excitations
and their decays [36,74–77]. The leading hadron that contains
original constituent quarks can scatter again with reduced
cross section within its formation time to simulate effectively
the quark interactions. There are several improvements: We
use Pythia8 event generator [78] to perform string decay as
well as the hard scatterings instead of Pythia6 [79]. Resonance
excitation cross sections are also changed to improve the
threshold behavior by fitting the matrix elements [36,75–77].
As technical improvements in JAM2, we introduced expand-
ing boxes to reduce the computational time for both two-body
collision term and potential interaction. A detailed explana-
tion will be presented elsewhere.

IV. RESULTS FOR ANISOTROPIC FLOWS

We consider three types of anisotropic flows. The first one
is the sideward flow 〈px〉, which is the mean particle transverse
momentum projected on to the reaction plane, where angle
brackets indicate an average over particles and events. The
directed flow v1 is also used, which is defined by

v1 = 〈cos φ〉 =
〈

px

pT

〉
, (64)

where φ is measured from the reaction plane, and pT =√
p2

x + p2
y is the transverse momentum. The z axis is the beam

direction. The elliptic flow

v2 = 〈cos 2φ〉 =
〈

p2
x − p2

y

p2
T

〉
(65)

reflects the anisotropy of transverse particle emission. These
anisotropic flows are sensitive to the pressure built up during
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FIG. 2. The rapidity dependence of the sideward flow in comparison with mid-central Au + Au collisions at
√

sNN = 2.7, 3.3, 3.8, and
4.3 GeV from the E895 data [82]. In the left panel, we show the results from the cascade mode (dotted lines), RQMD/S (dotted-dashed lines),
RQMDs1 (dashed lines), and RQMDs2 (solid lines). Momentum-dependent hard EoS (MH2) is used in the calculations. In the right panel, we
show the sideward flow from RQMDv2. RQMDv2 results for the EoS from MS2 with L = 0.5 fm2 are represented by dashed lines, MH2 with
L = 0.5 fm2 by solid lines, MS2 with L = 2.0 fm2 by double-dotted lines, and MH2 with L = 2.0 fm2 by dashed-dotted lines.

the collisions and thus sensitive to the mean field in the mi-
croscopic transport models [14,69].

It was shown in Ref. [80] that the sideward flow is sensi-
tive to the Gaussian width parameter for heavy-ion collisions
in the Elab ≈ 1A GeV regime, because the Gaussian width
L controls the range and strength of the interaction in the
QMD approach. Thus, we will examine width dependence
of the flow. IQMD uses L = 2.165 fm2 for the Au nucleus
to obtain a stable nuclear density profile [80], while UrQMD
[75] uses L = 1.0 fm2. The width in the JQMD model [81] is
L = 2.0 fm2. A recent QMD model called PHQMD [38] uses
L = 0.54 fm2.

We first compare RQMD/S with the relativistic quan-
tum molecular dynamics with the scalar potential (RQMDs).
Then, new results from the relativistic quantum molecular
dynamics with the vector potential (RQMDv) will be present.

A. Comparison of RQMD/S and RQMDs

In this section, we compare the results from two different
RQMD models with scalar potentials. The name RQMDs1
is used when the two-body distance Eq. (59) is used for the
argument of potential, similarly RQMDs2 for Eq. (61).

In the left panel of Fig. 2, we compare the proton side-
ward flow 〈px〉 in mid-central Au + Au collisions at

√
sNN =

2.7, 3.3, 3.8, and 4.3 GeV (Elab = 1.85A, 4A, 6A, 8A GeV).
We use L = 2.0 fm2 for the Gaussian width as used in the
previous calculations [45]. The impact parameter range is
chosen to be 4 < b < 8 fm. In the left panel of Fig. 2, we
compare four different approaches: RQMD/S, RQMDs1, and
RQMDs2 for the MH2 EoS, and cascade mode, in which
only the collision term is included and potentials are disabled.
As is well known, the cascade model lacks some pressure at
AGS energies (2.3 <

√
sNN < 5 GeV) and significantly un-

derestimates the sideward flow. Both RQMD/S and RQMDs
improve the description of the sideward flow due to an ad-
ditional pressure generated by the mean field. However, all
calculations with scalar potentials predict less flow compared
to the experimental data.

All three models with scalar potentials show good agree-
ment with each other. The agreement of RQMDs with
RQMD/S may justify the approximations in the RQMD/S
model, which significantly simplifies the model compared to
RQMDs.

We do not show the results for other parameter sets MS2,
MH1, MS1 because their results are almost identical to those
from MH2 in RQMD/S and RQMDs. This insensitivity of
the sideward flow to the EoS is consistent with our previous
finding in Ref. [45]. We argue that the main reason for this
insensitivity is to use the scalar potential, which is a function
of the scalar density. We have checked that the sideward flow
results are not significantly modified with a smaller width
L = 0.5 fm2 at AGS energies in the RQMDs model.

In the previous paper [45], we showed that RQMD/S
reproduces the flow data with the momentum-dependent
mean-field. The reason for the discrepancy between the cur-
rent result and the previous one is that we overestimate force
by a factor of 2 due to a mistake in the earlier calculations.
A comparison of the previous one and the corrected one is
provided in Appendix A.

In the left panel of Fig. 3, we compare the rapidity de-
pendence of the v1 of protons and pions from cascade mode,
RQMD/S, RQMDs1, and RQMDs2 with the STAR [20] and
NA49 data [19]. We select the impact parameter range 4.6 <

b < 9.4 fm to compare 10–40% central Au + Au collisions
at 7.7, 11.5, and 19.6 GeV, and Pb + Pb collisions at 8.87
and 17.3 GeV. It is seen that the RQMD/S results are in good
agreement with the RQMDs1 results for all incident ener-
gies, while RQMDs2 shows somewhat less v1 than the other
models. All models predict negative proton v1 slope above√

sNN = 10 GeV except for cascade results. The negative v1

is mainly generated during the expansion stage after two nu-
clei pass through each other. Additional potential interaction
generates more negative flow. However, when we use stronger
potential by taking smaller width L = 0.5 fm2, three model’s
RQMD/S, RQMDs1, and RQMDs2, predict positive v1 for
protons at 11.5 GeV, which demonstrates the strong sensitivity
of the slope of the proton directed flow to the interaction; both
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FIG. 3. Rapidity dependence of the directed flow v1 in mid-central Au + Au collisions at
√

sNN = 7.7, 11.5, 19.6 GeV and mid-central
Pb + Pb collisions at

√
sNN = 8.87 and 17.3 GeV in comparison with the NA49 [19] and STAR [20] data. In the left panel, we show the

results from cascade mode (dotted lines), RQMD/S (dotted-dashed lines), RQMDs1 (dashed lines), and RQMDs2 (solid lines). The left panels
show the proton v1 and the right panels for pion v1. In the right panel, we show the results from cascade mode (dotted lines), the RQMDv1
(dashed-dotted lines) and RQMDv2 (solid lines) model prediction with the MS2 EoS.

weak and strong interaction generate positive proton flow. We
will discuss the dynamical origin of a negative flow in our
model later.

In the left panel of Fig. 4, the beam energy dependence
of the proton elliptic flow v2 at mid-rapidity in mid-central
Au + Au collisions from the cascade mode, RQMD/S, and
RQMDs2 are compared with the data. RQMDs1 results are

FIG. 4. The beam energy dependence of the proton elliptic flow at mid-rapidity are compared with the data from FOPI [83], E895/E877
[18], NA49 [19], and STAR [84]. In the left panel, we show the results from cascade, RQMD/S, and RQMDs2 with the hard momentum-
dependent EoS (MH2). In the right panel, we show the cascade, RQMDv1, and RQMDv2 results.
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not plotted because they are almost identical to the RQMDs2
results. Elliptic flow is also consistent among the models.
The calculations with L = 2.0 fm2 predict less squeeze-out
compared with the data below

√
sNN < 5 GeV. We found that

RQMSs2 with L = 0.5 fm2 improves the description of the
elliptic flow.

In this section, we have demonstrated that two different
implementations of the Skyrme force as a Lorentz scalar in
the quantum molecular dynamics approach: RQMD/S and
RQMDs, yield almost the same results at relativistic energies,
and they improve the description of the data from the cascade
model simulations. However, the scalar potential does not
generate enough pressure to reproduce anisotropic collective
flows at AGS energies. In the next section, we will discuss re-
sults from the RQMDv model, in which the Skyrme potential
is incorporated as a Lorentz vector potential.

B. RQMDv: RQMD with Lorentz vector potential

We shall now present the results of the RQMD model, in
which the Skyrme potential is implemented as a Lorentz vec-
tor (RQMDv). Similarly to the previous section, the RQMDv1
model refers to the model which uses the two-body distance
Eq. (59) for the argument of potential, while RQMDv2 uses
Eq. (61).

The right panel of Fig. 2 shows the sideward flow
from the RQMDv2 model for mid-central Au + Au col-
lisions at

√
sNN = 2.7, 3.3, 3.8, and 4.3 GeV. It is seen

that vector potential predicts stronger flow than the scalar
potential, and a good description of the data is obtained
for the soft momentum-dependent EoS from MS2 for both
Gaussian widths of L = 0.5 and 2.0 fm2 and hard momentum-
dependent EoS from MH2 with L = 2.0 fm2. The hard
momentum-dependent MH2 EoS with L = 0.5 fm2 overesti-
mates the data. We note that the RQMDv1 results are almost
identical to those of RQMDv2 results at AGS energies. We
also note that the parameters MH2 are not as hard as the hard
EoS at high baryon densities, as the parameter which controls
the repulsive part of the potential is γ = 1.67 in MH2, while
it is γ = 2 in the hard momentum-independent EoS. If we
compare the parameter sets MH1 and MS1, we have slightly
stronger EoS dependence than the parameter sets of MH2 and
MS2.

The right panel of Fig. 3 shows the directed flow from
the RQMDv1 model with L = 2.0 fm2 and RQMDv2 with
L = 0.5 fm2 for protons (left panels) and pions (right panels).
The EoS from MS2 is used in the calculations. Both the
RQMDv1 and RQMDv2 models describe the beam energy
dependence of the proton directed flow data at SPS energies.
Our models correctly predict the negative pion directed flow
for all beam energies, which is due to the shadowing effects
by the participant matter. As beam energy is increased, the
models predict less slope than the data. We may need to
include the pion potential.

In Fig. 5, we examine the EoS and the Gaussian width
dependence on the directed flow for mid-central Au + Au
collision at 11.5 GeV. We found that the v1 slope becomes
positive for L = 0.5 fm2 in RQMDv1, while it is negative
in RQMDv2. On the other hand, the v1 slope from both

FIG. 5. EoS and the Gaussian width dependence on the directed
flow in mid-central Au + Au collision at

√
sNN = 11.5 GeV from

RQMDv1 (upper panel) and RQMDv2 (lower panel) are compared
with the STAR data.

RQMDv1 (with MS2) and RQMDv2 is negative for L =
2.0 fm2. We note that L controls the strength and the range of
the potential interaction in the QMD type model. These results
indicate that the sign of the v1 slope is highly sensitivity to the
strength of the interaction.

In Fig. 5, hard and soft momentum-dependent EoSs are
compared. It is seen that v1 is not sensitive to the EoS at
11.5 GeV, which is understood by the fact that Au + Au
collisions at 11.5 GeV do not provide high baryon densities
due to the partial stopping of the nuclei.

The right panel of Fig. 4 compares the elliptic flow of
protons at mid-rapidity from the RQMDv1 and RQMDv2
models for the mid-central Au + Au and Pb + Pb collisions
with the experimental data. The EoS dependence between
momentum-dependent soft and hard EoSs for the elliptic flow
is seen for the beam energies below 5 GeV. The effect of
the Gaussian width on the elliptic flow is also seen, which
indicates the sensitivity to the interaction strength. The elliptic
flow using the smaller width of L = 0.5 fm2 is slightly larger
above 7 GeV due to a more negligible shadowing effect be-
cause of the shorter interaction range than in the calculations
with L = 2.0 fm2. On the other hand, a shorter width predicts
a stronger shadowing effect at energies less than 5 GeV due to
stronger interaction.

V. INSPECTIONS OF COLLISION DYNAMICS

We now investigate the collision dynamics of how the
directed flow is generated within our model. First, let us
summarize the role of the collision term for the generation
of the directed flow.

In Ref. [85], we investigate the effects of spectator and
meson-baryon interactions on the flow within a cascade
model. When secondary interactions (mainly meson-baryon
and meson-meson collisions) are disabled, negative proton
flow is generated by the shadowing from the spectator matter
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FIG. 6. Time evolution of the invariant interaction density (upper
panel) averaged over the central cell of |x| � 3 fm, |y| � 3 fm, and
|z| � 1 fm, and sign weighted directed flow v∗

1 of baryons at mid-
rapidity |y| < 0.5 (lower panel) for mid-central Au + Au collisions
at

√
sNN = 11.5 GeV from the RQMDv2 calculation are shown in the

left panels. Right panels show the same but for the beam energy of
4.86 GeV. The solid lines show the results from default calculations.
The dotted-dashed lines show the results of the calculations that
include the potential interaction for pre-formed baryons. The dashed
lines represent the results of the calculation without interactions of
spectator matter.

at
√

sNN < 30 GeV, while above 30 GeV there is no shad-
owing effect, and directed flow is not generated by the initial
Glauber-type nucleon-nucleon collisions. The effect of the
secondary interaction is to generate positive directed flow at√

sNN < 30 GeV since secondary interactions can start be-
fore two nuclei pass through each other. In contrast, negative
flow is generated by the secondary interactions at

√
sNN > 30

GeV, since secondary interactions start after two nuclei pass
through each other due to a tilted expansion. We note that
titled expansion of the matter created in noncentral heavy-ion
collisions is a general feature of the dynamics for a wide
range of collision energies. Let us now investigate the time
evolution of the directed flow. In Fig. 6, we show in the upper
panel the time evolution of the invariant interaction density

ρB,i =
√

J2
i , which is used for the density dependent part of

the potentials in Eq. (55) for mid-central Au + Au collisions
at 11.5 GeV (left panel) and 4.86 GeV (right panel). In the
lower panel of Fig. 6, we plot the sign weighted directed flow
for baryons integrated over a rapidity range of |y| < 0.5:

v∗
1 =

∫ 0.5

−0.5
dy v1(y) sgn(y). (66)

A general feature of the temporal evolution of the directed
flow at mid-rapidity is that it rises within a first few fm/c dur-
ing the compression stages of the reaction and then decreases
at the expansion stages for both 11.5 and 4.86 GeV. Finally,
the flow goes up slowly at the very late stages of the colli-
sions. Only formed baryons feel the potentials in the default
simulation (solid lines), although the constituent quarks can
scatter in the prehadrons. At 11.5 GeV beam energy, most of
the nucleons are excited to strings, which results in the dip in
the interaction density evolution at early times.

To see the effects of a possible potential interaction for the
preformed baryons, we include the potential interaction for
the preformed leading baryons that have original constituent
quarks with the reduced factor of 1/3 (one quark) or 2/3
(diquark) [86], which is shown by the dotted-dashed lines.
Additional potential interaction generates two times more pos-
itive directed flow in the compression stage of the collision.
It is also worthwhile to recognize that the directed flow de-
creases quickly even for the stronger interaction by generating
more negative directed flow at expansion stages. We should
emphasize that density-dependent interactions (hard or soft)
do not predict negative directed flow in our framework be-
cause the interaction is weak, and it generates a small amount
of negative flow during the expansion stage. When only
density-dependent potentials are included, the potential be-
comes attractive at expansion stages at 11.5 GeV as the baryon
density is around the normal nuclear density, which pre-
vents developing the flow, and positive flow developed in the
compression stage remains positive at freeze-out. In contrast,
in the case of momentum-dependent potential, the attractive
force is mainly generated by the momentum-dependent part
of the potential, and the density-dependent part is repulsive.
At the expansion stages, momenta of particles are random, and
the momentum-dependent part of the potential becomes weak;
as a result, the net effect of the interaction is repulsive, which
contributes to generating strong negative flow. The negative
proton directed flow at around 11.5 GeV beam energies can
only be obtained for an appropriate amount of the interaction
strength: weak interaction (including cascade mode) does not
generate strong antiflow; on the other hand, strong interac-
tion generates a very large positive flow at the compression
stage.

To investigate the primary mechanism of decreasing di-
rected flow at expanding stages of the collisions, we have
checked the effect of the spectator-participant interaction
on the directed flow by disabling the interaction between
them. “Spectator” is defined as the nucleons which will not
collide in the sense of the Glauber type initial nucleon-
nucleon collisions. Specifically, we first compute the number
of nucleon-nucleon collisions, and we remove nucleons from
the system if they will not interact with other nucleons. It is
seen that when “spectators” are not included in the simulation,
the directed flow decreases less at expansion stages and the
directed flow remains positive at 11.5 GeV. The shadowing
effect by the spectator matter is large even at 11.5 GeV.

Besides the shadowing effect, the main dynamical origin of
decreasing behavior of the directed flow at mid-rapidity in the
expansion stages of the collision is the creation of an ellipsoid
tilted with respect to the beam axis, which generates antiflow
predominately over the normal flow as discussed in detail in
Ref. [23] within a 3FD model. We argue that this mechanism
is general; it holds true for all high-energy noncentral heavy-
ion collisions. In Fig. 7, we plot baryon density and local
velocity for mid-rapidity |y| < 0.5 at t = 7 fm/c for Au + Au
collisions at

√
sNN = 4.86 GeV at the impact parameter b = 6

fm (upper panel) and t = 3 fm/c at
√

sNN = 11.5 GeV (lower
panel). It is seen that a tilt of the matter distribution is created
for both energies. The tilted matter is a general consequence
of the collision dynamics for noncentral collisions, which
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FIG. 7. Baryon density distribution at the time t = 7 fm/c in
Au + Au collisions at

√
sNN = 4.86 GeV at the impact parameter

b = 6 fm (upper panel) and t = 3 fm/c at
√

sNN = 11.5 GeV (lower
panel). The thin (red) arrows show the local velocity of antiflow,
and the bold (blue) arrows indicate normal flow for mid-rapidity
|y| < 0.5.

is caused by the initial nucleon-nucleon collisions and the
degree of nuclear stopping.

At lower energies, the compression time is long enough to
create a large directed flow, mainly due to a strong repulsive
interaction. At late times, when the system starts to expand,
antiflow wins against normal flow. However, interaction is
weaker during the expansion as compared to compression
stages at lower energies. At very late times, after the tilted
matter is smeared out, the flow turns to go up again. The net
effect is to create a positive directed flow at freeze-out. When
going to higher beam energies, compression time becomes
shorter, so less positive flow is generated. Because expansion
time is longer than the compression time at high energies,
more negative flow is generated. In addition, at high ener-
gies, many secondary particles are created, and baryons can
interact with mesons more, which results in the generation of
more negative flow. This is the main mechanism of the beam
energy dependence of the proton directed flow. Therefore,
the dependence of the transition from positive to negative
flow may reveal important information on the strength of the
interactions of the excited matter.

VI. RESULTS FOR HADRONIC SPECTRA

In this section, we show the results of the JAM2 approach
for the bulk observables, such as the rapidity distribution and

FIG. 8. The rapidity distributions of protons (left panels) and
negative pions (right panels) in central Au + Au collisions at
4.86 GeV and Pb + Pb collisions at

√
sNN = 6.4, 8.86, 12.4, and

17.3 GeV. In the left panel, we show the results from the cas-
cade mode (dotted lines), RQMDs with MS2 (dotted-dashed lines),
RQMDv with MS2 (solid lines), and RQMDv with hard EoS (dashed
lines). The experimental data have been taken from Refs. [87–92].

the transverse momentum spectra of protons and pions, to
demonstrate the influence of the mean-field potentials on the
bulk observables.

The EoS and Gaussian width L dependence are less sen-
sitive to the rapidity and transverse momentum distributions
than anisotropic flows. We present the results for MH2
EoS and L = 2.0 fm2 for RQMDs and L = 0.5 fm2 for
RQMDv calculations. The systematic study will be presented
elsewhere.

In Fig. 8, we show the proton and negative pion rapidity
distributions in central Au + Au collisions at

√
sNN = 4.86

GeV and central Pb + Pb collisions at
√

sNN = 6.4, 8.86,
12.4, and 17.3 GeV. The results from cascade, RQMDs,
and RQMDv models are compared with the experimental
data from E802 [87], E917 [88], and NA49 [89–92] Col-
laborations. The RQMDs results are almost the same as the
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FIG. 9. The centrality dependence of dN/dy/(〈Npart〉/2) for pro-
tons and negative pions in Au + Au collisions at 11.5 GeV. The
cascade (dotted lines), RQMDs (dotted-dashed lines), and RQMDv
(solid lines) results are compared with the STAR data [93].

cascade results due to the weakness of the scalar potential,
while the effects of the vector potential are visible. The in-
fluence of the mean-field potential on the proton rapidity
distribution is to reduce the stopping of protons except for
the RQMDv calculations with momentum-dependent poten-
tial at high energy

√
sNN > 10 GeV. The RQMDv model

with momentum-dependent potential predicts slightly more
stopping at higher beam energies due to the disappearance of
the attractive momentum-dependent force. To see the effects
of momentum-dependent potential, we also plot the results
from the RQMDv (hard) calculation with the momentum-
independent hard EoS. The RQMDv (hard) model predicts
less stopping compared with the cascade calculations. It is
seen that the mean-field potential reduces the pion multiplicity
in the case of the vector potential.

In Fig. 9, we compare the centrality dependence of the
proton and positive pion dN/dy normalized by the mean value
of the number of participating nucleons 〈Npart〉 for |y| < 0.1
in Au + Au collisions at

√
sNN = 11.5 GeV from cascade,

RQMDs, and RQMDv, with the experimental data from the
STAR Collaboration [93]. The number of participants 〈Npart〉
is obtained by counting the predicted initial nucleon-nucleon
collisions before nuclei collide, and extracting predicted par-
ticipating nucleons. This procedure is the same as the Monte
Carlo Glauber calculation [94]. The models reproduce the
centrality dependence of both protons and pions, while the
proton multiplicity is slightly underestimated. The proton

and negative pion transverse mass mT =
√

m2
0 + p2 spectra of

cascade, RQMDs, and RQMSv models in central Au + Au
collisions at

√
sNN = 4.86 GeV and central Pb + Pb collisions

at
√

sNN = 6.4, 8.86, 12.4, and 17.3 GeV are displayed in
Fig. 10. The model results are compared with the experimental
data from the E802 [87] and NA49 Collaborations [89,91,95].
The model predictions for both proton and pion transverse
mass spectra show a reasonable agreement with experimen-
tal data. The effects of the potential are very small on the
transverse mass spectra, except for the small suppression in
the lower momentum region reflecting the lower stopping of
protons for

√
sNN < 10 GeV.

FIG. 10. The transverse mass spectra for negative pions (upper
panel) and protons (lower panel) are compared with central Au +
Au collisions at

√
sNN = 4.86 GeV and central Pb + Pb collisions

at 6.4, 8.86, 12.4, and 17.3 GeV from the E802 [87] and NA49 data
[89,91,95]. The spectra other than 4.86 GeV data are increased by a
factor of 10 from bottom to top.

We also examine the centrality dependence of the trans-
verse momentum spectra for protons and positive pions in
Au + Au collisions at

√
sNN = 11.5 GeV in Fig. 11. The

model results are compared with the experimental data from
the STAR Collaboration [93]. Good agreement between the
model results and the experimental data is obtained. We also
see that predictions of all three models, cascade, RQMDs, and
RQMDv, for the transverse momentum are almost identical
for all centralities.

VII. CONCLUSION

We have developed a new mean-field model by implement-
ing the Skyrme type potential into the RQMD framework
as a Lorentz scalar (RQMDs) or vector (RQMDv) potential,
including momentum dependence. The RQMDs and RQMDv
models are realized by the event generator JAM2 code. We
have studied the mean-field effects on the directed and el-
liptic flows by using RQMDs and RMDv. RQMDs does not
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FIG. 11. The midrapidity (|y| < 0.1) transverse momentum
spectra for positive pions (upper panel) and protons (lower panel)
in Au + Au collisions at

√
sNN = 11.5 GeV for different centralities.

The experimental data have been taken from Ref. [93]. The spectra
other than 0–5% central data are divided by a factor of 10 from top
to bottom.

generate enough pressure at AGS energies and fails to repro-
duce the flow data, while the RQMDs model describes the
directed flow at

√
sNN > 10 GeV where net baryon number at

mid-rapidity starts to decrease, and the scalar potential plays a
role rather than the vector potential. In contrast, the RQMDv
approach, in which the Skyrme type potential is implemented
as a Lorentz vector, generates a strong pressure at AGS en-
ergies and describes the flow data very well. RQMDv also
predicts the correct sign change of the proton directed flow.
The conventional hadronic mean field explains the negative
directed flow of protons within our approach.

The slope of the directed flow at freeze-out is determined
by the delicate cancellation of the positive and negative flows
in high-energy mid-central heavy-ion collisions. We found
that the positive directed flow develops more than the negative
flow in compression stages of the collisions, while the more
negative flow is developed during the expansion stage due
to a tilted expansion and shadowing by the spectator nucleon

matter. At lower collision energies, a large positive flow can be
developed by the strong repulsion due to high baryon density
and long compression time. The strength of the interaction is
weaker at the late expansion stage because of lower baryon
density. A net effect is to have a positive flow at lower en-
ergies. On the other hand, at higher energies, where most
secondary interactions start after two nuclei pass through each
other, there is not enough time to develop positive flow during
the short compression time. In contrast to lower energies,
expansion time becomes longer due to a large number of
produced particles. A net effect is to generate negative flow.

The results strongly depend on the model parameters; thus,
we will not rule out the possible softening scenario within the
current study. To confirm that our model correctly describes
the collision dynamics, we need to perform more systematic
data comparisons, e.g., the flow of strangeness particles. This
line of work is in progress.

In this work, we examine the effect of scalar or vector
potential separately, and we see that negative proton directed
flow can only be obtained with the momentum-dependent
potential. It is important to study other approaches such as the
relativistic mean-field theory, in which both scalar and vector
interactions are included. Recently, a transport approach with
a vector potential that includes a first-order transition and a
critical point was formulated [70]. It will be interesting to use
this potential to see the effects of a phase transition on the
flows.

Finally, the inclusion of the mean fields into the hybrid
model is an important future work toward the complete de-
scription of the space-time evolution of the system in the high
baryon density region.
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APPENDIX A: THE CORRECTION OF RQMD/S IN 2005

In this section, we correct the results of Ref. [45], and
compare the corrected results for Au + Au collisions at
Elab = 1.85A GeV.

The equations of motion Eq. (38) may be evaluated as

ṙi = pi

p0
i

+
N∑

j �=i

Di j

∂q2
T,i j

∂ pi
+

∑
j �=i

Ei j

∂ p2
T,i j

∂ pi
, (A1)

ṗi = −
N∑
j �=i

Di j

∂q2
T,i j

∂ri
, (A2)

where

Di j = ρi j

4L

[
mi

p0
i

∂Vsk,i

∂ρi
+ mj

p0
j

∂Vsk, j

∂ρ j
+

(
mi

p0
i

+ mj

p0
j

)
Vm,i j

]
,

(A3)

Ei j = ρi j

(
mi

p0
i

+ mj

p0
j

)
Vm,i j

∂Vm,i j

∂ p2
T,i j

. (A4)
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FIG. 12. The directed flow (upper panel) and the elliptic flow
(lower panel) in Au + Au collisions at

√
sNN = 2.7 GeV. Dotted

lines correspond to the results of Ref. [45], in which the factor 2
larger force is used by mistake. The corrected results are shown by
the solid line. The impact parameter range 4.0 < b < 8.0 fm is used.

We note that Eqs. (A25) and (A26) in Ref. [45], which
correspond to Eqs. (A3) and (A4), contain mistakes. After
correcting the mistake, we found that the results in Ref. [45]
were modified; potential effects on the anisotropic flows be-
come relatively smaller in the RQMD/S approach. The results
in Ref. [96] are also influenced by this mistake. In this paper,
we will present the corrected result.

The first factor in Eq. (A25) is wrong by a factor of two: 1
2L

should be 1
4L . Furthermore, 1/[1 − (pT,i j/μk )2] in Eq. (A26)

should be [1/(1 − (pT,i j/μk )2]2. In the code, only the first
error was found. We show the explicit expressions here:

Di j =
(

1

4L

)
ρi j

[
α

2ρ0

(
mi

p0
i

+ mj

p0
j

)

+ γ

1 + γ

β

ρ
γ

0

{
mi

p0
i

ρ
γ−1
i + mj

p0
j

ρ
γ−1
j

}]

+
(

1

4L

)
1

2ρ0
ρi j

(
mi

p0
i

+ mj

p0
j

) ∑
k=1,2

Ck

1 − [pT,i j/μk]2
,

(A5)

Ei j = 1

2ρ0
ρi j

(
mi

p0
i

+ mj

p0
j

) ∑
k=1,2

(
1

μk
2

)
Ck

(1 − [pT,i j/μk]2)2
.

(A6)

The corrected results show less collective flow than the
previous ones. In the upper panel of Fig. 12, the sideward
flow in mid-central Au + Au collisions at

√
sNN = 2.7 GeV

is shown from RQMD/S. The dotted line corresponds to the
result, in which the factor two is multiplied in the Skyrme
force to show the wrong result in Ref. [45].

APPENDIX B: EOS PARAMETERS

The parameters of the potentials are fixed by the five con-
ditions assuming a nuclear matter saturation energy B = −16
MeV at a nuclear matter saturation density ρ0 = 0.168 fm−3,
and the momentum-dependent parameter sets fulfill the con-
ditions Uopt (ρ0, p = 1700 MeV) = 60 MeV and Uopt (ρ0, p =
650 MeV) = 0 MeV. At the saturation density and T = 0, we
have the Weisskopf relation√

m2
N + p2

f + Usk (ρ0) + Um(p f ) = mN + B, (B1)

where the Fermi momentum is p f = (6π2ρ0/gN )1/3 with
gN = 4 being the spin-isospin degeneracy. Pressure P =
ρ2∂ (e/ρ)/∂ρ|ρ=ρ0 is zero at the saturation density. At zero
temperature, the distribution function takes the form

f (x, p) = gN

(2π )3
θ (p f − p) = gθ (p f − p), (B2)

and pressure at zero temperature is given by

P = Pk + g

2

∫ p f

0
d3 pUm(p) + ρUsk (ρ) −

∫ ρ

0
Usk (ρ ′)dρ ′, (B3)

where

Pk = g
∫ p f

0
d3 p

(
p2

3E
+ p

3

∂Um(p)

∂ p

)

= g
∫ p f

0
d3 p

(
p2

3E
− Um(p)

)
+ ρUm(p f ). (B4)

The nuclear incompressibility K is defined by the second
derivative of the energy density with respect to the baryon
density:

K = 9ρ2 ∂2

∂ρ2

(
e

ρ

)∣∣∣∣
ρ=ρ0

= 9ρ
∂2e

∂ρ2

∣∣∣∣
ρ=ρ0

. (B5)

The first derivative of e with respective to the baryon density
gives the baryon chemical potential:

μ = ∂e

∂ρ
=

√
m2 + p2

f + Usk (ρ) + Um(p f ). (B6)

The incompressibility is now given by

K = 9ρ
∂μ

∂ρ
= 9

(
p2

f

3e
+ ρ

∂Usk

∂ρ
+ p f

3

∂Um(p f )

∂ p f

)
, (B7)

where we used ∂ρ

∂ p f
= 3ρ/p f . From Eqs. (B1), (B4), and

(B7), for the Skyrme potential Eq. (2) and the momentum-
dependent potential Eq. (3), we obtain the system of equations

E f + α + β + Um(p f ) = mN + B, (B8)

Pkin + α

2
ρ0 + βγρ0

γ + 1
+ ρ0Um(p f ) − g

2

∫ p f

0
d3 pUm(p) = 0,

(B9)

p2
f

3e
+ α + βγ + p f

3

∂Um(p f )

∂ p f
= K

9
, (B10)

α + β = Uopt (ρ0, p → ∞), (B11)

α + β + Um(p = 650 MeV) = 0, (B12)
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where E f =
√

m2 + p2
f and

Pkin = d
∫ p f

0
d3 p

p2

3
√

m2 + p2
= gN

16π2

×
[

2

3
E f p3

f − m2E f p f + m4 ln

(
E f + p f

m

)]
. (B13)

We solve these equations for α, β, γ , μ, and C.

APPENDIX C: SCALAR IMPLEMENTATION

In the case of the scalar potential, we have

μ = ∂e

∂ρ
=

√
m∗2(p f ) + p2

f , (C1)

and the incompressibility is given by

K = 9ρ
∂μ

∂ρ
= 9

(
p2

f

3e∗ + ρ
m∗

e∗
∂m∗

∂ρ

)
. (C2)

The derivative of the effective mass with respect to the density
can be calculated as

∂m∗

∂ρ
= ∂Us

∂ρs

∂ρs

∂ρ
= ∂Us

∂ρs

[
m∗

e∗ + ∂m∗

∂ρ

gN

(2π )3

∫
d3 p

p2

e∗3

]
,

(C3)
which yields [97]

∂m∗

∂ρ
= ∂Us

∂ρs

m∗

e∗

[
1 − ∂Us

∂ρs

gN

(2π )3

∫
d3 p

p2

e∗3

]−1

. (C4)

APPENDIX D: DERIVATIVES OF
TRANSVERSE DISTANCES

The calculation of the derivatives for the transverse dis-
tances can be done as follows. First, we consider the distance
in the two-body c.m.:

q2
Ti j = q2

i j − (qi j · Pi j )2

s
, (D1)

p2
Ti j = p2

i j −
(
p2

i − p2
j

)2

s
(D2)

where qi j = qi − q j , pi j = pi − p j , Pi j = pi + p j , and s =
P2

i j . The derivatives are

∂q2
Ti j

∂ri
= −2

[
ri j − (qi j · Pi j )

s
Pi j

]
, (D3)

∂q2
Ti j

∂ pi
= 2(qi j · Pi j )

s

[
ri j − P0

i j

(qi j · Pi j )

s
ṽi j

]
, (D4)

∂ p2
Ti j

∂ pi
= −2

[
pi j − 2

(
p0

i − p0
j

) pi

p0
i

(D5)

+ P0
i j

(
p2

i − p2
j

)2

s2
ṽi j

]
, (D6)

where ṽi j = Pi j/P0
i j − pi/p0

i .

The two-body distances in the rest frame of a particle j are

q2
Ri j = q2

i j − (qi j · u j )
2, (D7)

p2
Ri j = p2

i j − (pi j · u j )
2, (D8)

where u j = p j/mj . The derivatives are

∂q2
Ri j

∂ri
= −2ri j + 2(qi j · u j )u j, (D9)

∂q2
Ri j

∂ pi
= 0, (D10)

∂q2
T ji

∂ pi
= −2

(q ji · ui )

mi
r ji, (D11)

∂ p2
Ri j

∂ pi
= 2

[
p0

i jvi − pi j − (pi ju j )

mj
p0

jvi j

]
, (D12)

∂ p2
R ji

∂ pi
= 2

[
p0

i jvi − pi j + (pi jui )

mi
p0

jvi j

]
, (D13)

where vi = pi/p0
i and vi j = vi − v j .

APPENDIX E: EQUATIONS OF MOTION

1. Equations of motion for RQMDs

The equations of motion for the RQMDs model are

ẋi = p∗
i

p∗0
i

+
∑

j

m∗
j

p∗0
j

∂m∗
j

∂ pi
, (E1)

ṗi = −
∑

j

m∗
j

p∗0
j

∂m∗
j

∂ri
, (E2)

where m∗
i = mi + Si and Si is the scalar potential,

Si = Vi(ρsi ) + Vm,i
(
p2

Ti j

)
, (E3)

where the scalar density is given by

ρsi =
∑
i( �= j

f jρi j, f j = m∗
j /p∗0

j (E4)

and the density dependent part is

Vi(ρsi ) = α

2ρ0
ρsi + β

(1 + γ )

(
ρsi

ρ0

)γ

. (E5)

The momentum-dependent potential is given by Eq. (57). The
equations of motion (E1) and (E2) become

ẋi = p∗
i

p∗0
i

+
∑
j( �=i)

[
Di j

∂q2
Ti j

∂ pi
+ Dji

∂q2
T ji

∂ pi

]
(E6)

+
∑
j( �=i)

[
Ei j

∂ p2
Ti j

∂ pi
+ Eji

∂ p2
T ji

∂ pi

]
, (E7)

ṗi = −
∑
j( �=i)

[
Di j

∂q2
Ti j

∂ri
+ Dji

∂q2
T ji

∂ri

]
, (E8)
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where

Di j = m∗
i

p∗0
i

f j

(
∂Vi(ρsi )

∂ρsi
+ Vm,i j

)
ρi j

4L
, (E9)

Ei j = m∗
i

p∗0
i

f j
∂Vm,i j

∂ p2
Ti j

ρi j, (E10)

Vm,i j = C

2ρ0

1

1 − p2
Ti j/μ

2
. (E11)

If qTi j is defined as the distance in the two-body c.m., q2
Ti j =

q2
T ji, one may need to add the term that comes from the

derivative of the factor fi in the scalar density,∑
j( �=i)

m∗
i

p∗0
i

f j
∂Si

∂ρsi
ρi j

∂ fi

∂ pi
. (E12)

2. Equations of motion for RQMDv

The equations of motion for RQMv are

ẋi = p∗
i

p∗0
i

+
∑

j

v
∗μ
j

∂Vjμ

∂ pi
, (E13)

ṗi = −
∑

j

v
∗μ
j

∂Vjμ

∂ri
. (E14)

The equations of motion (E13) and (E14) for the vector
implementation have the same structure as Eqs. (E7) and (E8),
but different Di j and Ei j :

Di j = ρi j

4L
v

∗μ
i (BiBjAi jμ + u∗

jμVm,i j ), (E15)

Ai jμ = Ji · u∗
j

ρBi

∂

∂ρBi

(
Vi

ρBi

)
Jiμ + Vi

ρBi
u∗

jμ, (E16)

Ei j = v
∗μ
i u∗

jμ

∂Vm,i j

∂ p2
Ti j

ρi j, (E17)

Jμ
i =

∑
i( �= j)

Bju
∗μ
j ρi j, (E18)

where Bi is the baryon number and Vi is a function of an

invariant baryon density ρBi =
√

J2
i .
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