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We study cluster and hypernuclei production in heavy-ion collisions at relativistic energies employing the
parton-hadron-quantum-molecular-dynamics (PHQMD) approach, a microscopic n-body transport model based
on the QMD propagation of the baryonic degrees of freedom with density dependent two-body potential inter-
actions. All other ingredients of PHQMD, including the collision integral and the treatment of the quark-gluon
plasma (QGP) phase, are adopted from the parton-hadron-string-dynamics (PHSD) approach. In PHQMD the
cluster formation occurs dynamically, caused by the interactions. The clusters are recognized by the Minimum
Spanning Tree (MST) algorithm. We present the PHQMD results for cluster and hypernuclei formation in
comparison with the available experimental data at energies available at the Alternating Gradient Synchrotron,
the Super Proton Synchrotron, and the Beam Energy Scan and fixed-target programs at the BNL Relativistic
Heavy Ion Collider. We also provide predictions on cluster production for the upcoming experiments at the
GSI Facility for Antiproton and Ion Research (FAIR) and the Nuclotron-based Ion Collider Facility (NICA).
PHQMD allows one to study the time evolution of formed clusters and the origin of their production, which helps
to understand how such weakly bound objects are formed and survive in the rather dense and hot environment
created in heavy-ion collisions. It offers therefore an explanation of the “ice in the fire” puzzle.

DOI: 10.1103/PhysRevC.105.014908

I. INTRODUCTION

Cluster production is one of the challenging topics of
heavy-ion physics. Since light clusters with a mass A � 4
were discovered at midrapity at the Bevalac accelerator in
Berkeley [1,2] and were later extensively studied at the heavy
ion synchrotron (SIS) accelerator at GSI [3], their production
has been a mystery which was even deepened by the discovery
that also at higher beam energies—at the Alternating Gradi-
ent Synchrotron (AGS) [4], at the Super Proton Synchrotron
(SPS) [5], at the BNL Relativistic Heavy Ion Collider (RHIC)
[6,7], and lately as well at the CERN Large Hadron Collider
(LHC) [8]—light midrapidity clusters are created. This is due
to the fact that the multiplicities and the transverse momentum
distributions of hadrons, such as π, K,�, and p, observed
at midrapidity, follow thermal model predictions, suggesting
that the produced fireball is in thermal equilibrium. Taking the
temperature and the chemical potential as determined from the
multiplicity of light hadrons, one can predict the multiplicity
of these clusters. Surprisingly, these predictions agree quite
well with the measured multiplicities [9,10]. So it seems that

these clusters and hadrons form a common thermal midra-
pidity source. The temperature of this source is well above
T = 100 MeV and increases with beam energy.

On the other hand, light clusters, with a binding energy per
nucleon well below 10 MeV, cannot live in a thermal heat bath
of a temperature of more than T = 100 MeV. They would not
survive a collision with one of the constituents of this thermal
source. This “puzzle” has been phrased as “ice in the fire,”
and so it is a challenge to understand how such weakly bound
objects can be formed during a heavy-ion collision.

If one assumes that the density in the thermalized system
does not fluctuate, these observed clusters cannot be formed
early, when collisions are frequent and the mean free path for
collisions is small. They also cannot be formed late because
the baryon density decreases very quickly and therefore soon
the distance between nucleons gets larger than the range of
the nuclear potential. Simulations show that the time interval
between these two limits is very short.

There are two other conditions which hold for the creation
of clusters and complicate their production process: (a) to
conserve energy and momentum, the formed cluster has to
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interact with a catalyst which is only available if the density
is not too low, and (b) clusters like a deuteron, with a binding
energy of 2.24 MeV and a root-mean-squared (rms) radius of
1.95 fm, can hardly be formed if the hadron density is high
enough that there are hadrons in between the cluster nucleons
which screen the interaction between the proton and neutron
of the deuteron. All these conditions point to a very limited
interval in course of the expansion in which these clusters can
be formed, and it is not easy to understand how the clusters,
after production, can still come to a thermal equilibrium with
the expanding system, as their multiplicity seems to indicate.

Almost all single-particle observables, like rapidity and
transverse momentum distributions, as well as collective
variables, like the radial and elliptic flow, can nowadays
be reasonably well reproduced by transport approaches like
parton-hadron-string dynamics (PHSD) [11,12], EPOS [13], a
multiphase transport (AMPT) model [14], or ultrarelativistic
quantum molecular dynamics (UrQMD) [15,16], which sim-
ulate the entire heavy-ion reaction on the computer. However,
for a description of cluster production this is not the case. The
reason is that the first three approaches are based on the time
evolution of the single-particle Wigner density, which concep-
tually does not allow for studying the dynamical production of
clusters due to genuine many body correlations. In UrQMD
(in the standard version) baryons do not interact by potential
interactions. This excludes also the dynamical formation of
clusters in the course of the time evolution of the system.

To address cluster formation in such transport approaches,
the coalescence model has been applied to extract clusters
from the distribution of single baryons (see, e.g., [17–21]).
The coalescence model itself has a long history. It was ad-
vanced by Butler and Pearson [22] who calculated that in a
static potential the momentum distribution of the deuteron
nd (p) is given by nd (p) ∝ 1

p2 n2
n( p

2 ), where nn(p) is the nucleon
distribution function if one takes into account that deuteron
production is a three-body process. Later, simpler versions
were advanced which also predicted nd (p) ∝ K n2

n( p
2 ), but

with very different constants of proportionality, K . These
models no longer took into account the three-body nature
of deuteron production. In Ref. [23] K ∝ p3

0, where p0 is a
coalescence radius in momentum space, in Ref. [24] K ∝ V ,
the fireball volume in which the deuteron is produced, and in
Ref. [25] K ∝ 1

V , where V is the volume at which a sudden
transition from a strongly interacting system to a noninteract-
ing system occurs. In the meantime experiments have shown
[6] that the ratio between the deuteron momentum distribution
and that of the nucleons nd (p)

n2
n ( p

2 ) is not given by a single constant

but by a momentum dependent function.
More recently, a model was advanced in Ref. [26] which

relates the single particle phase space distribution functions
of protons fp(r, p) and neutrons fn(r, p) with the momentum
distribution of the deuterons via the Wigner density of the
relative motion of the deuteron W (r, q):

dN

d3Pd
= 3

(2π )3

∫
d3rd

∫
d3rd3q

(2π )3
W (r, q)

× fp(r+, q+) fn(r−, q−) (1)

with r± = rd ± r/2 and q± = pd/2 ± q. rd and pd are the
center-of-mass coordinates, r and q the relative coordinates.
In actual calculations the deuteron wave function is replaced
by a Gaussian wave function with the rms radius of the
deuteron. For this wave function also the Wigner density is
a Gaussian and is easy to apply. This Wigner density tech-
nique has been frequently applied in transport approaches,
in which baryons have no potential interaction [27–29], to
predict the deuteron momentum distribution. It has also been
applied to transport approaches, in which baryons interact
via a mean field, the so-called Boltzmann-Ühling-Uhlenbeck
(BUU) [30–32] approaches, and in which the nucleons are
represented by a swarm of pointlike test particles (cf. [33]),
although it is not obvious how a transport theory, which
follows the time evolution of the single-particle phase space
distribution, can be suited for the investigation of clusters. The
necessity of the presence of a third body, when a deuteron is
produced, is neglected in the Wigner density approach as well
as the possibility that in between the nucleons of the deuteron
other hadrons can be present which screen the interaction.

Since the medium formed in heavy-ion collisions is rapidly
expanding, the deuteron yield depends on the time when the
coalescence model is applied. There are different possible
choices for which we refer to the original articles. If one
assumes that the coalescence takes place when the last of
the cluster nucleons had its last hadronic collision [20], a
quite reasonable agreement with the measured the yields is
obtained.

In order to study the cluster production in a dynamical way,
created by the potential interactions, which are present during
the whole heavy-ion reaction, and hence without additional
assumptions as inherent in the coalescence model, one has
to start out from transport theories which propagate not the
one-body but the n-body phase space density. Such models,
namely the family of QMD models [34], have been developed
in the eighties and can predict cluster formation at midrapidity
as well as in the projectile/target domain. They have been
successfully applied to describe heavy-ion collisions at lower
energies of a few 100A MeV [35] as well as at the Bevalac/SIS
energies of a few A GeV.

Recently we advanced the parton-hadron-quantum-
molecular-dynamics (PHQMD) approach [36], a QMD type
microscopic transport model which can also be applied to
relativistic energies. We have demonstrated that PHQMD
reproduces single particle observables for energies between
Ekin = 500A MeV and

√
sNN = 200 GeV and describes the

cluster formation as well. There we compared the PHQMD
results to the available experimental data at Ekin ≈ 600A MeV
– 1.5A GeV and 11A GeV. In PHQMD clusters are formed
dynamically due to the potential interactions between
baryons. The clusters are identified by the MST (minimum
spanning tree) method [37] or SACA (simulated annealing
cluster algorithm) [38,39], which finds the most bound
configuration of nucleons and clusters.

In this paper we present a detailed study of the cluster
production at relativistic energies, with a special focus on
the energies which are relevant for the upcoming experiments
at the Nuclotron-based Ion Collider Facility (NICA) and the
GSI Facility for Antiproton and Ion Research (FAIR). We
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confront the PHQMD results with available experimental data
on cluster production at midrapidity from AGS, SPS and
RHIC BES (Beam Energy Scan) experiments. After verifying
that these data are well reproduced we advance to the study of
the origin of clusters. In particular, we identify the time when
they are formed and the way in which they are formed, either
by disintegration of heavier clusters or by assembling protons
and neutrons.

This paper is organized as follows: In Sec. II we briefly
evoke the basic ideas of the PHQMD model. In Sec. III we
provide the model description of the PHQMD and the MST
cluster recognition procedure. In Secs. IV and V we present
the results for cluster and hypernuclei production in heavy-ion
collisions for different energies, while in Sec. VI we investi-
gate the time evolution of the cluster production. Finally, in
Sec. VII we summarize our findings.

II. MODEL DESCRIPTION: THE PARTON-HADRON
QUANTUM-MOLECULAR-DYNAMICS

(PHQMD) APPROACH

In this section we recall the basic ideas of the parton-
hadron-quantum-molecular-dynamics (PHQMD) approach.
Here we discuss only those aspects of PHQMD which are
necessary to understand the results, while further details can
be found in Ref. [36].

The PHQMD is an n-body microscopic transport approach
for the description of the heavy-ion collisions including clus-
ter production. The dynamically formed clusters are identified
by SACA and by the MST algorithm. The PHQMD unites
the collision integrals of the parton-hadron-string-dynamics
(PHSD) approach (in version 4.0) with density dependent
two-body potential between baryons, similar to the quantum
molecular dynamics (QMD) approach. Baryons are described
by Gaussian wave functions which propagate under the influ-
ence of mutual density dependent two-body forces (and not
due to a mean field). This approach respects “actio” is equal
to “reactio” and therefore energy and momentum are strictly
conserved. In the numerical approach the violation of the total
energy conservation is found to be less than 0.5%.

A. The collision integral

The collision integral of PHQMD is adopted from the
PHSD approach. We remind that parton-hadron-string dy-
namics is a nonequilibrium microscopic transport approach
[11,12,40–42] which describes the strongly interacting par-
tonic and hadronic medium in and out of equilibrium in
terms of off-shell massive quasiparticles (quarks and glu-
ons) and off-shell hadrons. It is based on a solution of the
Cassing-Juchem generalized off-shell transport equations for
test particles [43,44], based on the Kadanoff-Baym equations
[45] in first-order gradient expansion [40,46].

The hadronic part is based on the early development of the
HSD transport approach [47,48], which includes the baryon
octet and decouplet, the 0− and 1− meson nonets, and higher
resonances. In PHSD the description of multiparticle produc-
tion in elementary baryon-baryon (BB), meson-baryon (mB),
and meson-meson (mm) reactions is realized within the Lund

model [49], in terms of the event generators FRITIOF 7.02
[49,50] and PYTHIA 6.4 [51]. We note that in PHSD the
Lund event generators (FRITIOF 7.02 and PYTHIA 6.4) are
“tuned,” i.e. adjusted, to get a better agreement with exper-
imental data on elementary p + p collisions, especially at
intermediate energies (cf. Ref. [52]). It contains also chiral
symmetry restoration via the Schwinger mechanism for the
string decay [53,54] in a dense medium, as well as in-medium
effects such as a collisional broadening of the vector meson
spectra functions [55] and the modification of strange degrees
of freedom in line with many-body G-matrix calculations
[56,57]. We mention also that the implementation of detailed
balance on the level of 2 ↔ 3 reactions is realized for the main
channels of strangeness production/absorption by baryons
(B = N,�,Y ) and pions [57], as well as for the multimeson
fusion reactions for the formation of B + B̄ pairs [58].

In PHSD the partonic, i.e., the quark-gluon plasma (QGP)
phase, is based on the Dynamical Quasiparticle Model
(DQPM) [59,60] which describes the properties of QCD (in
equilibrium) in terms of resummed single-particle Green’s
functions. The gluons and quarks in PHSD are massive,
strongly interacting quasiparticles, described by a spectral
function. The widths and pole positions of the spectral func-
tions are defined by the real and imaginary parts of the parton
self-energies, and the effective, temperature dependent cou-
pling strength in the DQPM is fixed by fitting respective lQCD
results from Refs. [61–63]. The QGP phase is then evolved
using the off-shell transport equations with self-energies and
cross sections from DQPM. When the fireball expands the
probability of the partons to hadronize increases close to
the phase boundary (crossover at all RHIC energies), the
hadronization takes place using covariant transition rates. The
resulting hadronic system is later governed by the off-shell
HSD dynamics incorporating (optionally) self-energies for the
hadronic degrees of freedom [56].

We note also that in PHQMD the QMD dynamics is ap-
plied only for the baryonic degrees of freedom (cf. following
Sec. III C), while the propagation of mesonic and partonic
degrees of freedom follows the PHSD dynamics.

B. Initialization of the nuclei

In PHQMD a baryon i is represented by the single-particle
Wigner density, which is given by

f (ri, pi, ri0, pi0, t ) = 1

π3h̄3 e− 2
L [ri−ri0(t )]2

e− L
2h̄2 [pi−pi0(t )]2

. (2)

The Gaussian width L is taken as L = 8.66 fm2. We will use
the h̄ = c = 1 convention for further consideration. The cor-
responding single-particle density is obtained by integrating
the single-particle Wigner density over the momentum of the
baryon. The total one-body density is the sum of the densities
of all baryons. The n-body Wigner density is the direct prod-
uct of the one-body densities. At the beam energies considered
here antisymmetrization can be neglected at midrapidity.

For the details of the initialization of the nucleons we
refer to [36]. The centroids of the Gaussian wave function,
which represent the nucleons, are distributed initially such that
they reproduce the experimental rms radius of the nuclei, the
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momentum distribution of the Pi0 is given by a local Thomas-
Fermi model, and the average binding energy is found to be
close to the binding energy given by the Bethe-Weizsäcker
mass formula.

C. QMD propagation

For the time evolution of the wave function we use the
Dirac-Frenkel-McLachlan approach [64,65] which is based on
the variation

δ

∫ t2

t1

dt〈ψ (t )|i d

dt
− H |ψ (t )〉 = 0 (3)

and has been developed in chemical physics. It has also
been applied in nuclear physics for QMD-like models
[34,37,66,67]. This approach conserves the correlations in the
system and does not suppress fluctuations as mean-field cal-
culations do. Since clusters are n-body correlations it is well
suited to address the creation and time evolution of clusters.
With our assumption that the wave functions have a Gaussian
form and that the width of the wave function is time inde-
pendent, one obtains for the time evolution of the centroids
of the Gaussian single-particle Wigner density two equations
which resemble the equation of motion of a classical particle
with the phase space coordinates ri0, pi0 [37]. The difference
is that here the expectation value of the quantal Hamiltonian
is used and not a classical Hamiltonian:

˙ri0 = ∂〈H〉
∂ pi0

, ṗi0 = −∂〈H〉
∂ri0

. (4)

The Hamiltonian of the nucleus is the sum of the Hamiltonians
of the nucleons, composed of kinetic and two-body potential
energy:

H =
∑

i

Hi =
∑

i

(
Ti +

∑
j �=i

Vi, j

)
. (5)

The interaction between the nucleons has two parts, a local
Skyrme type interaction and a Coulomb interaction:

Vi, j = V (ri, r j, ri0, r j0, t ) = VSkyrme + VCoul

= 1

2
t1δ(ri − r j ) + 1

γ + 1
t2δ(ri − r j ) ργ−1

× (ri, r j, ri0, r j0, t ) + 1

2

ZiZ je2

|ri − r j | , (6)

with the density ρ(ri, r j, ri0, r j0, t ) defined as

ρ(ri, r j, ri0, r j0, t )

= C
1

2

[ ∑
j,i �= j

(
1

πL

)3/2

e− 1
L [ri−r j−ri0(t )+r j0(t )]2

+
∑
i,i �= j

(
1

πL

)3/2

e− 1
L [ri−r j−ri0(t )+r j0(t )]2

]
. (7)

C is a correction factor which is discussed in [36]. For the
Skyrme potential we use the approximative form (for a dis-

cussion we refer to [36])

〈VSkyrme(ri0, t )〉 = α

(
ρint(ri0, t )

ρ0

)
+ β

(
ρint(ri0, t )

ρ0

)γ

. (8)

ρint(ri0) is the sum of the Gaussian single-particle densities of
all baryons j �= i at ri0, but with twice the width (L → 2L).
The expectation value of the Coulomb interaction can also be
calculated analytically.

The expectation value of the Hamiltonian which enters (4)
is finally given by

〈H〉 = 〈T 〉 + 〈V 〉 (9)

=
∑

i

(√
p2

i0 + m2 − m
)

+
∑

i

〈VSkyrme(ri0, t ) + Vcoul(ri0, t )〉. (10)

In infinite matter the parameters α(t1, t2), β(t1, t2), and γ can
be related to the nuclear equation of state (EOS). Two of
the three parameters are determined by the condition that the
energy per nucleon has a minimum of E

A = −16 MeV at ρ0,
the ground state density of nuclear matter. The third one is
usually expressed by the compression modulus K of nuclear
matter, the inverse of the compressibility χ = 1

V
dV
dP , where P

is the pressure in the system of volume V . Here we employ
K = 380 MeV. Such an EOS is usually called hard.

With increasing bombarding energies relativistic dynam-
ics becomes more important. The relativistic formulation
of molecular dynamics has been developed in Ref. [68].
However, the numerical realization of this method for real-
istic heavy-ion calculations is not feasible with present day
computers. Therefore, in order to extend our approach for
relativistic energies, we introduce the modified single-particle
Wigner density f̃ of the nucleon i,

f̃ (ri, pi, ri0, pi0, t )

= 1

π3
e− 2

L (rT
i (t )−rT

i0(t ))2

e− 2γ 2
cm
L (rL

i (t )−rL
i0(t ))2

.

×e− L
2 (pT

i (t )−pT
i0(t ))2

e
− L

2γ 2
cm

(pL
i (t )−pL

i0(t ))2

, (11)

which accounts for the Lorentz contraction of the nucleus in
the beam z direction in coordinate and momentum space by
the inclusion of γcm = 1/

√
1 − v2

cm, where vcm is the velocity
of the bombarding nucleon in the initial NN center-of-mass
system. Accordingly, the interaction density modifies as

ρ̃int(ri0, t ) → C
∑

j

(
1

πL

)3/2

γcm e− 1
L (rT

i0(t )−rT
j0(t ))2

× e− γ 2
cm
L (rL

i0(t )−rL
j0(t ))2

. (12)

With these modifications we obtain

〈H̃〉 =
∑

i

(√
p2

i0 + m2 − m
) +

∑
i

〈ṼSkyrme(ri0, t )〉. (13)

with

〈ṼSkyrme(ri0, t )〉 = α

(
ρ̃int(ri0, t )

ρ0

)
+ β

(
ρ̃int(ri0, t )

ρ0

)γ

.

(14)
This potential enters the time evolution equations (4).
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With increasing bombarding energy the dynamics of
midrapidity particles starts to be dominated by collisions
rather than by the potential interaction between two colli-
sions, and if the local energy density ε is larger than the
critical energy density of εC 
 0.5 GeV/fm3 the transition
from hadronic to partonic degrees of freedom occurs [69].
Potential interactions among baryons are therefore relevant
mainly for “corona” particles (or spectators), as well as for
the interacting baryons in the fireball after hadronization.
Shortly after hadronization hadronic collisions are still fre-
quent and the momentum transfer due to collisions is large
in comparison to the momentum transfer due to the potential
interactions between the collisions. After the collision have
ceased, because the mean free path became too long, the
nucleons can still interact by potential interactions. Because
collisions destroy weakly bound small clusters, this is also
the moment when clusters can be formed. In this expanding
region the inverse slope parameters of the transverse energy
spectra of the baryons are of the order of 100 MeV and there-
fore for all baryons we are in an approximately nonrelativistic
regime.

D. Cluster identification

The formation of clusters in PHQMD is a consequence of
nucleon-nucleon interactions acting during the time evolution
of the heavy-ion collisions. The interplay between hadronic
collisions and the potential interactions, which are attractive
at baryonic densities around or below normal nuclear matter
density, leads to the formation of clusters. We call this dynam-
ical cluster formation because the formation of clusters does
not happen at a given time, but is a continuous process due
to the interactions among the baryons. In comparison to other
approaches PHQMD does not require to employ an additional
model, like a coalescence model or a statistical model, on top
of the baryon dynamics to determine clusters. Coalescence
models may use some quantal information about the clusters
which are not contained in our approach like the average
distance between nucleons; however, they neglect that—due
to energy conservation—the formation of a bound state needs
another body in the exit channel and provide no information
about the formation time.

As explained in Ref. [36], the cluster identification or
recognition is realized in PHQMD by the Minimum Spanning
Tree (MST) procedure [37] or by the simulated annealing
clusterization algorithm (SACA) [38,39]. In this study we
employ the MST procedure to identify clusters.

In the MST algorithm only the coordinate space informa-
tion is used to define clusters: Two nucleons are considered as
part of a cluster if their distance is less than r0 = 4 fm in the
cluster rest system obtained by a Lorentz transformation from
the computational frame. Nucleons which are more distant no
longer feel an attractive interaction.

Nucleons with a large relative momentum do not stay
together for a long time. Consequently, additional cuts in mo-
mentum space change the cluster distribution only little [70].
The MST procedure has been recently applied to study the
cluster production in different transport approaches [70]. This
study showed that in QMD-like approaches, where the few-

body correlations are kept, more light clusters at midrapidity
are produced than in mean-field or cascade models which both
give qualitatively similar results. The cluster recognition by
MST does not influence the time evolution of the heavy-ion
reaction as the underlying PHQMD propagates (in the version
used here) only baryons, not clusters.

Because each nucleon has a unique identification number
in the PHQMD code, the PHQMD approach allows for study-
ing the time evolution of clusters by applying MST at different
times during the simulation of a heavy-ion reaction. Starting
at the end of the simulation we can go back in time through
the recorded history of the clusters and their constituents. We
can identify the point in time at which a cluster has been
identified for the first time and investigate the environment
at the creation point.

Semiclassical models (such as QMD) cannot project the
n-body density onto the quantum ground state of a cluster.
For very late times the differences between a fully quantal
and our semiclassical approach may therefore influence the
cluster distribution, because in the ground state of a cluster—
being a quantum system of fermions—all states up to the
Fermi energy are occupied by nucleons and thus no energy
or momentum transfer between the nucleons is possible. This
is not the case in semiclassical approaches where one of the
cluster nucleons may gain sufficient energy to overcome the
binding energy.

Also, the necessity to neglect the time component of the
Lorentz transformation when calculating the interaction den-
sity, (12), which enters the time evolution equation, may
create energy uncertainties of the order of the binding energy
(which is very small as compared to the typical particle ener-
gies).

For both reasons clusters which are formed may disinte-
grate again in this semiclassical approach and therefore we
have to fix a cluster freeze-out time at which we consider
the cluster production as terminated. This time is large as
compared to the time of the last collision which the cluster
nucleons suffer and slightly different for different clusters.
The cluster freeze-out time is defined in the cluster rest sys-
tem. Due to time dilatation it depends in the center-of-mass
frame of the heavy-ion reaction, the frame in which the time
evolution of the system is calculated, on the center-of-mass
rapidity of the cluster rest system: t = t0 cosh ycm, where t0 is
the cluster freeze-out time at midrapidity. We call t “physical
time” because it marks identical times in the rest systems.
The time t0 is determined such that we reproduce the total
experimental multiplicity of the clusters at midrapidity. We
have verified that only the multiplicity, but neither the form
of the rapidity distribution nor that of the transverse mo-
mentum distribution or of the B2 ratios, are affected by this
choice.

In order to illustrate the procedure discussed above, we
present in Fig. 1 the rapidity distribution dN

dy of deuterons
for central Pb+Pb collisions at

√
sNN = 8.8 GeV. The full

lines show the rapidity distribution at three different (rapid-
ity independent) computational times [t0 = 55 fm/c (blue),
t0 = 65 fm/c (green), and t0 = 85 fm/c (red)]. We display as
well, as red squares, the rapidity distribution of deuterons at
the physical time t = t0 cosh ycm with t0 = 53 fm/c, which
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FIG. 1. The rapidity distribution of deuterons for central Pb+Pb
collisions at Ekin = 40A GeV. The full dots indicate the experimental
data from the NA49 Collaboration [5], the red squares show the
PHQMD results taken at the physical time t = t0 cosh(y) for t0 = 53
fm/c. The solid lines represent PHQMD results at the rapidity in-
dependent times t0 = 55 fm/c (blue line), t0 = 65 fm/c (green line)
and t0 = 85 fm/c (red line) measured in the center-of-mass of the
heavy-ion reaction (computational frame).

provides a good description of the experimental data of the
NA49 Collaboration [5].

III. THE PHQMD RESULTS FOR CLUSTER PRODUCTION
IN HEAVY-ION COLLISIONS

A. Rapidity and pT spectra of light clusters
for Au+Pb at Ekin = 10.6A GeV

We start out our investigation with the cluster production
in Au+Pb collisions at a beam energy of Ekin = 10.6A GeV
which has been measured by the E864 Collaboration at the
AGS accelerator in Brookhaven [4]. In Fig. 2 we display the
PHQMD results for the rapidity distributions of deuterons
(top), tritons (middle), and 3He (bottom) for the 10% most
central collisions. As discussed above, in our approach the
number of clusters decreases as a function of time due to
instabilities of our semiclassical clusters. Therefore, we have
to determine a time at which we identify the clusters. Con-
sequently, the rapidity and transverse momentum distribution
is given in our approach up to an overall factor. The time at
which we identify the clusters is given in the figures and is
around 50 fm/c for deuterons and around 60 fm/c for tritium
and 3He. Figure 2 shows that the rapidity distributions of light
clusters are quite well described, especially the flatness of
the distributions for the larger clusters and the increase with
rapidity for the deuterons.

The transverse momentum distribution of the deuterons for
the different rapidity intervals is displayed in Fig. 3. For most
of the rapidity intervals the transverse momentum distribution
is quite well reproduced. Only in the most negative and the
most positive rapidity bins are the calculations outside of the
error bars.

0.2

0.4

0.6

0.8

1

1.2

1.4

Au-Pb 0-10% 10.6A GeV

c/A < 0.2 GeV/
T

p < c0.1 GeV/

d
c = 45 fm/0tPHQMD

c = 50 fm/0tPHQMD

E864

0.02

0.04

0.06

0.08

0.1

0.12
t

c = 55 fm/0tPHQMD

c = 60 fm/0tPHQMD

E864

1− 0.5− 0 0.5 1
y

0.02

0.04

0.06

0.08

0.1

0.12
He3

c = 55 fm/0tPHQMD

c = 60 fm/0tPHQMD

E864

)2
/G

eV
2 c (

T
dp

dy/
N2

d
-1 )

T
pπ

(2

-310×

-310×

FIG. 2. The rapidity distribution of deuterons (top), tritons (mid-
dle), and 3He (bottom) in central Au+Pb collisions at beam energy
Ekin = 10.6A GeV. The dots indicate the experimental data from
the E864 Collaboration [4]. The PHQMD results are taken at the
physical time t = t0 cosh(y) for t0 = 45 (55) fm/c (red lines) and 50
(60) fm/c (blue lines) for d (3He, t ). The PHQMD calculations are
acceptance corrected.

Figures 4 and 5 present the pT distributions of tritons and
3He in the 10% most central Au+Pb events. The slopes of
the distributions are rather different compared to that of the
deuterons. Also for the A = 3 cluster the pT spectra are quite
well reproduced.

In order to compare the pT spectra of clusters with those of
free nucleons we introduce the covariant coalescence function
BA,

BA = E d3NA
dP3(

E d3Nneutrons
d p3

)N(
E d3Nprotons

d p3

)Z , (15)

014908-6



CLUSTER AND HYPERCLUSTER PRODUCTION IN … PHYSICAL REVIEW C 105, 014908 (2022)

0.2

0.4

0.6

0.8

1

1.2

1.4
Au-Pb 0-10% 10.6A GeV

 < -0.4y-0.6 < 

0.2

0.4

0.6

0.8

1

1.2

1.4

 < 0.0y-0.2 < 

0.2

0.4

0.6

0.8

1

1.2

1.4

 < 0.4y0.2 < 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
)c (GeV/

T
p

0.2

0.4

0.6

0.8

1

1.2

1.4

 < 0.8y0.6 < 

d

 < -0.2y-0.4 < 

c = 45 fm/0tPHQMD
c = 50 fm/0tPHQMD

E864

 < 0.2y0.0 < 

 < 0.6y0.4 < 

0 0.2 0.4 0.6 0.8 1 1.2 1.4
)c (GeV/

T
p

 < 1.0y0.8 < 

)2
/G

eV
2 c

 (
T

dp
N

/d
y

2
d

-1 )
T

pπ
(2

FIG. 3. The transverse momentum distribution of deuterons in
central Au+Pb collisions at beam energy Ekin = 10.6A GeV for
different rapidity intervals (as indicated in the legends). The dots
indicate the experimental data from the E864 Collaboration [4]. The
PHQMD results are taken at the physical time t = t0 cosh(y) for
t0 = 45 fm/c (red lines) and 50 fm/c (blue lines).

when a cluster with baryon number A and momentum P = pA
is formed out of Z protons and N neutrons. Assuming that the
proton and neutron momentum distributions are identical, BA

can be reduced for the Au+Pb reaction to [4]

BA = E d3NA
dP3

1.19N
(
E d3Nproton

d p3

)A . (16)

If B2 is independent of p, the result is compatible with the
assumption that the probability that two nucleons, which carry
half of the momentum of the deuteron, form a deuteron is
independent of the momentum of the nucleons.

In Fig. 6 we display B2 (top) and B3 (bottom). We com-
pare for different rapidity intervals the PHQMD results for
Au+Pb (dashed and full lines) with the Ekin = 10.6A GeV
Au+Pb data from the E864 Collaboration [4] (full points).
The PHQMD results are taken at the physical time t =
t0 cosh(y) for t0 = 45 fm/c (solid lines) and 50 fm/c (dashed
lines) for deuterons and at t0 = 55 fm/c and 60 fm/c for
3He.

We see that neither the experimental data nor the calcu-
lations show a remarkable structure for B2 as a function of

FIG. 4. The transverse momentum distribution of tritons in cen-
tral Au+Pb collisions at beam energy Ekin = 10.6A GeV for different
rapidity intervals (as indicated in the legends). The dots indicate the
experimental data from the E864 Collaboration [4]. The PHQMD
results are taken at the physical time t = t0 cosh(y) for t0 = 55 fm/c
(red lines) and 60 fm/c (blue lines).

pT . There is, however, a tendency that B2 increases slightly
with momentum. The calculations follow this trend with the
exception of the experimentally observed strong increase at
large pT in the interval 0.4 � y � 0.6.

This increase with pT is also visible for B3. Also here the
calculations follow this trend which means that high energetic
nucleons have a higher chance to end up in a 3He than those
with a lower momentum.

Another way to compare protons and clusters is to calculate
the penalty factor for cluster production. This factor describes
the reduction of the absolute yield in a (pT , y) bin as a function
of the cluster size. This penalty factor is displayed in Fig. 7
and compared with experimental data. This figure shows the
mass dependence of invariant yields of light nuclei in central
Au+Pb collisions at beam energy Ekin = 10.6A GeV in the
small kinetic region of 0.2 < y < 0.4 and pT /A < 0.3 GeV/c.
The open circles indicate the experimental data from the E864
Collaboration [4] (protons are corrected for hyperon feed-
down). The PHQMD results (filled squares) are taken at the
physical time t = t0 cosh(y) with t0 = 50 fm/c for deuterons,
t0 = 60 fm/c for tritons, as well as for 3He and t0 = 70 fm/c
for 4He. Experimental and PHQMD data are fitted with an
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FIG. 5. The transverse momentum distribution of 3He in central
Au+Pb collisions at beam energy Ekin = 10.6A GeV for different
rapidity intervals (as indicated in the legends). The dots indicate the
experimental data from the E864 Collaboration [4]. The PHQMD
results are taken at the physical time t = t0 cosh(y) for t0 = 55 fm/c
(red lines) and 60 fm/c (blue lines).

exponential function. For the fit of the PHQMD data (red
line), the constant prefactor is fixed at 26 for a better com-
parison of the penalty factor with the one from experiment
(black line). The penalty factor for each additional nucleon is
approximately 48 for the experimental data and approximately
50 for the PHQMD data.

Figure 7 shows that our approach is able to quantitatively
describe clusters up to a mass A = 4, the limit we can reach
with the presently available computers. To predict the yield of
A = 6 clusters one needs about 1000 times more CPU time
than we have presently available.

Thus, we can conclude that PHQMD, once the cluster
freeze-out time is fixed, describes quite well all observables
which have been measured in central Au+Pb collisions at
Ekin = 10.6A GeV. These observables include rapidity and
pT distribution at different rapidities for clusters of different
size, the ratio of the pT spectra of clusters and free nucle-
ons, as well as the penalty factor for larger clusters. Having
established that the model works for the lower end of the
beam energy interval of interest, we proceed now to the
upper end.
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FIG. 6. Coalescence function B2 of deuterons (top) and 3He (bot-
tom) in central Au+Pb collisions at beam energy Ekin = 10.6A GeV,
with an assumed neutron to proton ratio of 1.19, shown as function
of transverse momentum in several rapidity intervals (as indicated
in the legend). The filled dots indicate the experimental data from
the E864 Collaboration [4]. The PHQMD results are taken at the
physical time t = t0 cosh(y) for t0 = 45 fm/c (full lines) and 50 fm/c
(dashed lines) for deuterons and at t0 = 55 fm/c and 60 fm/c for 3He.

B. Light clusters produced in Pb+Pb collisions
at

√
sNN = 8.8 GeV

Midrapidity clusters have also been measured in heavy-
ion collisions at the SPS at CERN. For the comparison with
PHQMD results we select the Pb+Pb data at Ekin = 40A GeV,
an energy which is close to the lower limit of the RHIC
Beam Energy Scan (

√
sNN = 7.7 GeV), where in the near
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FIG. 7. Mass dependence of invariant yields of light nuclei in
central Au+Pb collisions at beam energy Ekin = 10.6A GeV in the
small kinetic region of 0.2 < y < 0.4 and pT /A < 0.3 GeV/c. The
open circles indicate the experimental data from the E864 Collabora-
tion [4] (protons are corrected for hyperon feed-down). The PHQMD
results (filled squares) are taken at the physical time t = t0 cosh(y)
with t0 = 50 fm/c for deuterons, t0 = 60 fm/c for tritons as well as
for 3He, and t0 = 70 fm/c for 4He. Experimental and PHQMD data
are fitted with an exponential function. For the fit of the PHQMD data
(red line), the constant prefactor is fixed to 26 for a better comparison
of the penalty factor with the one from experiment (black line). The
penalty factor for each additional nucleon is approximately 48 for the
experimental data and approximately 50 for the PHQMD data.

future new data can be expected. At this energy the NA49
Collaboration has measured the rapidity and transverse mo-
mentum distribution of deuterons and 3He for the 7% most
central collisions. For deuterons the rapidity and transverse
momentum distribution are displayed in Figs. 8 and 9. Here
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FIG. 8. The rapidity distribution of deuterons for central Pb+Pb
collisions at beam energy Ekin = 40A GeV. The dots indicate the
experimental data from the NA49 Collaboration [5], the red squares
show the PHQMD results taken at the physical time t = t0 cosh(y)
for t0 = 53 fm/c.
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FIG. 9. The transverse momentum spectra of deuterons for
Pb+Pb central collisions at

√
sNN = 8.8 GeV for different rapid-

ity intervals: −1.2 < y < 0.8 (upper), −0.8 < y < 0.4 (middle),
−0.4 < y < 0.0 (bottom). The dots indicate the experimental data
from the NA49 Collaboration [5], the red lines show the PHQMD
results.

we identify the clusters at t0 = 53 and 67 fm/c, times which
are very close to that employed at the lower energy. Also
at this energy the experimental rapidity distribution is repro-
duced within the measurement uncertainties. In the whole pT

range where experimental data are available, the transverse
momentum spectra for different rapidity bins are remarkably
well reproduced by PHQMD.

Also, the PHQMD rapidity distribution of 3He, displayed
in Fig. 10, shows a good agreement with the experimental data
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FIG. 10. The rapidity distribution of 3He from Pb+Pb central
collisions at

√
sNN = 8.8 GeV. The dots indicate the experimen-

tal data from the NA49 Collaboration [5], the red lines show
the PHQMD results taken at the physical time t = t0 cosh(y) for
t0 = 67 fm/c.

over the whole rapidity range and the same is true for the pT

distribution for different rapidity intervals, shown in Fig. 11.
Figure 12 displays the PHQMD pT spectra at midrapidity
for clusters of different size (red squares for protons, green
triangles for deuterons, and blue upside-down triangles for
3He) as well as an exponential fit of the form

d2N

pT d pT dy
= dN/dy

T (m + T )2
mT exp

(
−mT − m

T

)
(17)

to the spectra. We see that the spectral shapes are very differ-
ent for the different clusters. In order to better understand this
difference we introduce the quantity N (A)

N (p) , closely related to
(16):

N (A)

N (p)
=

d2NA

dP2
T( d2Nprotons

d p2
T

)A (18)

with PT = pT A. For central Pb+Pb collisions at
√

sNN = 8.8
GeV this quantity is displayed as a function of PT /A in Fig. 13
for deuterons (red squares) and for 3He (green triangles)
emitted in central collisions at midrapidity (|y| < 0.3). We
see that this ratio is flat up to pT = 0.6 GeV/c and then
increases considerably, in contradistinction to the reaction at
Ekin = 10.6A GeV, Fig. 6. This means that high transverse
momentum protons have a lower chance to form a cluster. This
result of PHQMD follows the experimental findings very well
[5].

This indicates that at
√

sNN = 8.8 GeV the probability that
two or three nucleons with pT = PT /A form a cluster depends
strongly on the transverse momentum, PT /A, and is therefore
not proportional to the phase space. PHQMD predicts that the
probability to form a cluster in a given PT /A bin depends in
form of a power law on the size of the cluster, similarly as for
the Au+Pb collisions at Ekin = 10.6A GeV. This is shown in

FIG. 11. The transverse momentum spectra of 3He for Pb+Pb
central collisions at

√
sNN = 8.8 GeV for different rapidity intervals

(from top to bottom): 0.0 < y < 0.3, 0.3 < y < 0.6, 0.6 < y < 0.9,
0.9 < y < 1.2, 1.2 < y < 1.5. The dots indicate the experimental
data from the NA49 Collaboration [5], the red lines show the
PHQMD results.
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FIG. 12. Invariant midrapidity PHQMD pT spectra of p, d , and
3He from central Pb+Pb collisions at

√
sNN = 8.8 GeV. Single ex-

ponential fits are plotted as the dashed curves.

Fig. 14. The blue dots, green upside-down triangles, and red
squares are the PHQMD results for the PT /A bins around 0.0,
0.6, and 1.0 GeV/c, respectively. The lines present the results
of fit of the form

f (A) = const/PA−1. (19)

The NA49 Collaboration [5] has presented the PT /A depen-
dence of the cluster formation probability by introducing a
penalty factor, already discussed in the last section. To make
a comparison with PHQMD calculations possible we fit the
d2N/(pT d pT dy) spectra of p, d , 3He, presented in Fig. 12,
by an exponential function, (17). Then we calculate the ratio
as defined in (18). Figure 15 displays the penalty factor for
central Pb+Pb collisions at

√
sNN = 8.8 GeV as open squares.

The experimental results from the NA49 Collaboration [5]
are given by red points. We obtain a statistical error of the
PHQMD calculations of 1% for protons, of 5% for deuterons,
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FIG. 13. The ratios N (d )/N (p) (red squares) and N ( 3He)/N (p)
(green triangles) from PHQMD as a function of PT /A at midrapidity,
−0.3 < y < 0.1, in Pb+Pb central collisions at

√
sNN = 8.8 GeV.
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FIG. 14. Invariant yield of clusters from PHQMD at several
values of pT /A in central Pb+Pb collisions at

√
sNN = 8.8 GeV.

The dashed lines represent a fit by a function of the form f (A) =
const/PA−1.

and of 30% for 3He. Theory and experiment are in reasonable
agreement. Both show a penalty factor for deuterons which
strongly increases with PT /A. Neither thermal models nor
coalescence models predict such an increase.

The NA49 Collaboration has also published B2, (16), as
a function of mT =

√
p2

T + m2 for protons and deuterons,
observed in the rapidity interval −0.3 < y < 0.1 in Pb+Pb
collisions at

√
sNN = 8.8 GeV. We compare these data [5],

shown as red squares, in Fig. 16 with the PHQMD calculations
(black circles). Also here we see that the increase of B2 with
pT is well reproduced by the simulations.

This section has shown that at two intermediate energies,
Ekin = 10.6A GeV and

√
sNN = 8.8 GeV, the PHQMD simu-

lations are in agreement with the available experimental data.
This concord includes the cluster rapidity distributions, the
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FIG. 15. Penalty factor for the cluster yields at several values of
PT /A in central Pb+Pb collisions at

√
sNN = 8.8 GeV. Experimental

data are taken from the NA49 Collaboration [5].
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FIG. 16. The coalescence factor B2 as a function of mT − m for
deuterons in central Pb+Pb collisions at

√
sNN = 8.8 GeV. Experi-

mental data are taken from the NA49 Collaboration [5].

pT distributions at different rapidities, but also ratios between
cluster yields and cluster pT distributions.

C. Energy dependence of cluster production

1. PHQMD results in comparison with thermal model predictions

It is of interest to see how the excitation function of the
cluster yield at midrapidity, as obtained in PHQMD cal-
culations, compares with the prediction of statistical model
calculations [9]. This is investigated in Fig. 17 where we
display dN/dy at midrapidity as a function of

√
sNN for

different hadrons and clusters. All calculations are done for
central Au+Au collisions (0–5% most central) in the rapidity
interval |y| < 0.5. The solid stars indicate the experimental
data for deuterons from the NA49 Collaboration [5]. We re-
frain from showing the measured (anti)proton data, because
the weak decay corrections have been done differently by the
different collaborations, and the results therefore cannot be
compared directly. The limited computer resources prevent
calculations of antideuterons below

√
sNN = 8.8 GeV, where

thermal models (which can be used as a benchmark) predict
less than 10−5 antideuterons per collision. We see quite dif-
ferent excitation functions of dN/dy for the different particle
species. For all of them the predictions of the statistical model
calculations and those provided by PHQMD are rather similar
with the exception of d̄ at low center-of-mass energies. This
is a remarkable result, because we will see later that clusters
and single baryons come from different regions in coordinate
space in contradistinction to the statistical model assumption
of a common source of all particles. In addition, PHQMD is
a transport model in which elementary collisions and mutual
interactions are responsible for the phase space distributions
of clusters and nucleons, not the assumption of a thermal equi-
librium. One has to conclude therefore that thermal spectra
or multiplicity distributions are not necessarily a hint for a
thermal source.
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FIG. 17. The comparison of the PHQMD results for dN/dy at
midrapidity for (anti)protons, (anti)deuterons, 3He, 4He, and hyper-
tritons as a function of

√
sNN with thermal model predictions [9].

All calculations are done for central Au+Au collisions (0–5% most
central) in the rapidity interval |y| < 0.5. The crosses indicate the
experimental data for deuterons from the NA49 Collaboration [5].
The PHQMD results are taken at t = 50 fm/c (red lines), 60 fm/c
(blue lines), and 70 fm/c (green lines).

2. PHQMD results in comparison with data

We proceed now to discuss the energy dependence of
several key cluster observables. In Fig. 18 we display the
excitation function of dN/dy at midrapidity of protons (top),
antiprotons (middle), and deuterons (bottom) as a function
of

√
sNN for central Au+Au collisions (5% most central for

protons and antiprotons and 7% most central for deuterons) in
comparison to the experimental data from the NA49, STAR,
and PHENIX Collaborations. The experimental p and p̄ data
from the STAR and PHENIX Collaborations [71,72] are
marked as stars. The deuteron results from the NA49 Collab-
oration [5] are marked as crosses. The midrapidity intervals
are taken as −0.4 < y < 0.0 for the NA49 data at the center-
of-mass energies

√
sNN = 6.3, 7.6, and 8.8 GeV; −0.6 <

y < −0.2 for 12.3 GeV and −0.6 < y < −0.4 for 17.3 GeV.
For the STAR and PHENIX data we employ |y| < 0.1. The
rapidity intervals for the PHQMD results correspond to the ex-
perimental ones. In this section the PHQMD results are shown
as red lines for t0 = 50 fm/c, blue lines for t0 = 60 fm/c,
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FIG. 18. The midrapidity excitation function of dN/dy of pro-
tons (top), antiprotons (middle), and deuterons (bottom) as a function
of

√
sNN for central Au+Au collisions [5% most central (protons and

antiprotons) and 7% most central (deuterons)] in comparison with
the experimental data from the NA49 Collaboration [5] (crosses)
where the midrapidity intervals are taken as −0.4 < y < 0.0 for√

sNN = 6.3, 7.6, and 8.8 GeV; −0.6 < y < −0.2 for 12.3 GeV and
−0.6 < y < −0.4 for 17.3 GeV, as well as from the STAR and
PHENIX Collaborations [71,72] (stars) for |y| < 0.1. The rapidity
intervals for the PHQMD results correspond to the experimental
ones. The PHQMD results for protons and antiprotons are scaled to
account for the protons from weak decay feed-down that are included
in the experimental data.
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FIG. 19. The excitation function of the deuteron to proton (top)
and antideuteron to antiproton ratios (bottom) for central Au+Au
collisions as a function of

√
sNN . The experimental data from the

STAR Collaboration [6] in the rapidity interval |y| < 0.3 are indi-
cated as stars. The PHQMD results are shown as red lines for t =
50 fm/c, blue lines for t = 60 fm/c, and green lines for t = 70 fm/c.

and green lines for t0 = 70 fm/c. These data are mostly taken
close to midrapidity, therefore the physical time and the time
in the computational frame, t0, do not differ substantially.
The PHQMD results for protons and antiprotons are scaled
to account for the protons from weak decay feed-down that
are included in the experimental data.

The proton and antiproton as well as the deuteron dN/dy
are nicely reproduced from the lowest SPS energies up to the
highest RHIC energies (in the present version of PHQMD the
calculation of the cluster production at LHC energies is too
time consuming and not included in the comparison). As a
consequence of the good agreement with the (anti)protons,
the experimental d/p ratio as a function of

√
sNN is also

well reproduced. In Fig. 19 we present the excitation func-
tion of the deuteron to proton d/p (top) and antideuteron to
antiproton d̄/p̄ (bottom) ratios from central Au+Au colli-
sions as a function of

√
sNN . The experimental data from the

STAR Collaboration [6] in the rapidity interval |y| < 0.3 are
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FIG. 20. The average transverse momentum of deuterons (top)
and antideuterons (bottom) as a function of

√
sNN for central Au+Au

collisions in the rapidity interval |y| < 0.3 as compared with data
from the STAR Collaboration. 〈pT 〉 is calculated using on individual
blast-wave model fits to the pT spectra.

indicated as stars and compared to the PHQMD results. The
form of the dependence of d̄/p̄ on

√
sNN is well reproduced

although we overpredict this ratio by roughly a factor of 2,
if we determine the yield of antiparticles at the same time
as that of the particles. As Fig. 18, middle, shows that the
p̄ distribution does not depend on time, this enhancement is
consequently due to an overpredicted d̄ yield.

Besides the excitation function of the rapidity distribution
also that of the mean transverse momentum 〈pT 〉 at midra-
pidity has been published by the STAR Collaboration for
deuterons, as well as for antideuterons. In Fig. 20 we compare
the experimental excitation function of 〈pT 〉 with PHQMD
calculations. We see that the absolute value as well as the
form of the excitation function agrees well for deuterons; for
antideuterons we overpredict the data slightly.

The experimental pT spectra of deuterons from the BES
at RHIC, taken by the STAR Collaboration [6], allow for an
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FIG. 21. The transverse momentum distribution of deuterons in
central Au+Au collisions at midrapidity for

√
sNN = 7.7, 11, 14.5,

19, 27, 39, 62, and 200 GeV (as indicated in the legend). The dots
indicate the experimental data from the STAR Collaboration [6]. The
PHQMD results are taken at t = 50 fm/c (red lines), 60 fm/c (blue
lines), and 70 fm/c (green lines).

even more detailed comparison between PHQMD simulations
and experimental data. In Fig. 21 we present the transverse
momentum distribution of deuterons in central Au+Au col-
lisions at midrapidity for

√
sNN = 7.7, 11, 14.5, 19, 27, 39,

62, and 200 GeV (as indicated in the legends). The full dots
indicate the experimental data from the STAR Collaboration
[6] taken at t = 50 fm/c (red lines), 60 fm/c (blue lines),
and 70 fm/c (green lines). We see that from

√
sNN = 7.7

GeV up to
√

sNN = 62.4 GeV the deuteron yield at 50 fm/c
agrees within error bars with the experimental results, only at√

sNN = 200 GeV PHQMD overpredicts the data. This will
be subject of future investigations.

The knowledge of the pT spectra of deuterons allows for
calculating the B2 factor, (16). The STAR Collaboration has
published B2 as a function of

√
sNN for PT /A = 0.65 GeV/c

and B2 as a function of PT /A for
√

sNN = 39 GeV to which
we can compare the PHQMD calculations. Both comparisons
are displayed in Fig. 22.

In the top part of Fig. 22 we show the excitation function
of B2 for central Au+Au collisions as a function of the center-
of-mass energy,

√
sNN , for pT /A = 0.65 GeV/c. The dots

indicate the experimental data from the STAR Collaboration
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FIG. 22. Top: The excitation function of B2 for central Au+Au
collisions versus the invariant energy

√
sNN for pT /A = 0.65 GeV/c.

The stars indicate the experimental data from the STAR Collabora-
tion [6]. Bottom: B2 as a function of pT for central Au+Au collisions
at

√
sNN = 39 GeV in the rapidity interval |y| < 0.3. The STAR

results [6] are shown as star symbols. The PHQMD results are taken
at t = 50 fm/c (red lines), 60 fm/c (blue lines), and 70 fm/c (green
lines).

[6]. The lower part of Fig. 22 indicates B2 as a function of
pT for central Au+Au collisions at

√
sNN = 39 GeV in the

rapidity interval |y| < 0.3. The STAR results [6] are shown
as stars. At 70 fm/c we find a quite good agreement with the
experimental results.

In Fig. 23 (top) we display dN/dy at midrapidity (|y| <

0.3) as a function of mass number A (p, d , 3He) for central
Au-Au collision from 7.7 to 200 GeV. The midrapdity dN/dy
of clusters of size A, produced by PHQMD, is an exponential
function of the form const

PA−1 for all energies covered by the
RHIC-BES. The value of the penalty factor P is displayed
in the legend, together with the constant. The solid lines
represent the fit with the exponential function. The values
of dN/dy for d were divided by the spin degeneracy factor
3/2. The times at which the PHQMD results were taken were
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FIG. 23. Top: dN/dy at midrapidity, |y| < 0.3, as a function of
the mass number A (p, d , 3He) from central Au+Au collision at
invariant energies 7.7–200 GeV. The solid lines represent the fit with
an exponential function. Values of dN/dy for d were divided by
the spin degeneracy factor 3/2. The times at which the PHQMD
results were taken are chosen depending on the mass number and
the collision energy, according to the results in Figs. 17–19. Bot-
tom: Penalty factor from the cluster yields at midrapidity in central
Au+Au collisions versus

√
sNN . The dots represent the PHQMD

results for the selected times (see above). The dotted line indi-
cates a determination of the penalty factor for cluster yields by the
Boltzmann factor exp[−(m − μB )/T ] with μB, T , and m being the
baryochemical potential, freeze-out temperature, and nucleon mass,
respectively. T and μB were calculated employing the parametriza-
tions for their energy dependence from a thermal statistical model
estimate, established in Ref. [73].

chosen depending on the mass number and on the collision
energy according to the results in Figs. 17–19. Clearly, with
increasing energy the exponential function becomes steeper.

We can compare the penalty factor obtained in the PHQMD
calculations to the penalty factor determined from statistical
model calculations. This is presented in Fig. 23 (bottom)
where we plot the penalty factor versus the center-of-mass
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the physical time t = t0 cosh(y) with t0 = 100 fm/c (red circles), 105
fm/c (blue circles), and 110 fm/c (green circles).

energy
√

sNN for central Au+Au collisions. The full dots rep-
resent the PHQMD results for the selected times (see above).
The dotted line indicates a determination of the penalty fac-
tor for cluster yields using the Boltzmann factor exp[−(m −
μB)/T ] with μB, T , and m being the baryon chemical poten-
tial, freeze-out temperature, and nucleon mass, respectively.
T and μB were calculated employing the parametrizations
of their energy dependence from a thermal statistical model
estimate, established in [73]. We observe that both models
predict a very similar energy dependence of the penalty factor.

IV. HYPERNUCLEI

At the beam energies considered here hyperons are pro-
duced copiously in elementary hadron-hadron collisions or
during the QGP hadronization. They have the possibility to
become part of hypernuclei if there are other nucleons around
with a momentum not too much different from the hyperon
momentum. So hypernuclei production studies the local phase
space density of nonstrange baryons, as well as the phase
space density of the hyperons itself. This makes the study of
hypernucleus production very interesting. Unfortunately, the
presently available data are very scarce at these energies and
therefore the possibility to compare our results to data is very
limited.

Until recently the only data set which exists was mea-
sured by the E864 Collaboration [74] and is displayed in
Fig. 24 in comparison with PHQMD calculations. There the
invariant yield of light hypernuclei at 0 < y < 1 and pT <

1.5 GeV/c in central Au+Pt collisions at a beam energy
of Ekin = 10.6A GeV is shown. The filled triangles indicate
the experimental data. The PHQMD results are taken at the
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FIG. 25. Transverse momentum distribution of 3
�H for different

rapidity intervals as indicated in the legends in central Au+Au col-
lisions at

√
sNN = 3 GeV. The filled circles indicate the preliminary

experimental data from the STAR Collaboration [75]. The PHQMD
results are taken at the times t = 80 fm/c (red lines), 85 fm/c (blue
lines), and 90 fm/c (green lines).

physical time t = t0 cosh(y) with t0 = 100 fm/c (red circles),
105 fm/c (blue circles), and 110 fm/c (green circles). The
large rapidity interval does not allow one to determine ex-
actly the physical time and introduces uncertainties into the
comparison of the PHQMD predictions with data. This result
shows, however, that PHQMD can also be used to study hy-
pernuclei, whose production is one of the major goals of the
upcoming experiments at NICA and FAIR.

Recently, first preliminary data of hypernuclei production
at a center-of-mass energy of

√
sNN = 3 GeV were made

public. In their fixed target program the STAR collaboration
measured for two hypernuclei, 3

�H and 4
�H, the transverse

momentum distribution d2N/pT d pT in different rapidity bins
[75].
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FIG. 26. Transverse momentum distribution of 4
�H for different

rapidity intervals as indicated in the legends in central Au+Au col-
lisions at

√
sNN = 3 GeV. The filled circles indicate the preliminary

experimental data from the STAR Collaboration [75]. The PHQMD
results are taken at the times t = 80 fm/c (red lines), 85 fm/c (blue
lines), and 90 fm/c (green lines).
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FIG. 27. The rapidity distribution of 3
�H, 4

�H and 4
�He from cen-

tral Pb+Pb collisions at
√

sNN = 8.8 GeV calculated at the physical
time t = t0 cosh(y) for t0 = 53 fm/c.

Figures 25 and 26 display the comparison of the PHQMD
transverse momentum distribution with the preliminary ex-
perimental data from the STAR Collaboration. In Fig. 25 we
show the results for 3

�H, while in Fig. 26 those for 4
�H for

different rapidity bins are presented. The filled circles indicate
the experimental data from the STAR Collaboration [75]. The
PHQMD results are taken at the times t = 80 fm/c (red lines),
85 fm/c (blue lines), and 90 fm/c (green lines), but at this
low energy the time dependence of the cluster yield is weak.
The calculations show that the trend of the experimental pT

spectra is well reproduced. We stress that the �N potential im-
plemented in PHQMD is presently quite simple (= 2/3VNN ),
so we do not expect an exact quantitative agreement. We
overpredict the differential yield of 3

�H , but reproduce the
yield of 4

�H . This demonstrates that PHQMD in its present
version is a good starting point for more sophisticated studies
of the hypernucleus production in this energy regime. We
will address the origin of the different quality of agreement
for 3

�H and for 4
�H in a future study.

In Fig. 27 we display the rapidity distribution of our calcu-
lations for 3

�H (blue dots), 4
�H (green squares), and 4

�He (red
triangles) for central collisions at

√
sNN = 8.8 GeV, taken at

53 fm/c. We see a distinct mass dependence. The heavier the
particle, the more difficult it is to form it at midrapidity as
is expected from the coalescence ansatz (even if the coales-
cence model misses important features of the spectra). When
moving towards projectile and target rapidity, clusters from an
additional source will become more important. These include
hypernuclei originating from the combination of projectile
and target fragments with produced hyperons. As a conse-
quence the mass dependence of the multiplicities is reduced
when moving away from midrapidity.

Similar to the nonstrange clusters we can also calculate for
the hypernuclei a penalty factor P by dN/dy = const/PA−1

and compare the both. This is done in Figs. 28 and 29 for√
sNN = 3 GeV and Ekin = 10.6A GeV, the energy of the

fixed target STAR experiment and the AGS experiment. On
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√
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for the production of hypernuclei, extracted from an exponential fit
dN/dy = const/PA−1, are indicated (i) (top) for adding additional
nucleons to a proton (red) and to a hyperon (blue), respectively;
(ii) (bottom) for adding an additional � to a deuteron (red) and to
a triton (blue), respectively. Nuclei with A = 2 are taken at t = 50
fm/c, nuclei with A = 3 at t = 60 fm/c, and nuclei with A = 4 and
hypernuclei at t = 70 fm/c.

the top we see the penalty factor for adding a nucleon, on the
bottom that for adding a �. If one starts with a proton, the
penalty factor for adding a nucleon is larger in comparison
to the chain which starts with a �. The penalty factor for
adding a � depends of course on the � multiplicity and is
therefore very large at

√
sNN = 3 GeV, where the probability

that 2 �’s are produced in a heavy-ion reaction is small. It
becomes considerably lower at Ekin = 10.6A GeV. A more
realistic implementation of the �N potential, planned for the
future, will modify the detail but we expect that the general
trend will be conserved.

V. WHEN ARE THE CLUSTERS FORMED?

As demonstrated above, the experimental observables—
such as multiplicities, rapidity, and transverse momentum
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FIG. 29. dN/dy at |y| < 0.5 versus the cluster size A as well as
the penalty factors for the production of (hyper)nuclei for central
Au+Pb collisions at Ekin = 10.6A GeV. For details see the caption
of Fig. 28.

distributions of clusters—are reasonably well reproduced
within the PHQMD approach. However, based only on the
final observables it is difficult to answer the question, when
are the observed clusters formed? In order to shed light on this
issue we explore the advantages of a microscopic transport
description of heavy-ion dynamics, which allows us to follow
the time evolution of each particle and thus to study the origin
of cluster formation and their stability over time. Using the
recorded history of all baryons in the system, we can trace
back the time history of the baryons (nucleons and hyperons)
which are finally embedded in the final clusters. In this section
we use this information to study when and how clusters,
observed finally at midrapidity, are formed during the fireball
expansion. In contradistinction to clusters, which are observed
at projectile and target rapidity and present surviving initial
correlations of nucleons in the spectator matter, the clusters
at midrapidity are newly formed by participants during the
reaction, i.e., they contain a mixture of baryons from projectile
and target.
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FIG. 30. The normalized distribution of freeze-out times of
baryons (nucleons and hyperons), i.e., the time of the last hadronic
collision of the baryons, observed at midrapidity, |y| < 0.5, for 10%
central Au+Au collisions at beam energies of Ekin = 1.5A GeV (top)
and of Ekin = 40A GeV (bottom).

We start out with the investigation of the freeze-out time
distribution of final baryons, i.e., the time at which the baryons
made their last collision with the surrounding hadrons. This
distribution for baryons with a rapidity |y| < 0.5, normalized
to 1, is shown in Fig. 30 for 10% central Au+Au colli-
sions at beam energies of Ekin = 1.5A GeV (upper plot) and
Ekin = 40A GeV (lower plot). On can see a striking similarity
between the two plots which evidences that the expansion
velocity of the midrapidity fireball is not very different at
the different beam energies. Without showing explicitly, we
mention that even for the highest energy studied here,

√
sNN =

200 GeV, the distribution is very similar to other energies.
This result is compatible with the observation that above
Ekin = 1.5A GeV the average transverse momentum of the
midrapidity baryons does not change substantially with in-
creasing beam energy. It can as well be seen in Fig. 30 that
after 40 fm/c the collisions among the expanding hadrons are
essentially over and only potential interactions continue to be
present.

Next, we investigate the transverse distance of nucleons,
observed at midrapidity (|y| < 0.5), to the center of the heavy-
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FIG. 31. The normalized distribution of the transverse distance
of the nucleons, observed at midrapidity (|y| < 0.5), to the reaction
center at time 30 fm/c (blue lines) and 70 fm/c (red lines) for for
10% central Au+Au collisions at beam energy Ekin = 1.5A GeV
(top), Ekin = 10A GeV (middle), and Ekin = 40A GeV (bottom). The
dotted lines display the distributions of the nucleons which belong to
the clusters of size A = 2, the dashed lines to A = 3 clusters, and the
solid lines indicate the distributions of the free nucleons A = 1.

ion reaction (defined in the calculational frame which is the
initial NN center-of-mass frame), i.e., relative to the center
of the fireball. In Fig. 31 we show the time evolution of the
distributions (normalized to unity) of the transverse distance
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FIG. 32. The probability distribution P(A) of the formation
time of clusters at midrapidity, |y| < 0.5, for the 10% most central
Au+Au collisions at beam energies of Ekin = 1.5A GeV (top), of
Ekin = 10A GeV (middle), and of Ekin = 40A GeV (bottom). The
probabilities that a finally (i.e., at t = 135 fm/c) observed A = 2
cluster has been identified already at time t are shown as red lines.
The green lines show the probabilities that a nucleon of the finally
observed A = 2 cluster was at time t a part of the A = 3 cluster;
the blue lines show the probability that an A = 2 cluster nucleon
was a single nucleon A = 1 at time t . Black lines display the sum
P(1) + P(2) + P(3). This analysis is done for clusters which are
bound at t = 135 fm/c (dotted lines) and all clusters (full lines).

of the baryons which belong to clusters of size A = 2 (dotted
lines) and A = 3 (dashed lines), as well as for free nucleons
A = 1 (solid lines) for 10% central Au+Au collisions at beam
energies of Ekin = 1.5A GeV (top), Ekin = 10A GeV (middle),
and Ekin = 40A GeV (bottom). The blue lines display the
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FIG. 33. The probability distribution P(A) of the formation time
of clusters at midrapidity, |y| < 0.5, for the 10% most central
Au+Au collisions at beam energies of Ekin = 1.5A GeV (top), of
Ekin = 10A GeV (middle), and of Ekin = 40A GeV (bottom). The
probabilities that a finally (i.e., at t = 135 fm/c) observed A = 3
cluster has been identified already at time t are shown as red lines.
The green lines show the probabilities that a nucleon of the finally
observed A = 3 cluster was at time t a part of the A = 4 cluster;
the blue lines show the probability that a A = 3 cluster nucleon
was part of an A = 2 cluster at time t . Black lines display the sum
P(2) + P(3) + P(4). This analysis is done for clusters which are
bound at t = 135 fm/c (dotted lines) and all clusters (full lines).

distributions calculated at 30 fm/c and the red lines those at
70 fm/c. The similarity of these distributions is again striking
and points to a very similar mechanism for cluster production
for all the energies investigated here. Clusters are formed from
nucleons which have a smaller distance to the reaction center
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than the average and, even more, the larger the clusters, the
smaller is their distance to the center of the reaction. This
shows clearly that after the violent phase of the heavy-ion re-
action the distribution of clusters of size A is not proportional
to the Ath power of the nuclear density [ρN (x)]A or of the
nuclear phase space density [ fN (p, x)]A. Since we use in this
analysis MST to identify the clusters we cannot say whether
at an earlier time such a proportionality could be observed.

Using the recorded history of baryons in the PHQMD, we
address now the question, wshen were the clusters formed?
To study this we trace back the nucleons which form finally
(i.e., at t = 135 fm/c) clusters of size A = 2 and A = 3. We
identify the time when the nucleons fulfill for the first time
the condition to be considered as a members of an A = 2 or
A = 3 cluster, respectively. The probability that a cluster has
already its final size (defined at t = 135 fm/c) is displayed
as a function of time in Fig. 32 for final A = 2 clusters and
in Fig. 33 for final A = 3 clusters as red lines. We show as
well the probability that the final cluster of size A has been
at that time part of a cluster of size A + 1 (green line) or of
a A − 1 cluster (blue lines), which in the case of A = 2 is a
single nucleon. The black line is the sum of all three probabil-
ities. The figure shows that the clusters are produced shortly
after the collisional interactions of baryons (cf. Fig. 30) have
practically ceased, i.e., near the thermal freeze-out. From then
on clusters may still lose or gain one nucleon but the prob-
ability for larger changes is very small. Again we observe
the similarity of the formation time of clusters produced at
different beam energies Ekin = 1.5A, 10A, and 40A GeV. The
cluster formation time decreases a bit with increasing beam
energy because at lower energies the baryon density is higher
and, therefore, the formation of larger, unstable clusters is
more probable. We can conclude that cluster formation at
midrapidity is a process which occurs after the collisional
interactions of baryons have ceased. They are dominantly
formed from nucleons which are closer to the reaction center
than free nucleons. Therefore, our findings are different from
the models which assume that the probability of the formation
of a cluster of size A is proportional to the Ath power of the
single-particle density.

VI. CONCLUSIONS

In this paper we have employed the recently advanced
PHQMD transport approach to study the cluster formation at
midrapidity in the energy range from AGS to top RHIC with
a special focus on the energies between Ekin = 10.6A GeV
and Ekin = 40A GeV, relevant for the upcoming experiments
at the FAIR and NICA facilities. Clusters are identified with
a Minimum Spanning Tree (MST) in coordinate space (ad-
ditional cuts in momentum space, however, do not change
much the cluster distributions found by the MST [70]). Small
semi-classical clusters are not very stable and therefore we
have to chose a time at which we identify the clusters. This
time has exclusively an influence on the multiplicity, but not
on dynamical variables and is almost the same for the energy
range investigated here.

The major findings of our investigation are the following:

(i) The mutual potential interactions between baryons
lead naturally to the formation of midrapidity clus-
ters. No additional coalescence procedure is neces-
sary to identify the clusters.

(ii) At energies of Ekin = 10.6A GeV and
√

sNN =
8.8 GeV our calculations agree quite well with the
experimental data. We reproduce the rapidity distri-
bution of light clusters as well as their pT distribution
in different rapidity intervals. The agreement of our
results with the experimental data show that cluster
production is not a simple phase space coalescence:
we find that the probability to form clusters depends
on the transverse momentum of the cluster, which is
not predicted by simple coalescence models.

(iii) We obtain also good agreement between theory and
experimental data for the excitation function of the
cluster yield and for the average pT of clusters from
Ekin = 10.6A GeV up to the top RHIC energies.

(iv) The few existing experimental data on hypernuclei
are reasonable well described, even if we use in
this study the simplifying assumption that VN� =
2/3VNN . This means that not only the creation of
�’s is well reproduced [36] but also the formation of
the hypernuclei themselves, i.e., the absorption of the
�’s by nucleons to form a hypernucleus. The error
bars of the experiments and that of the theory (it is
very costly to produce hypernuclei at AGS energies
and below) are still too large for drawing detailed
conclusions about the production process.

(v) We used the registered cluster history in PHQMD
to investigate how and when clusters are formed.
We find an unexpected similarity of the cluster pro-
duction at midrapidity from Ekin = 1.5A GeV up to√

sNN = 8.8 GeV. The clusters are produced in be-
tween, 15 fm/c after collisions between the hadrons
have ceased (around 30–40 fm/c). At 50 fm/c 70%,
90%, and 95% of the preclusters have been formed
at 1.5A, 10.6A, and 40A GeV, respectively. We name
those clusters which differ by only one baryon from
the finally (at 135 fm/c) observed clusters “preclus-
ters,” and, most importantly, in coordinate space they
are formed behind the front of the fast expanding
hadrons. This is the reason why clusters can survive.

(vi) We compared the dN/dy at midrapidty with ther-
mal model predictions and found an unexpected
similarity. Is is unexpected because, as said in the
Introduction, due to their low binding energy clusters
do not survive in a thermal source of a temperature
larger than 100 MeV. Therefore, the experimental
observation that their multiplicity corresponds to the
thermal expectation value is puzzling. In PHQMD
the final rapidity distribution is a consequence of
the potential and collisional interactions among the
baryons, and collisions of cluster nucleons with other
hadrons would destroy the clusters.

(vii) Hence the “ice in the fire” puzzle is only a puzzle due
to the unobservable assumption of thermal models
that baryons and clusters are distributed homoge-
neously in space. The PHQMD calculations show
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that clusters come from different space regions than
free nucleons, which does not exclude that they have
pT spectra compatible with that expected from a ho-
mogeneous thermal source.
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