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The number of particles detected in a nucleus-nucleus collision strongly depends on the impact parameter of
the collision. Therefore, multiplicity fluctuations, as well as rapidity correlations of multiplicities, are dominated
by impact parameter fluctuations. We present a method based on Bayesian inference which allows for a robust
reconstruction of fluctuations and correlations at fixed impact parameter. We apply the method to ATLAS data on
the distribution of charged multiplicity and transverse energy. We argue that multiplicity fluctuations are smaller
at large rapidity than around central rapidity. We suggest simple, new analyses to confirm this effect.
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I. INTRODUCTION

The effective theory of strong interactions predicts that
in ultrarelativistic nucleus-nucleus collisions, particle produc-
tion occurs through the formation of color flux tubes parallel
to the collision axis [1], which are analogous to strings [2].
Since these tubes extend over a wide range in rapidity, one ex-
pects that particle production at different rapidities is strongly
correlated [3,4]. The measurement of this rapidity-rapidity
correlation [5] has remained elusive so far because it is hid-
den by the trivial correlation induced by the variation of
impact parameter b within a given centrality class, since a
more central collision produces more particles at all rapidities.
Methods have been proposed to overcome this limitation [6],
but, in practice, experimental results are essentially limited to
the forward-backward correlation [7–10], which has reduced
sensitivity to impact parameter fluctuations.

We introduce a simple Bayesian method which allows
us to reconstruct correlations at fixed impact parameter, and
therefore eliminates the trivial correlation due to variations of
b. More specifically, if (N1, N2, . . . , Np) denote multiplicities,
or transverse energies, in p rapidity windows, we show that
their p × p covariance matrix can be reconstructed for b = 0
(central collisions), and a (p − 1) × (p − 1) projection of this
matrix for b > 0. Note that Bayesian methods in the field
of heavy-ion collisions usually involve sophisticated models
and extensive calculations [12–15]. By contrast, the simple
Bayesian approach implemented in this article does not in-
volve any specific model of the collision dynamics. It could
be implemented directly by experimental collaborations.

We apply the reconstruction to ATLAS data [11] on
the distribution of the transverse energy ET measured in a
calorimeter located at forward rapidity, and of the charged
multiplicity Nch measured in the central rapidity region. The
histogram of (ET , Nch ) for Pb+Pb collisions is represented
in Fig. 1. The impact parameter of a Pb+Pb collision is
not measured, and this histogram is the superposition of the

contributions of all impact parameters. However, we are able
to reconstruct accurately the location of central collisions on
this diagram, which is represented in the figure as a black
curve corresponding to the 99% confidence ellipse for col-
lisions at b = 0. This is a specific example of what can be
achieved through the Bayesian reconstruction.

The method is explained in Sec. II. In Sec. III, it is vali-
dated using a realistic model calculation in which the impact
parameter is known, using the TRENTO 3D model of initial
conditions [16]. In Sec. IV, we apply it to ATLAS data. In
Sec V, we present our results for the fluctuations of ET and
Nch, and discuss what they tell us about the early collision
dynamics. In Sec. VI, we suggest analyses which could be
done easily with existing data, and which would shed new
light on the rapidity dependence of fluctuations, and on long-
range correlations.

II. METHOD

Detectors of heavy-ion experiments typically measure mul-
tiplicities of charged particles or energies deposited by these
particles. We assume that there are p such observables in
every event, which we denote by (N1, N2, . . . , Np). Experi-
mentally, one typically measures the probability distribution
of (N1, N2, . . . , Np) in minimum-bias nucleus-nucleus colli-
sions. Our goal is to reconstruct as much as we can of the
probability distribution of (N1, N2, . . . , Np) at fixed impact pa-
rameter, without relying on any specific model of the collision
dynamics.1 The single-variable case, p = 1, has been studied

1Note that a quantity such as the number of participant nucleons
Npart [17] or quarks [18] may be a better predictor of multiplicities
than the impact parameter itself. Our analysis can be rephrased by
replacing b with a different variable such as Npart . The price to pay is
that the probability distribution of Npart is less simple than that of b,
and depends on the details of the Glauber modeling.
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FIG. 1. Normalized histogram of the distribution of (ET , Nch )
measured by the ATLAS collaboration [11] in Pb+Pb collisions at√

sNN = 5.02 TeV. ET denotes the transverse energy in the pseudora-
pidity window 3.2 < |η| < 4.9, and Nch the number of reconstructed
tracks of charged particles in the pseudorapidity window |η| < 2.5.
The black ellipse is one of the results given by our Bayesian recon-
struction. It is the 99% confidence ellipse for collisions at zero impact
parameter.

in [19]. The present work generalizes this earlier study to
several variables. We illustrate this generalization on ATLAS
data shown in Fig. 1. These data correspond to the case p = 2,
where N1 = ET and N2 = Nch. Below, we will use either the
general notation (N1, N2) or the specific notation (ET , Nch ),
depending on the context.

The key assumption of our method is that, for fixed impact
parameter, fluctuations of Ni are Gaussian. This can be viewed
as a consequence of the central limit theorem. In order for
it to hold, we first need Ni to be large enough. In the case
of the ATLAS data represented in Fig. 1, the multiplicity Nch

exceeds 3000 in central collisions, and an even larger number
of particles contribute to the transverse energy ET , so that
this assumption is verified. Even though the particles seen in
detectors are emitted in the last stages of the collision dynam-
ics [20], there is a consensus that the origin of fluctuations
lies in the early collision dynamics [17,21–25]. Now, due to
the strong Lorentz contraction at ultrarelativistic energies, the
processes through which particle production occurs at various
points in the transverse plane are causally disconnected and
hence independent from each other. Therefore, the multiplic-
ity or transverse energy Ni in some detector can be seen as the
sum of a large number of independent contributions, which is
the condition under which the central limit theorem applies.

More specifically, we assume that the probability distri-
bution of (N1, N2, . . . , Np) at fixed impact parameter is a
multivariate normal distribution.

P(N1, . . . , Np|b)= exp
{− 1

2 [Ni−N̄i(b)]�−1
i j (b)[Nj−N̄j (b)]

}
√

(2π )p|�(b)| ,

(1)
where, in the exponential, we use the Einstein summation con-
vention over the repeated indices i and j. In this equation, N̄i

is the mean, or average, value of Ni, and �i j is the symmetric

covariance matrix:

N̄i = 〈Ni〉
�i j = 〈(Ni − N̄i )(Nj − N̄j )〉

= 〈NiNj〉 − N̄iN̄ j, (2)

where angular brackets denote an average over events with the
same impact parameter b. �−1 denotes the inverse matrix and
|�| the determinant. The validity of this Gaussian approxima-
tion will be discussed further in Sec. III.

The measured distribution is integrated over all values of
impact parameter b. We carry out a simple change of variables
and integrate instead over the cumulative probability distribu-
tion of b,

cb � πb2

σPbPb
, (3)

where σPbPb is the inelastic nucleus-nucleus cross section
[19].2cb is referred to as the centrality fraction, or just cen-
trality in the heavy-ion literature. The probability distribution
of cb is uniform in the interval [0,1]. Therefore, the measured
distribution is a simple integral over cb:

P(N1, . . . , Np) =
∫ 1

0
P(N1, . . . , Np|cb)dcb. (4)

We further assume that the parameters in Eq. (1), namely, the
mean values N̄i and the elements of the covariance matrix
�i j , are smooth positive functions of cb, which we choose to
parametrize as the exponential of a polynomial [19]:

N̄i(cb) = N̄i(0) exp

(
−

nmax∑
n=1

ai,ncn
b

)
,

�i j (cb) = �i j (0) exp

(
−

mmax∑
m=1

Ai, j,mcm
b

)
(5)

where N̄i(0), ai,n, �i j (0), Ai, j,m are free parameters, and
nmax and mmax are the degrees of the polynomials used to
parametrize the mean and the covariance. The parameters are
fitted in such a way that the distribution (4) matches data,
and the degree of the polynomial is adjusted so as to obtain
a satisfactory fit. We carry out a standard χ2 fit, keeping all
nonempty boxes in the histogram of (ET , Nch ).

As we shall see in Secs. III and IV, the simple procedure
defined by Eqs. (1), (4), and (5) allows one to obtain a good
fit to P(N1, . . . , Np). The mean values N̄i(cb) returned by the
fit closely match those obtained directly by fixing the impact
parameter and averaging Ni over events, which implies that
N̄i(cb) can be accurately reconstructed from data. By contrast,
one cannot reconstruct the impact parameter dependence of
the whole covariance matrix �i j (cb), and discrepancies are
expected between the best fit value and the value calculated
directly by fixing the impact parameter. We conclude this
section by explaining which information can be reconstructed,
and which cannot.

2Deviations from Eq. (3) only appear for very peripheral collisions,
which are excluded from our study.
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FIG. 2. Illustration of Eq. (7). The line is the parametric curve
(N̄1(cb), N̄2(cb)), or ridge line (see text). For a given point (N1, N2)
close to the ridge line, c1 and c2 defined by Eq. (7) are obtained by
projections on the ridge line.

First, consider the tip of the distribution, corresponding to
the largest values of Ni. In this region, the integral in Eq. (4)
is dominated by the contribution of central collisions, that is,
cb = 0. Therefore, both N̄i(0) and �i j (0) can be reconstructed
using the tip of the distribution. Looking at Fig. 1, one clearly
sees that the ellipse, which is defined by N̄i(0) and �i j (0),
closely fits the tip of the distribution of (ET , Nch ).

Consider now the bulk of the distribution, corresponding
to less central collisions. The mean value N̄i(cb) can be recon-
structed from data in the following way. Define ci(Ni ) as the
cumulative probability distribution of Ni:

ci(Ni ) ≡
∫ ∞

Ni

P(Ni )dNi. (6)

This is the usual definition of centrality in experiment [26].
We use here the subscript i because we consider the case
where one measures several multiplicities Ni, each of which
can be used as a centrality estimator ci. Except for very pe-
ripheral and very central collisions, ci(Ni ) defined by Eq. (6)
is almost equal to the inverse function of N̄i(cb) [19,27],
that is,

N̄i(ci(Ni )) � Ni. (7)

Deviations are typically well below 1%. The functions N̄i(cb)
define a ridge line which is displayed in Fig. 2.

By contrast, the centrality dependence of the covariance
matrix cannot be fully reconstructed. This can be understood
qualitatively as follows. A displacement parallel to the ridge
line can be due either to a change in impact parameter or to
a fluctuation at fixed impact parameter. Therefore, only the
projection of the covariance matrix orthogonal to the ridge
line can be reconstructed.

We now explain this quantitatively in the case p = 2, where
each event is characterized by two multiplicities N1 and N2.
The centralities c1(N1) and c2(N2) defined by Eq. (6) are
typically close to one another (see Fig. 2). They coincide on
the ridge line. The only sizable contribution to the integral
in Eq. (4) is from values of cb close to c1(N1) and c2(N2).
We rewrite Ni − N̄i(cb) in Eq. (1) using Eq. (7) and expand

around cb:

Ni − N̄i(cb) = N̄i(ci(Ni )) − N̄i(cb)

� (ci(Ni ) − cb)N̄ ′
i (cb), (8)

where N̄ ′
i is the derivative of N̄i with respect to cb (note that

N̄ ′
i < 0). Since the integrand in Eq. (4) is sizable only in a

narrow range, one can neglect the variation of N̄ ′
i (cb) and of

�−1
i j (cb) in this range. Then, the integral over cb is a simple

Gaussian integral, which is worked out in the Appendix. In
the case p = 2, one obtains

P(N1, N2) ∝ exp

(
− δc2

2σ 2
⊥(cb)

)
, (9)

where δc ≡ c2(N2) − c1(N1) represents the difference be-
tween the centralities defined by ET and Nch in the case of
the ATLAS analysis (see Fig. 2), and

σ⊥(cb) ≡
√

�11(cb)

N̄ ′
1(cb)2

+ �22(cb)

N̄ ′
2(cb)2

− 2
�12(cb)

N̄ ′
1(cb)N̄ ′

2(cb)
(10)

represents the typical magnitude of δc. We now show that
σ⊥(cb)2 represents the projection on the covariance matrix
perpendicular to the ridge line. The tangent to the ridge line
is parallel to the vector t(cb) ≡ (N̄ ′

1(cb), N̄ ′
2(cb)). The vector

n(cb) ≡ (1/N̄ ′
1(cb),−1/N̄ ′

2(cb)) is orthogonal to t(cb). Now
Eq. (10) can be rewritten as σ⊥(cb)2 = ni(cb)�i j (cb)n j (cb),
which is, up to a normalization, the projection of �i j (cb) onto
the direction of n(cb), perpendicular to the ridge line

As we shall see in Sec. III, the reconstruction of σ⊥(cb)
from the distribution of ET and Nch is robust for all cb, while
the elements of the covariance matrix �i j (cb) are well recon-
structed only for cb = 0.

III. VALIDATION

In order to validate the reconstruction outlined in Sec. II,
we test it using fake data generated using the TRENTO three-
dimensional (3D) model [16]. This is a state of the art Monte
Carlo generator of the initial state of proton-nucleus and
nucleus-nucleus collisions, which has been tuned to reproduce
several rapidity-dependent observables. It returns, for each
collision event, an entropy density profile s(x, y, η) in three
dimensions at an early time after the collision, where (x, y)
are cartesian coordinates in the transverse plane and η is the
space-time rapidity. We generate 107 minimum-bias Pb+Pb
collisions at

√
sNN = 5.02 TeV, and we convert the model

predictions into values of ET and Nch, that can be compared
with the ATLAS data in Fig. 1 in the following way. We
assume that Nch is proportional to the initial entropy, obtained
by integrating s(x, y, η) over (x, y) and over the interval |η| <

2.5. We assume that ET is proportional to the initial energy,
obtained by integrating s(x, y, η)4/3 over (x, y) and over the
interval 3.2 < |η| < 4.9.3 Finally, we normalize ET and Nch

3We thereby assume that the equation of state is conformal, which
is approximately true at the high temperatures achieved in the early
stages of the collision.
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FIG. 3. Normalized histogram of (ET , Nch ) for 107 minimum-
bias Pb+Pb collisions at

√
sNN = 5.02 TeV generated using the

TRENTO 3D model [16]. Note that the number of events is smaller
by a factor ≈16 than in the data shown in Fig. 1, and that we use a
slightly finer binning in (ET , Nch ). The grey square at the bottom left
represents the part of the histogram which is excluded from the fit,
corresponding to the most peripheral collisions. The ellipses corre-
spond to the 99% confidence ellipses for fixed values of b = 0, 2, 4, 6
fm, calculated directly (full lines, circles at the center) or from the
Bayesian reconstruction (dashed lines, crosses at the center).

in such a way that their mean values for central collisions
coincide with those reconstructed from ATLAS data (Sec. IV).
The resulting histogram of (ET , Nch ) is displayed in Fig. 3. It
is roughly similar to the experimental distribution in Fig. 1.

In order to check the validity of the assumption of Gaussian
fluctuations, Eq. (1), we also run the model for fixed impact
parameter. We have generated 105 events for each value of
b. The right panels of Fig. 4 display Gaussian fits to the
left panels. The quality of the fits, measured by their χ2,
decreases as the impact parameter increases. The Gaussian
approximation captures the distribution except for the bottom
panel, corresponding to b = 12 fm, where deviations are siz-
able. For this value of b, the Gaussian extends to negative
values of ET and Nch which are unphysical.4 Therefore, the
assumption of Gaussian fluctuations breaks down for periph-
eral collisions, which we exclude from the fit. Excluded events
are represented as a grey square at the bottom left of Fig. 3,
corresponding to events with ET < ET,min = 0.289 TeV and
Nch < Nch,min = 194.39.

We then fit the remaining distribution using the method
outlined in Sec. II. We choose nmax = 3 and mmax = 2 in
Eq. (5). Therefore, there are four parameters for ĒT (cb) and
N̄ch(cb) and three parameters for each element of the covari-
ance matrix, which gives a total of 17 fit parameters. Note
that we need to evaluate the Pb+Pb cross section in order to

4In the single-variable case this could in principle be fixed by
replacing the Gaussian with a gamma distribution [28], but we have
not found a simple way of generalizing this approach to the multi-
variable case.

FIG. 4. Left: Histogram of the distribution of (ET , Nch ) from the
trento 3D model of initial conditions [16] (see Sec. III for details)
in Pb+Pb collisions at

√
sNN = 5.02 TeV for fixed values of the

impact parameter, from top to bottom: b = 0, 4, 8, 12 fm. Right:
two-dimensional Gaussian fits to these distributions. We indicate the
χ 2 of each fit.

convert the impact parameter into a centrality fraction using
Eq. (3). This is done by computing the fraction f (b) of events
whose impact parameter is below some value b, small enough
that the probability of collision is very close to unity. The cross
section is then evaluated as σPbPb = πb2/ f (b) and we obtain
σPbPb = (800 ± 2) fm2.

In order to assess the quality of the reconstruction, we first
evaluate the mean values of ET and Nch and their covariance
matrix using Eq. (2), where one fixes the impact parame-
ter before averaging over events. We compare these results
with those obtained by fitting the distribution as explained in
Sec. II. Since we have excluded peripheral events, we do not
expect the reconstruction to be valid if b is too large. However,
the exclusion of peripheral events is done according to the
values of ET and Nch, not to the value of impact parameter.
We expect that the reconstruction is robust for values of b
such that at least 90% of events are included. The limiting
value of b, above which this condition is no longer satisfied, is
represented as light grey bands in Fig. 5. The dark grey band
is defined by ĒT (b) < ET,min.

Figure 5 shows that the mean values N̄ch(b) and ĒT (b)
are accurately reconstructed [we plot the ratio ĒT (b)/N̄ch(b)
rather than ĒT (b) for reasons that will appear in Sec. IV], as
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FIG. 5. Left to right: N̄ch(b), ĒT (b)/N̄ch(b), and σ⊥(b) [defined by Eq. (10)] versus impact parameter. The vertical grey bands indicate the
limits above which the reconstruction can no longer be trusted because peripheral events have been excluded from the fit (see text for details).
The full lines correspond to the direct calculation, where one averages over events at fixed b. The derivatives N̄ ′

ch(cb) and Ē ′
T (cb) in Eq. (10)

are evaluated by fitting N̄ch(cb) and ĒT (cb) with a smooth curve and taking the derivative of the fit. The dashed lines in the left and middle
panels correspond to the values reconstructed using the projected distributions P(ET ) and P(Nch ), following the same method as in Ref. [19].
The dotted lines correspond to the values reconstructed using the distribution P(ET , Nch ), which is done as explained in Sec. II. The bottom
panels display the ratio between the reconstructed value and the direct calculation.

well as the width σ⊥(b) defined by Eq. (10). We have argued
on general grounds that one cannot expect to reconstruct the
elements of the covariance matrix �i j , except for central colli-
sions. This is confirmed by the results displayed in Fig. 6. All
three elements of the covariance matrix are reconstructed with
an error smaller than 6% for b = 0. However, as b increases,
the reconstructed values quickly deviate from the direct cal-
culation. This can also be seen by looking at the ellipses in
Fig. 3. They are the 99% confidence ellipses (that is, ellipses
that contain 99% of the events) for several values of b. They
are defined by

[Ni − N̄i(b)]�−1
i j (b)[Nj − N̄j (b)] = −2 ln(1 − 0.99). (11)

For b = 0, the reconstructed ellipse almost coincides with the
direct calculation, but the discrepancy quickly increases as b
increases.

IV. APPLICATION TO ATLAS DATA

We finally apply the Bayesian reconstruction to the ATLAS
data shown in Fig. 1. Some of the low multiplicity events
correspond to photonuclear events which do not contribute
to the inelastic cross section. Therefore, we evaluate the total
number of inelastic collisions Neve using the same centrality
calibration as the ATLAS Collaboration, which gives Neve =
158 568 641. We exclude peripheral events using the same
cuts as in the trento 3D calculation. Roughly 40% of the events
are excluded. Figure 7 displays the ratio of the fit to data. The
fit is excellent, except far out in the tail of the distribution.

The deviation between fit and data is at the percent level
between the two lines, which are drawn in such a way that
they encompass 99% of the events.

FIG. 6. Elements of the covariance matrix as a function of impact
parameter in the trento 3D model. Top to bottom: Variance of Nch,
variance of ET , covariance of Nch and ET . The full lines correspond
to the direct calculation, where one averages over events at fixed b.
The dotted lines correspond to the reconstructed values.
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FIG. 7. Ratio of the fit to ATLAS data in Fig. 1. As in Fig. 3,
the grey square at the bottom left represents the part of the histogram
which is excluded from the fit, corresponding to the most periph-
eral collisions. The lines correspond to contours with δc = 2.6σ⊥
in Eq. (9), so that the region between the lines contains ≈99% of
the events. Specifically, the upper and lower lines are the parametric
curves (ĒT (cb) + 2.6σ⊥(cb)Ē ′

T (cb), N̄ch(cb)) and (ĒT (cb), N̄ch(cb) +
2.6σ⊥(cb)N̄ ′

ch(cb)).

The values of the fit parameters are listed in Table I. As ex-
plained in Sec. II, the output of the fit consists of the following
information:

(i) Impact parameter dependence of the mean transverse
energy ĒT and of the mean charged multiplicity N̄ch.

TABLE I. Values of fit parameters, as defined by Eq. (5), for
ATLAS data shown in Fig. 1 and for the trento 3D calculation shown
in Fig. 3. The uncertainties on the first five parameters are estimated
using the relative difference between the direct calculation and its
reconstruction in the trento 3D model. We omitted error bars on the
polynomial coefficients in Eq. (5) because the individual uncertain-
ties are not reflective of the uncertainty of the corresponding physical
observable, e.g., ĒT .

ATLAS TRENTo 3D

ĒT (0) 4.424(33) TeV 4.457(33) TeV
N̄ch(0) 3104(1) 3103(1)
�ET ET (0) 0.0224(11)TeV2 0.0663(34) TeV2

�NchNch (0) 19236(759) 19664(776)
�ET Nch (0) 14.71(28) TeV 34.62(70) TeV
aET ,1 4.00 4.43
aNch,1 3.77 4.29
aET ,2 −1.49 −1.19
aNch,2 −0.91 −1.78
aET ,3 3.97 4.17
aNch,3 3.86 4.15
AET ,ET ,1 4.08 17.33
ANch,Nch,1 7.18 11.71
AET ,Nch,1 7.48 15.94
AET ,ET ,2 1.18 5.55
ANch,Nch,2 −1.89 −6.90
AET ,Nch,2 1.32 −2.14

FIG. 8. Variation of the mean charged multiplicity as a function
of impact parameter. The full line is the value reconstructed using
ATLAS data. The shaded band is our estimate of the error band (see
text). The dotted line is the result of the direct trento 3D calculation,
shown as a full line in Fig. 5.

(ii) Variances of ET and Nch, and covariance of ET and
Nch, for central collisions at b = 0.

(iii) Impact parameter dependence of the width σ⊥ defined
by Eq. (10).

We estimate the error on these quantities as follows. First,
we check the robustness of the fit by varying the cutoffs in ET

and Nch, and we exclude a fraction of events varying from
35% to 45% of the events. The variation of the results is
significantly smaller than the difference between the direct
calculation and the reconstruction in the trento 3D calculation.
Therefore, we estimate the relative error on our result as the
maximum relative error between the direct calculation and
the reconstructed value in the trento 3D calculation, shown
in Figs. 5 and 6.

In the remainder of this section, we discuss our results for
the mean values of Nch and ET . Note that these results could
also have been obtained directly from the one-dimensional
projections of the two-dimensional histogram in Fig. 1, i.e.,
from the histograms of Nch and ET alone [19]. The most
important results, which involve the covariance matrix of Nch

and ET , will be discussed in Sec. V.
Figure 8 displays the mean charged multiplicity as a

function of impact parameter. For the conversion between
centrality fraction and impact parameter, we have used the
value of the inelastic Pb+Pb cross section σPbPb = 767 fm2

extracted from a Glauber calculation [29].5 Note that Nch

counts reconstructed tracks, and that the efficiency of the
reconstruction quickly decreases for pt < 0.8 GeV/c [11].
Therefore, the value of Nch seen by ATLAS is only ≈29% of
that seen by ALICE [30] in the corresponding pseudorapidity
interval. For the sake of comparison, we also show the results
from the trento 3D calculation (corresponding to the full lines
in Fig. 5). The variation of N̄ch as a function of b is well
reproduced by the model, although not perfectly.

Figure 9 displays the ratio of the mean transverse energy
to the mean charged multiplicity, as a function of impact

5Note that this value of σPbPb differs from that returned by the
trento 3D calculation. We compare model and experiment at the same
impact parameter, not at the same centrality fraction.
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FIG. 9. Same as Fig. 8 for the ratio of the mean transverse energy
to the mean charged multiplicity.

parameter. Let us first comment on the order of magnitude
of the result for b = 0. The ratio ĒT /N̄ch can be decom-
posed as (ĒT /N̄FCAL)(N̄FCAL/N̄ch ), where NFCAL is the hadron
multiplicity (neutral and charged) falling into the calorimeter
acceptance. We evaluate NFCAL by integrating the pseudora-
pidity spectra of charged particles [30] over the acceptance
covered by the calorimeter, multiplying by a factor 3

2 to take
into account neutral particles. We then evaluate its average
value at b = 0 by extrapolating linearly the values in the
centrality intervals 0–5% and 5–10%, that is, N̄FCAL(0) �
3
2 NFCAL(0 − 5%) − 1

2 NFCAL(5 − 10%). We obtain N̄FCAL(b =
0) � 7930. The contribution of a hadron to the transverse
energy is roughly the transverse mass mt =

√
p2

t + m2. Using
the value of ĒT (0) in Table I, we obtain ĒT (0)/N̄FCAL(0) =
0.558 GeV, which is the expected order of magnitude for the
average transverse mass.

We next comment on the dependence of the ratio ĒT /N̄ch

on impact parameter. ATLAS data show a nonmonotonic be-
havior, which is not reproduced by the trento 3D model. This
variation can be understood by decomposing again ET /Nch as
(ET /NFCAL)(NFCAL/Nch ). The ratio ET /NFCAL is the average
transverse mass, which is determined by the mean transverse
momentum 〈pt 〉, which itself decreases mildly as a function
of impact parameter [31]. This effect is responsible for the
decrease seen in the model, and in data at small b. The ratio
NFCAL/Nch is the ratio of the multiplicity in the forward rapid-
ity region, covered by the calorimeter, and the central rapidity
region, where Nch is measured. Now, the rapidity distribution
becomes slightly broader as the impact parameter increases
[30]. The intuitive picture for this phenomenon is that the
stopping between the nuclei is not as strong as in central
collisions. This implies that the ratio NFCAL/Nch increases as a
function of impact parameter. This effect is not reproduced by
the trento 3D model. It overrides the decrease of 〈pt 〉 for large
values of b, leading to the increase seen in ATLAS data.

V. FLUCTUATIONS AT LARGE AND CENTRAL
RAPIDITIES

In this section, we present results involving the covariance
matrix of ET and Nch. These are our most important results, as
they shed light on the fluctuations in the central rapidity region
probed by Nch, in the large rapidity region probed by ET , and
on their mutual correlations. We first isolate dynamical fluc-

tuations of ET and Nch by subtracting out Poisson fluctuations
in Sec. V A. We then present our results for central collisions
in Sec. V B, and finally the results on the impact parameter
dependence in Sec. V C.

A. Subtraction of Poisson fluctuations

We generally consider quantities of the form N = ∑M
i=1 xi,

where M is the particle multiplicity. Our goal is to identify
nontrivial fluctuations and correlations of these quantities.
The baseline is the case where the probabilities of finding a
particle in different regions of phase space are independent
variables [32]. In this case, xi are independent variables and
M follows a Poisson distribution. A simple calculation shows
that the variance of N is the expectation value of

∑M
i=1 x2

i . We
refer to this contribution loosely as “the variance of Poisson
fluctuations,” and we subtract it from the observed variance in
order to isolate the nontrivial part.

For the charged multiplicity, one simply counts particles,
so that xi = 1, and the subtraction is straightforward:

�NchNch (b) → �NchNch (b) − N̄ch(b). (12)

There is, however, an uncertainty on this subtraction due
to hadronic decays. If a hadron decays into two charged
particles, which both fall into the detector acceptance, then
the contribution of that hadron is xi = 2, not xi = 1. The
magnitude of this effect is modest, and cannot be evaluated
accurately, because it depends on the hadronization mecha-
nism. In the case of a fluid-dynamical model, it depends on
the freeze-out temperature [33]. We include this uncertainty in
our error bar, by multiplying N̄ch(b) in Eq. (12) by a coefficient
which can vary between 1 and 1.2.

The transverse energy can be written as ET = ∑
i xi, where

the sum has NFCAL terms, corresponding to all hadrons, neutral
and charged, falling in the calorimeter, and xi � mt , where
mt =

√
p2

t + m2 is the transverse mass. The average value of
ET at fixed b is ĒT (b) = 〈mt 〉N̄FCAL(b), and the variance of
Poisson fluctuations is 〈m2

t 〉N̄FCAL(b), where angular brackets
denote an average value over hadrons in the calorimeter. This
quantity can be decomposed as

〈
m2

t

〉
N̄FCAL(b) =

〈
m2

t

〉
〈mt 〉2

N̄ch(b)

N̄FCAL(b)

ĒT (b)2

N̄ch(b)
. (13)

We evaluate the first factor on the right-hand side using
ALICE data on identified particle spectra [34], which give
〈m2

t 〉/〈mt 〉2 � 1.52 for central collisions at
√

sNN = 2.76 TeV.
We neglect the dependence of this ratio on impact parameter,
rapidity and

√
sNN . The second factor can be estimated for

central collisions using the value of N̄ch(0) in Table I, and the
estimate N̄FCAL(0) � 7930 obtained in Sec. IV. We also ne-
glect its dependence on rapidity and impact parameter. Putting
these factors together, the subtraction of Poisson fluctuations
is done according to the formula

�ET ET (b) → �ET ET (b) − α
ĒT (b)2

N̄ch(b)
, (14)

where α � 0.59. We assign an uncertainty of ±20% to this
factor α.
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TABLE II. Relative covariance matrix σi j of ET and Nch, defined
by Eq. (15), for central Pb+Pb collisions (b = 0). For each element,
the first line is the total covariance returned by the fit to data. The
second line (bold) is the dynamical covariance obtained after sub-
tracting Poisson fluctuations (see Sec. V A). The third line (italic) is
the value obtained in the trento 3D calculation by simulating events
at b = 0, which differs by a few percent from the reconstructed value
in Table I. The trento 3D calculation returns a continuous density
profile, and does not include hadronization. Therefore, the fluctua-
tions calculated in this model are dynamical, and the subtraction of
Poisson fluctuations explained in Sec. V A does not apply.

ET Nch

1.14(6) × 10−3 1.07(2) × 10−3

ET 0.95(7) × 10−3 1.07(2) × 10−3

(3.57 × 10−3) (2.52 × 10−3)
1.07(2) × 10−3 2.00(8) × 10−3

Nch 1.07(2) × 10−3 1.68(9) × 10−3

(2.52 × 10−3) (1.96 × 10−3)

Finally, since ET and Nch are measured in separate rapidity
regions, no hadron contributes simultaneously to ET and Nch,
and Poisson fluctuations do not contribute to the covariance
�ET Nch (b).

Using the values in Table I, for central collisions, the sub-
tracted quantities in Eqs. (12) and (14) are 16% and 17% of
the total. This implies that at least 83% of the variances of ET

and Nch can be attributed to dynamical fluctuations.

B. Fluctuations of Nch and ET in central collisions

We now discuss the fluctuations of ET and Nch for central
collisions, and their mutual correlation. We use as a mea-
sure of these fluctuations the relative covariance matrix [35],
defined as

σi j ≡ 〈NiNj〉
〈Ni〉〈Nj〉 − 1 = �i j

N̄iN̄ j
. (15)

Its diagonal elements are the relative variances of Ni. Values
extracted from ATLAS data (Table II) show that the relative
fluctuations of ET are smaller than those of Nch, both before
and after isolating dynamical fluctuations. This is the reason
why ET is a better estimator of the centrality than Nch [11,36].
It is a nontrivial observation, which is not reproduced by the
trento 3D calculation. The trento 3D calculation reproduces
the variance of Nch to a good approximation, which is not
surprising since it was fitted to the distribution of the charged
multiplicity measured near midrapidity. On the other hand, it
overestimates the variance of ET by at least a factor 3. It also
overestimates the Pearson correlation coefficient between ET

and Nch, defined as σ12/
√

σ11σ22, whose value is ≈0.95 in
the trento 3D calculation, and ≈0.85 in data. In other words,
the trento 3D model largely underestimates the longitudinal
decorrelation [37,38] between the rapidity windows where ET

and Nch are measured.
There is no trivial relation between the relative fluctua-

tions of ET and the relative fluctuations of the multiplicity in
the same rapidity window. In a hydrodynamic picture of the

FIG. 10. Full line: 99% confidence ellipse of zero impact param-
eter collisions, already shown in Fig. 1. The ellipse is defined by
Eq. (11). The dashed line represents the ellipse, after subtraction of
the contribution of Poisson fluctuations. The dotted line is the value
from the trento 3D calculation.

collision [39], however, one expects them to be of the same
order of magnitude, because the multiplicity is proportional to
the entropy, and the energy and the entropy are related through
the equation of state. In Sec. VI, we will suggest a specific
analysis in order to check this assumption. If it is correct, our
results imply that multiplicity fluctuations are smaller at large
rapidity than around central rapidity.

The values of the relative variance of ET in Table II can be
compared with those previously extracted from ATLAS data
at 2.76 TeV [19]. After subtracting Poisson fluctuations with
help of multiplicity densities measured by ALICE [40], we
obtain σ11 = 0.76 × 10−3. This is smaller than the value at
5.02 TeV in Table II, which implies that multiplicity fluc-
tuations increase as a function of the rapidity gap between
incoming nuclei and the detector, ybeam − y, which increases
by ≈0.6 between 2.76 and 5.02 TeV. It is tempting to postulate
that multiplicity fluctuations depend on ybeam − y, much as
average multiplicities themselves [41,42].

The second important observation is that ET and Nch are
strongly correlated, even at fixed impact parameter. This is
illustrated by the elongated covariance ellipse represented in
Fig. 10. The correlation is significantly stronger after Poisson
fluctuations have been subtracted out.

We now interpret these results within a simple model. We
assume that a nucleus-nucleus collision at impact parameter
b produces Ns sources, and that ET and Nch are obtained by
summing the contributions of all sources in the event [36–38].
We assume that the sources are independent.6 We denote the
contribution of a single source to N1 = ET and N2 = Nch by
n1 and n2, respectively. Under these assumptions, one easily
obtains

σi j =
〈
N2

s

〉 − 〈Ns〉2

〈Ns〉2
+ 1

〈Ns〉
〈nin j〉 − 〈ni〉〈n j〉

〈ni〉〈n j〉 (16)

6Note that a similar picture underlies our assumption of Gaussian
fluctuations, as explained in Sec. II.
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The first term in the right-hand side is the relative variance of
the number of sources, which gives the same contribution to
all elements of the covariance matrix. It is a trivial correlation
arising from a global change in the system, much as correla-
tion stemming from the variation of impact parameter [43].
It does not shed light on rapidity correlations in the emission
process. The last term in the right-hand side, which involves
the covariance matrix of a single source, is physically more
interesting.

It is not possible to uniquely determine the quantities in the
right-hand side of Eq. (16), because there are more unknowns
than equations. But one can obtain nontrivial information. For
instance, we have noted that the relative variance of ET is
smaller than that of Nch. Since they get the same contribution
from the variance of the number of sources, it implies that
the difference between the relative variances of ET and Nch

is larger at the level of a single source. The suppression of
fluctuations at large rapidity is by no means a small effect.
One can also obtain nontrivial information on the correlation
between n1 and n2, which represent the contributions of a
single source to ET and Nch. For instance, one can readily
exclude that they are uncorrelated, because this would imply
σ11 > σ12, at variance with the values in Table II, after Poisson
fluctuations have been subtracted out. One can obtain a lower
bound rmin on the Pearson correlation coefficient r between n1

and n2, defined by

r ≡ 〈n1n2〉 − 〈n1〉〈n2〉√〈
n2

1

〉 − 〈n1〉2
√〈

n2
2

〉 − 〈n2〉2
. (17)

Elementary algebra shows that

r2 = r2
min +

(
r[cv (n1)2 + cv (n2)2] − 2cv (n1)cv (n2)

cv (n1)2 − cv (n2)2

)2

,

(18)

where cv (ni ) ≡
√

〈n2
i 〉/〈ni〉2 − 1 is the coefficient of variation

(or relative standard deviation) of ni, and

rmin ≡ 2

√
(σ12 − σ11)(σ22 − σ12)

σ22 − σ11
. (19)

Equation (18) guarantees that r � rmin, With the values in
Table II, and taking into account the error bars (from the re-
construction and from the subtraction of Poisson fluctuations),
we obtain rmin = 0.72 ± 0.15. Two effects may contribute to
this strong correlation: Some sources may be stronger than
others, for instance those situated in the center of the inter-
action region. Stronger sources yield larger values of both n1

and n2, which induces a mutual correlation. The second effect
is the dynamical effect that one would like to isolate, that
particle production from a single source is strongly correlated
across rapidities. More detailed modeling will be necessary to
disentangle the relative contributions of these two effects.

C. Impact parameter dependence of fluctuations

As explained in Sec. II, one cannot reconstruct the impact
parameter dependence of the full covariance matrix. Only the
specific linear combination σ⊥, defined by Eq. (10), can be
reconstructed for all impact parameters. Its impact parameter

FIG. 11. Same as Fig. 8 for the width of the distribution, de-
fined by Eq. (10). Full line: before subtracting Poisson fluctuations.
Dashed line: after subtracting Poisson fluctuations according to
Eqs. (14) and (12). The shaded area around the curve is our estimate
of the error on the reconstruction. Dotted line: value calculated in the
trento 3D model.

dependence is represented in Fig. 11, before and after sub-
tracting Poisson fluctuations (Sec. V A). The trento 3D model
underpredicts σ⊥ for all values of impact parameter, which
is the reason why the distribution in Fig. 3 is narrower than
that in Fig. 1. This shows that the width of the distribution, as
measured by σ⊥, contains nontrivial dynamical information,
which can be used to discriminate between models.

VI. CONCLUSIONS AND PERSPECTIVES

We have introduced a simple Bayesian method which
allows for a robust reconstruction of multiplicity fluctua-
tions and rapidity correlations in nucleus-nucleus collisions
at fixed impact parameter b. Starting from the distribution
p(N1, . . . , Np) of multiplicities (or transverse energies, or
number of hits) N1, . . . , Np measured in different parts of
the detector, one can reconstruct the full covariance matrix
of (N1, . . . , Np) at b = 0, as well as the impact parameter
dependence of a (p − 1) × (p − 1) projection of the matrix.
We have applied the method to ATLAS data on the joint distri-
bution of transverse energy and charged multiplicity. We have
shown that dynamical fluctuations are smaller at large rapidity
than around central rapidity, and that particle production is
strongly correlated across rapidity, even at fixed impact pa-
rameter. We have also shown that the width of the distribution
and its impact parameter dependence are not reproduced by
our model calculation, so that this observable can be used to
rule out three-dimensional models of initial fluctuations.

Rapidity correlations have so far been studied using mul-
tiplicities of charged particle tracks [8,9]. However, particle
tracks are typically reconstructed only around central rapid-
ity, so that the rapidity coverage of such studies is limited.
We have shown that track reconstruction is not needed. The
transverse energy in a calorimeter, the multiplicity of pixel
clusters [44] or the number of hits in a scintillator [26]
also give a quantitative information on fluctuations, provided
that the detector is large enough that dynamical fluctuations
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dominate over Poisson fluctuations. A few tests should be
made, however, in order to interpret correctly the information
from calorimeters. Specifically, one should first figure out how
energy fluctuations relate to multiplicity fluctuations in the
same rapidity window. This can be done easily using one of
the central detectors of ALICE, CMS, or ATLAS. These de-
tectors measure the multiplicity of charged particle tracks and
their momenta. One can use the sum of transverse momenta
of charged particles, PT ≡ ∑

Nch
pt , as a proxy for their trans-

verse energy. By comparing the tails of the distributions of
Nch and PT , one can readily check how their relative variances
compare for central collisions.

We conclude by listing analyses that would shed addi-
tional light on long-range correlation. The transverse energy
is usually defined as ET = EF + EB, where EF and EB are
transverse energies in forward and backward calorimeters
[9,44]. If measured, the distribution p(EF , EB) would provide
direct information on forward-backward rapidity correlations.
This analysis would be even simpler than that carried out in
this paper because backward and forward calorimeters are
symmetric around midrapidity, and this symmetry reduces
the number of fit parameters in the Bayesian analysis. Simi-
larly, the ALICE Collaboration could measure the distribution
p(V0A,V0C ), where V0A and V0C are the multiplicities in back-
ward and forward scintillators [26]. These analyses can be
readily carried out by experimental collaborations using ex-
isting data, by following the exact same steps as our analysis
of ATLAS public data.

More detailed information on the rapidity structure could
be obtained by extending the analysis to three variables. For
instance, in the case of the ATLAS data studied in this paper
[11], one could split the calorimeter into its forward and
backward components and measure p(EF , EB, Nch ). Similar
analyses could be done with the CMS and ALICE detec-
tors. They would yield detailed information on the long-range
rapidity structure of correlations. Finally, the same method
could be applied to heavy-ion collisions at lower energies
[45–47].
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APPENDIX: RECONSTRUCTION OF THE COVARIANCE
MATRIX IN NONCENTRAL COLLISIONS

We have shown in Secs. III and IV that, for b = 0, the
whole (p × p) covariance matrix �i j (b = 0) can be accurately
reconstructed from data. In this Appendix, we specify which
information about �i j (b) can be reconstructed for b > 0. In-
serting Eq. (8) into Eq. (1) and neglecting the preexponential

factor, one obtains

P(N1, . . . , Np|b) ∝ exp

(
−1

2

∑
i j

(ci−cb)N̄ ′
i �

−1
i j N̄ ′

j (c j−cb)

)
,

(A1)

where we omit the dependence of N̄ ′
i and �−1

i j on b for sim-
plicity, and ci is a shorthand for ci(Ni ). Thus the integral in
Eq. (4) is a Gaussian integral over cb. For a point in the bulk
of the distribution (see Fig. 2), the maximum of the integrand
is at cb > 0. The exponential decays very fast away from the
maximum, so that the integral over cb can be evaluated from
−∞ to +∞.7 Neglecting again the preexponential factor, one
obtains

P(N1, . . . , Np) ∝ exp

(
−1

2

∑
i j

ci	i jc j

)
, (A2)

where

	i j ≡ N̄ ′
i �

−1
i j N̄ ′

j −
(∑

α N̄ ′
i �

−1
iα N̄ ′

α

)(∑
β N̄ ′

j�
−1
jβ N̄ ′

β

)
∑
αβ

N̄ ′
α�−1

αβ N̄ ′
β

. (A3)

� is the quantity which can be reconstructed for all impact
parameters. It is a (p × p) symmetric matrix which verifies
the property

∑
i 	i j = 0 for all j, that is, all lines and columns

sum up to zero. Due to this property, one can rewrite Eq. (A2)
as

P(N1, . . . , Np) ∝ exp

(
−1

2

∑
i>1, j>1

(ci − c1)	i j (c j − c1)

)
.

(A4)
This form shows that the distribution of (N1, . . . , Np) is a
function of p − 1 variables ci − c1. Physically, � represents
the projection of the covariance matrix onto the (p − 1)-
dimensional subspace orthogonal to the ridge line. In the case
p = 2, Eq. (A3) gives

� = 1

σ 2
⊥

(
1 −1

−1 1

)
, (A5)

where σ⊥ is defined by Eq. (10). Inserting Eq. (A5) into
Eq. (A4), one recovers Eq. (9).

7By contrast, for a point in the tip of the distribution, corresponding
to a very central collision, the maximum of the integrand is at cb = 0,
and only values of cb very close to 0 contribute significantly.
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