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Probing nuclear quadrupole deformation from correlation of elliptic flow and transverse
momentum in heavy ion collisions
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In heavy ion collisions, elliptic flow v2 and radial flow, characterized by eventwise average transverse
momentum [pT], are related to the shape and size of the overlap region, which are sensitive to the shape
of colliding atomic nuclei. The Pearson correlation coefficient between v2 and [pT], ρ2, was found to be
particularly sensitive to the quadrupole deformation parameter β that is traditionally measured in low energy
experiments. Built on earlier insight that the prolate deformation β > 0 reduces the ρ2 in ultracentral collisions
(UCC), we show that the prolate deformation β < 0 enhances the value of ρ2. As β > 0 and β < 0 are
the two extremes of triaxiality, the strength and sign of v2

2-[pT] correlation can be used to provide valuable
information on the triaxiality of the nucleus. Our study provide further arguments for using the hydrodynamic
flow as a precision tool to directly image the deformation of the atomic nuclei at extremely short timescale
(<10−24 s).

DOI: 10.1103/PhysRevC.105.014906

I. INTRODUCTION

Heavy-ion collisions at the BNL Relativistic Heavy Ion
Collider (RHIC) and the CERN Large Hadon Collider (LHC)
produce a quark-gluon plasma (QGP) whose space-time evo-
lution is well described by relativistic viscous hydrodynamics
[1–4]. Driven by large pressure gradients, the QGP under-
goes collective, Hubble-like expansion in the transverse plane,
converting spatial nonuniformities in the initial state into the
collective radial and azimuthally anisotropic flow in the final
state. We quantify such collectivity via a Fourier expansion
of particle distribution in azimuth φ and transverse momen-
tum pT: d2N

pTd pTdφ
= N (pT)[1 + 2

∑∞
i=1 vn(pT) cos n(φ − �n)],

where vn and �n represent the amplitude and phase of the
nth-order anisotropic flow, and the slope of the particle spec-
trum N (pT) characterizes the magnitude of the radial flow.
The strength of radial and anisotropic flow depends on the
initial state: a compact source generates a stronger radial flow
reflected by a flatter spectrum, and a more eccentric shape of
the source leads to larger anisotropic flow. They are also sen-
sitive to the transport properties of the QGP such as shear and
bulk viscosity. Recent state-of-the-art comparisons between
hydrodynamics and precision vn and pT spectra data provided
quantitative constraint on both the properties of the medium
as well as the density fluctuations in the initial state [5–7].

It is a well established fact that the vn are driven by
hydrodynamic response to the initial eccentricity εn of the
QGP medium, which can be estimated from the position (r, φ)
of participating nucleons, εn = | ∫ rne−inφdr dφ/

∫
rndr| [8].

*Corresponding author: jiangyong.jia@stonybrook.edu

Model calculations show that the vn are approximately propor-
tional to εn for n = 2 and 3 [9]. The radial flow, characterized
by the average transverse momentum in each event [pT],
reflects the hydrodynamic response to the fluctuation in the
overall size of the overlap region R. In particular, events with
similar total energy, but smaller transverse size in the initial
state, are expected to have stronger radial expansion and larger
[pT] [10,11]. Therefore, the event-by-event fluctuation in the
shape and size of the QGP can be inferred from the fluctua-
tions of the vn and [pT] in the final state.

In collisions of spherical nuclei, the shape and size of the
QGP are controlled by the impact parameter. For deformed
nuclei, however, they depend also on the quadrupole deforma-
tion parameters β and γ as part of the Woods-Saxon density
function:

ρ(r, θ, φ) = ρ0

1 + e[r−R(θ,φ)/a]
,

R(θ, φ) = R0(1 + β[cos γY2,0 + sin γY2,2]), (1)

where ρ0 is the density at the center of the nucleus, R0 is the
nuclear radius, and a is the skin depth. The quadrupole-shaped
nuclear surface R(θ, φ) is expanded in terms of spherical
harmonics in real form. The three components Y2,−1,Y2,1 and
Y2,−2 are customarily used to defined the body-fixed x-y-z
frame, leaving Y2,0 and Y2,2 as the only relevant degrees of
freedom. The mixing angle 0 � γ � π/3 controls the tri-
axiality or the three radii Ra, Rb, Rc of the nucleus in the
body-fixed frame, with γ = 0, γ = π/3, and γ = π/6 corre-
sponding to prolate (Ra = Rb < Rc), oblate (Ra < Rb = Rc),
or maximum triaxiality (Ra < Rb < Rc forming an arithmetic
sequence). Note that the oblate shape can be specified either as
β, γ = π/3 or equivalently as −β and γ = 0. In this present
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study we only consider prolate and oblate configuration for
which we can keep γ = 0 and let β change sign. Nevertheless,
the comparison of results between prolate and oblate defor-
mation still provides critical information on the influence of
triaxiality.

Most stable nuclei in their ground states are quadrupole
deformed and have a nonzero β. The values of β are obtained
from measurement of rotational spectra of the nuclear ex-
cited state or the electric quadrupole moments from hyperfine
splitting of the atomic spectral line [12]. Due to the random
orientation of the colliding nuclei, quadrupole deformation
enhances the event-by-event fluctuations of the ε2 and v2.
This point was investigated extensively and could explain the
ordering of the v2 data in ultracentral collisions (UCC) of
different collision systems [13–15]. Model studies show that
the mean square fluctuations of ε2 and vn depend quadrat-
ically on β: ε2{2}2 ≡ 〈ε2

2〉 = a′ + b′β2 and v2{2}2 ≡ 〈v2
2〉 =

a + bβ2 [16,17]. Interestingly, the response coefficients for
the β-independent and β-dependent components of v2 and ε2

are not the same, i.e., a/a′ �= b/b′ [16]. This opens up the
possibility to test hydrodynamics using β as a new control
variable, i.e., by comparing nuclei with similar mass number
but different β. Recently, quadrupole deformation was also
predicted to have strong influence on correlated fluctuation
between v2 and [pT] [18,19], quantified by a three-particle
correlator [20]:

ρ
(
v2

n, [pT]
) =

〈
v2

nδpT
〉

√〈(
δv2

n

)2
〉
〈δpTδpT〉

, (2)

where δpT = pT − [pT] and the “〈 〉” denotes averaging over
all pairs or triplets for events with similar particle multiplicity.
This observable can be approximated by an analogous quan-
tity calculated from the initial state [21]:

ρ
(
ε2

n, S/A
) =

〈
δε2

nδ( S
A )

〉
√〈(

δε2
n

)2
〉〈(

δ
(

S
A

))2
〉 , (3)

where the S/A is the initial entropy density in the transverse
plane. The ρ(v2

2, [pT]) is positive for spherical systems, but for
nuclei with large prolate deformation the ρ(v2

2, [pT]) values in
UCC are predicted to be negative. This is because selection of
central events in U+U collisions enhances body-body events,
which have large ε2 and R, therefore large v2 and smaller [pT]
[18]. Preliminary results from the STAR Collaboration sup-
port this interpretation [22]. Therefore using the well-tuned
hydrodynamics model as a precision tool together with the ex-
perimental measurements of v2 and v2-[pT], we could provide
a quantitative constraint on the shape of the nuclei at a time
scale of 10−24 s, which is much shorter than that involved in
low energy nuclear structure measurements.

In this paper, we study the influence of quadrupole defor-
mation to correlations between v2 and [pT]. In particular, we
clarify the relation between the initial-state estimator Eq. (3)
and final-state experimental observable Eq. (2). We perform
this study using the “a multi-phase transport model” (AMPT),

which is a realistic yet computationally efficient way to imple-
ment hydrodynamic response [23]. We carry out simulation
of Au+Au and U+U collisions at top RHIC energy with
different β values, ranging from prolate to oblate configura-
tions. We found that large oblate deformation gives rise to an
enhanced positive ρ(v2

2, [pT]) value in UCC region. This is
because the body-body collisions of oblate nuclei have large
ε2 and but smaller R, therefore large v2 and [pT], exactly oppo-
site to the influence of prolate deformation. We also quantified
the effects of volume fluctuations based on realistic centrality
definition matching to experimental acceptance, and they are
found to be minimized in the UCC collisions. Future detailed
model-data comparison will firm up the relation between ini-
tial and final state and provide some useful constraints on the
shape of deformed nuclei. Recently, a study of ρ(v2

2, [pT]) in
Au+Au based on the AMPT model appeared, whose focus,
however, was not on the influence of deformation [24].

II. ANALYSIS

We calculate the Pearson correlation coefficient
ρ(v2

n, [pT]) within the usual multiparticle cumulant
framework employed by the experimental data analysis
as detailed in [25], which we just briefly summarize here.
The numerator of ρ(v2

n, [pT]) is obtained by averaging over
unique triplets in each event, and then over all events in an
event class [20,26]:

〈
v2

nδpT
〉 =

〈∑
i, j,k,i �= j �=k ein(φi−φ j )(pT,k − 〈[pT]〉)∑

i, j,k,i �= j �=k

〉
, (4)

where the indices i, j, and k loop over distinct particles to
account for all unique triplets, and the 〈 〉 denotes average over
events. In this analysis, we use all particles within |η| < 2
and 0.2 < pT < 2 GeV for best statistical precision. How-
ever, we also checked the influence of short-range “nonflow”
correlations in the context of the so-called two-subevent and
three-subevent methods [27] by introducing pseudorapidity
gaps between the particles in each triplet. We conclude that
nonflow effects are negligible (see Appendix A).

The [pT] variance in the denominator of ρn is obtained
using the usual two-particle pT correlations [28],

var([pT]) ≡ 〈δpTδpT〉

=
〈∑

i, j,i �= j (pT,i − 〈[pT]〉)(pT, j − 〈[pT]〉)∑
i, j,i �= j

〉
. (5)

The flow variance is calculated in terms of two-particle
cumulants cn{2} and four-particle cumulants cn{4} follow-
ing Ref. [29]: var(v2

n ) ≡ 〈(δv2
n )2〉 = 〈v4

n〉 − 〈v2
n〉2 = cn{4} +

cn{2}2.
We calculate the initial-state estimator in Eq. (3) from

the transverse distribution of participating nucleons. Here we
substitute the total entropy S with Npart with the assumption
that S ∝ Npart. Following the recommendation of Ref. [21],
we define the overlap area A as

A = 2π

√
σ 2

x σ 2
y , (6)
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FIG. 1. The distributions and ratios of hadron multiplicity Nhadron in |η| < 1 scaled by 1/3 (left) and Npart (middle) in U+U collisions with
different quadrupole deformation parameter β values. The vertical lines indicate locations of 1% and 5% for the β = 0 case. The right panel
shows the average Nhadron or Npart in the top 0–5% of events selected according to Nhadron or Npart as a function β2; they are normalized to the
corresponding values in β = 0. Also in the right panel, the data point for β = −0.28 is shifted slightly to the right to distinguish from the data
point for β = 0.28.

where the σx and σy are the RMS widths of participant
distribution along the short and long principal axes of the
event-by-event ellipse. This definition was shown to give very
good correlation with the event-by-event [pT].

We perform the calculation of all these observables within
the AMPT transport model [23]. The model starts with Monte
Carlo Glauber initial conditions. The system evolution is mod-
eled with strings that first melt into partons, followed by
elastic partonic scatterings, parton coalescence, and hadronic
scatterings. The collectivity is generated mainly through elas-
tic scatterings of partons, which leads to an emission of
partons preferable along the gradient of the initial-state energy
density distribution, in a manner that is similar to hydro-
dynamic flow. Following Refs [30–32], we use the AMPT
model v2.26t5 with string-melting mode and partonic cross
section of 3.0 mb, which we check to reasonably reproduce
Au+Au v2 data at RHIC. The Woods-Saxon parameters in
the AMPT are chosen to be R0 = 6.81 fm and a = 0.535
fm for U+U similar to [33] and R0 = 6.37 fm and a = 0.54
fm for Au+Au [34]. For the study on the β dependence, we
simulate collisions at

√
sNN = 200 GeV for U+U with β =

0,−0.15, 0.22,±0.28, 0.34, and 0.4 and for Au+Au with
β = 0 and −0.13, which will allow us to obtain the para-
metric dependence of various flow observables on β. This list
includes the default β values of 0.28 for U+U and −0.13 for
Au+Au from the most recent table of nuclear deformations
[12].

Our main analysis is performed using all hadrons with
0.2 < pT < 2 GeV and |η| < 2, and the event centrality is
defined using either Npart or inclusive hadron multiplicity in
|η| < 1, Nhadron. The value of Nhadron, which includes both
charged and neutral particles, is about three times the charged
hadron multiplicity density, i.e., Nhadron ≈ 3dNch/dη. It is
known that the multiparticle correlations are sensitive to
centrality/volume fluctuations, i.e., the centrality measured
based on the final-state particle multiplicity in an η range is
subject to smearing due to fluctuations in the particle produc-
tion process [35,36]. Since the vn and [pT] values vary with
centrality, the smearing in centrality can lead to additional
fluctuations of shape and size of the overlap region. Indeed,
significant differences in ρ(v2

n, [pT]) are observed in the AT-

LAS measurement, when the results are compared between
centrality defined in mid-rapidity and centrality defined in the
forward rapidity [29]. To quantify the volume fluctuation ef-
fects, we perform a separate analysis with alternative selection
on particle of interest and particles used to define centrality.
Details of this study can be found in Appendix A.

III. RESULTS

In collisions of spherical nuclei, the multiplicity distri-
butions p(Nhadron ) or p(Npart ) are controlled by the impact
parameter. In the presence of deformation, these distributions
are expected to be smeared and broadened. The inset small
panels in Fig. 1 show the multiplicity distributions in U+U
collisions with different β values. These distributions are di-
vided by those for β = 0 and the results are shown in the
corresponding main panels. We see a clear reduction of the
ratio for large Nhadron or large Npart values, and an increase
in other regions, confirming the broadening of multiplicity
distribution for nonzero β. We also observe that the ratios
are very similar between β = 0.28 and −0.28. The influence
of quadrupole deformation is clearly visible only in the most
central 0–5% region. To quantify the influence of quadrupole
deformation on the multiplicity distributions, we calculate
〈Nhadron〉 and 〈Npart〉 in the top 0–5%, normalized by the values
for β = 0, and plot the results in the right panel of Fig. 1.
We observe a linear decrease of the 〈Nhadron〉 or 〈Npart〉 as a
function of β2, implying that the multiplicity smearing is the
same for prolate and oblate deformation with the same |β|.
The decrease in the average multiplicity is only around 1% for
the realistic deformation value of β = 0.28, so it is a modest
effect but should be visible for Ru+Ru and Zr+Zr isobar
collision systems at RHIC [37]. Parametrizing this depen-
dence by 〈Npart〉 = a0 + b0β

2, one can see that the coefficients
a0 and b0 can be determined from two isobar systems with
known β2, which can then be used to gauge the β value of
other systems with the same mass number. We also notice that
the extent of decrease also depends on the definition of the
multiplicity variable. In general, the effect is smallest when
Npart is used, and is largest when Nhadron is defined around
mid-rapidity. The latter is consistent with the finding by the
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FIG. 2. The Npart dependence of v2
2 variance (top left), [pT] variance (second from top left), flow-[pT] covariance 〈v2

2δpT〉 (third from top
left), and Pearson coefficients ρ(v2

2, [pT]) (top right) in Au+Au and U+U collisions with different deformation parameters β. The bottom
panels show the corresponding initial-state estimators in the Glauber model. The event class used for averaging is based on Npart .

ATLAS Collaboration that centrality resolution is worse at
mid-rapidity than at forward rapidity [38].

We would like to point out that, in the presence of large
deformation, the total volume of the nucleus increases slightly.
For the largest value considered, β = 0.4, the ratio to the
original volume is 1 + 3

4π
β2 +

√
5

28π3/2 cos(3γ )β3 = 1.029 +
0.0006 cos(3γ ). In order to keep the overall volume fixed,
it would require about 1% decrease of the R0. We have per-
formed a separate Glauber model investigation on the impact
of this change of R0, which is found to have negligible influ-
ence on the slopes shown in the right panel of Fig. 1.

Having established the fact that the impact of β on mul-
tiplicity and centrality distributions is small, we are ready
to discuss the vn-[pT] correlations. In order to have a clear
connection between initial-state deformation and final-state
correlations, we always compare the results calculated using
final-state particles via Eq. (2) with the estimators based on
the initial-state Glauber geometry via Eq. (3).

The top panels of Fig. 2 show the components of the

Pearson correlation coefficient ρ(v2
2, [pT]): the

√
var(v2

2 ),√
var([pT]), 〈v2

2δpT〉, and ρ(v2
2, [pT]) calculated using final-

state hadrons in Au+Au and U+U collisions with different
β. The corresponding quantities from the initial state are

shown in the bottom panels. The
√

var(v2
2 ) show very strong

dependence on β, as argued in Ref. [16], reflecting mainly

a linear response to the eccentricity fluctuations
√

var(ε2
2 )

in the initial state. The var([pT]) only shows a very modest
dependence on quadrupole deformation: it increases by about
10% in U+U collisions from β = 0 to β = 0.4. In contrast,
the initial-state estimator var(S/A) shows a much stronger
increase in the presence of deformation. The reason is that
the AMPT model fails to describe the radial flow and its

fluctuations [39]. In fact we found AMPT underestimates
the

√
var([pT]) data [40] for Au+Au at RHIC by more than

factor of 2, and this problem is there for all recent versions
of AMPT. This failure implies that radial flow response to the
size of the system is too weak in AMPT and might preclude a
quantitative comparison with the experimental measurement

of ρ(v2
2, [pT]). We also note that

√
var(ε2

2 ) and
√

var(S/A) are
similar between β = −0.28 and β = 0.28, implying they are
mostly even functions of β.1 Both 〈v2

2δpT〉 and its initial-state
counterpart 〈ε2

2δ
S
A 〉 show strong yet nontrivial dependence on

β. For prolate deformation β > 0, the covariance decreases
with increasing β values. However, for oblate deformation
β < 0, the covariance increases for more negative β value in
central collisions but decrease in mid-central and peripheral
collisions. We come back to this important observation later.

The panels in the right column of Fig. 2 show the results
of ρ(v2

2, [pT]) and ρ(ε2
2, S/A). The β dependence is more

clearly revealed for these normalized quantities. In particular,
we observe the strongest sensitivity in the UCC region, where
a large positive β leads to negative ρ(v2

2, [pT]) and ρ(ε2
2, S/A),

while a large negative β increases them toward more positive
direction. In the mid-central and peripheral regions, the values
of ρ(v2

2, [pT]) and ρ(ε2
2, S/A) always decrease with increasing

magnitude of β, independent of its sign.
The reason for the negative ρ(v2

2, [pT]) in central U+U col-
lisions in the presence of large prolate deformation was clearly

1However, in the UCC region (the last couple of points), we see
that the values of

√
var(ε2

2 ) are slightly larger while the values of√
var(S/A) are smaller for β = −0.28 than for β = 0.28. This re-

verse ordering is a bit more clear when events are binned based on
Nhadron (see Fig. 7).
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FIG. 3. The β2 dependence of various quantities involved in v2-[pT] correlation (solid circles) and ε2-S/A correlation (open circles) in top
0–1% centrality based on the Npart event class. The data points for β = −0.28 are shifted slightly to the right of the data points for β = 0.28.

explained in Ref. [18]. Denoting the radii for an ellipsoid as
Ra, Rb, and Rc, prolate deformation implies Ra = Rb < Rc.
The ultracentral collisions correspond to events whose con-
figurations are somewhere in between “body-body” collisions
with long axis parallel to each other in the transverse plane
and “tip-tip” collisions with the long axis parallel to the beam
direction. Therefore, body-body collisions have large ε2 and
large overlap area A, while the tip-tip collisions have small
ε2 and small A. Such apparent anticorrelation between ε2 and
1/A naturally gives a strong anticorrelation between v2 and
[pT] and therefore negative ρ(v2

2, [pT]). The results in Fig. 2
shows that the opposite is true in the presence of large oblate
deformation for which Ra = Rb > Rc. In this case, body-body
collisions have the short axis parallel to each other in the
transverse plane, and are expected to give large ε2 and small
overlap area A. Similarly, tip-tip collisions for oblate defor-
mation have small ε2 but large A. Therefore, we expect an
enhanced “positive” correlation between ε2 and 1/A, leading
to a stronger positive correlation between v2 and [pT] ob-
served in Fig. 2. This is quite interesting because the variance
of vn and [pT] fluctuations do not distinguish between β > 0
and β < 0, while the ρ(v2

2, [pT]), being a three-particle cor-
relator, can. Note that for maximum triaxiality deformation,
for which γ = π/6 and Ra < Rb < Rc form an arithmetic
sequence, there are no real distinction between “body-body”
and “tip-tip” collisions; the deformation contribution is ex-
pected to reduce ρ(v2

2, [pT]) to zero. For general triaxiality
0 < γ < π/3, the signal is expected to interpolate between
that for the oblate deformations and prolate deformation. We
have checked this is indeed the case using a Glauber simula-
tion of the initial-state estimator, Eq. (3).

Next we would like to quantify the β dependence observed
in Figs. 2. We focus on the UCC region where the dependence
on β is strongest. We integrate the values for each observable
in 0–1% most central events, and plot them as a function

either β2 or β in Fig. 3. Both
√

var(v2
2 ) and

√
var([pT])

follow a nice linear increase with β2. But the slopes of the

increase are smaller than those for
√

var(ε2
2 ) and

√
var(S/A),

respectively. In contrast, the 〈v2
2δpT〉 and 〈ε2

2δ
S
A 〉 show mono-

tonic but nonlinear decreases as a function of β. Interestingly,
the normalized quantities ρ(v2

2, [pT]) and ρ(ε2
2, S/A) both

approximately follow linear decrease as a function of β. Based

on this, we obtain the following empirical approximation
(more details see [41]):

〈
v2

2δpT
〉 ≈ a1 + [a1 + a2 sgn(β )]β3,

ρ
(
v2

2, [pT]
) ≈ b1 + b2β. (7)

sgn(β ) ensures the increase of 〈v2
2δpT〉 with |β| when β < 0.

For the range of β value considered here, the cubic term is

largely reduced by
√

var(v2
2 ) and

√
var([pT]) to an approxi-

mately linear dependence in β for ρ(v2
2, [pT]). Very similar

parametrization and observation can also be made about the
initial-state quantities. The functional form for 〈v2

2δpT〉 and
〈ε2

2δ
S
A 〉 can be thought of as an event-by-event average of the

product of a quadratic function c1 + c2β
2 for

√
var(v2

2 ) or√
var(ε2

2 ) and a linear function d1 + d2β for [pT] or S/A (but
with 〈c2d1〉 = 0 and 〈c1d2〉 = 0), and is generally expected for
a three-particle correlator if the signal for each particle has a
linear dependence on β.

Next, we perform the same analysis for mid-central 28–
33% collisions, and results are shown in Fig. 4. Compared to
central results, the 〈v2

2δpT〉 in the 28–33% centrality shows a
nonmonotonic dependence on β, i.e., it is largest for β = 0
and decreases on both sides. Very similar qualitative depen-
dence is also observed for the initial-state estimator 〈ε2

2δ
S
A 〉.

These trends are preserved for ρ(v2
2, [pT]) as shown in the

right panel. We conclude that the v2-[pT] correlation in mid-
central collisions has rather complex dependence on β, which
is driven entirely by ε2 − S

A . Besides, this is the region where
the centrality resolution effects play an important role (see
Fig. 6), and need to be understood before we can draw a
strong physics conclusion by comparing with the experimen-
tal data. On the other hand, the results in 0–1% have a more
straightforward connection with collision geometry and they
are insensitive to centrality resolution effects. Therefore, the
UCC region is a sweet spot for experimental comparison to
constrain the β value and distinguish between prolate and
oblate deformations. We expected this is true for hydro-
dynamic model in general. It would be interesting to also
consider quadrupole deformation that exhibits triaxiality for
which the three radii are different Ra �= Rb �= Rc. As discussed
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FIG. 4. The β2 dependence of various quantities in v2-[pT] correlation (solid circles) and ε2-S/A correlation (open circles) in 28–33%
centrality based on the Npart event class. The data points for β = −0.28 are shifted slightly to the right of the data points for β = 0.28.

in Eq. (1), the general triaxiality is described by the triaxiality
angle γ , which ranges from 0 for prolate shape to π/3 for
oblate shape. It is natural to expect that the collisions of such
a system should have a v2-[pT] signal in between the signals
for prolate shape and oblate shape. Specifically, ρ(v2

2, [pT])
for highly deformed nuclei is expected to change sign from
negative to positive, when γ is varied from 0 to π/3. But the
v2 signal should be relatively insensitive to γ . A comparison
of v2 and v2-[pT] for nuclei with similar mass number but
different β and triaxiality parameter values, say the Lu and
Hf region [42], would be useful.

Before closing the paper, we would like to discuss briefly
two technical but important issues, which are presented in
more detail in Appendix A, namely the influences of nonflow
correlation and volume fluctuations. The influence of nonflow
correlation was quantified by comparing results with those
obtained from the subevents methods with η gaps. We found
that the nonflow correlations have no visible impact except in
the very low Nhadron region. To study the influence of volume
fluctuations, the particles used to define event class (particles
of centrality, POC) are chosen to be either similar or different
from the particle used to calculate the ρ(v2

2, [pT]) (particles
of interest, POI). When POC are chosen to have different pT

or η range from POI, the ρ(v2
2, [pT]) obtained for the same

POI may differ significantly in mid-central and near-central

collisions. However, the difference decreases for large |β|
value, indicating that the deformation induced contribution
to ρ(v2

2, [pT]) is not affected by volume fluctuations. Most
importantly, the ρ(v2

2, [pT]) in the UCC region, e.g.,. 0–1%,
is quite insensitive to the choice of POC. Therefore, the UCC
region is clearly a sweet spot to isolate and constrain the
influence of nuclear deformation on ρ(v2

2, [pT]) (also the v2

fluctuations, as pointed out previously [16].).

IV. SUMMARY

We studied the influence of the nuclear quadrupole de-
formation on the fluctuations of harmonic flow vn and
event-by-event mean transverse momentum [pT], and corre-
lated fluctuations between vn and [pT] in Au+Au and U+U
collisions at RHIC energy using the AMPT transport model.

The variances of the v2
2 and [pT] fluctuations,

√
var(v2

2 )

and
√

var([pT]), covariance 〈v2
2δpT〉, and Pearson correla-

tion coefficient ρ(v2
2, [pT]) are calculated as a function of

quadrupole deformation parameter β. The
√

var(v2
2 ) show a

clear quadratic dependence on β over a broad centrality range,
driven by a similar quadratic β dependence in the initial-state
eccentricity ε2. The

√
var([pT]) shows a very weak quadratic

β dependence, much weaker than the dependence observed
for the variance of the size R fluctuation in the initial state.

/2ApartN
0 0.5 1

])
T

,[p2 2
(vρ

-0.2

0

0.2

0.4
<2 GeV

T
0.2<p

AMPT

=-0.28βU+U

standard
two-subevent
three-subevent

/2ApartN
0 0.5 1

=0βU+U

/2ApartN
0 0.5 1

=0.28βU+U
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0 0.5 1

=0.4βU+U

FIG. 5. The Npart dependence of ρ(v2
2, [pT]) obtained from the standard, two-subevent and three-subevent methods for U+U collisions for

different β values in each panel. From left to right they are β = −0.28, 0, 0.28, and 0.4. The event class used for averaging is based on Npart .
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FIG. 6. The Npart dependence of ρ(v2
2, [pT]) calculated for hadrons in 0.2 < pT < 2 GeV and |η| < 1 but compared among five different

event class definitions after mapping to the common Npart x axis. Results are shown separately for Au+Au or U+U collisions with various β

values as indicated in each panel. The vertical dashed lines indicate the locations for the 1% and 5% highest Npart values.

This implies that AMPT model lacks a clear radial flow re-
sponse to the overall system size fluctuations.

The correlation between v2 and [pT] shows a strong depen-
dence on β. In the ultracentral collisions, ρ(v2

2, [pT]) shows
a linear dependence β, i.e., it decreases for larger prolate
deformation (more positive β) and increases for larger oblate
deformation (more negative β). This is consistent with the
expected correlation between ε2 and radius of the system R
in the initial state for prolate and oblate nuclei in a simple
geometrical picture. This finding shows great promise in us-
ing the strength and sign of v2

2-[pT] correlation to constrain

the triaxiality of the nucleus. In mid-central and peripheral
regions, the ρ(v2

2, [pT]) is largest for spherical nuclei and de-
creases for both prolate and oblate deformation. This behavior
again follows qualitatively similar β dependence for the ex-
pected correlation between ε2 and R. The values of ρ(v2

2, [pT])
are not influenced by nonflow correlation; however, they are
sensitive to the choices of variable used to define event mul-
tiplicity in mid-central collisions due to centrality resolution
and autocorrelation bias. Such dependence is found to be
minimized in the ultracentral collision,s where the results
are found to be independent of event multiplicity definition.
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FIG. 7. The Nhadron(|η| < 1) dependence of v2
2 variance (top-left), [pT] variance (2nd from top-left), flow-[pT] covariance 〈v2

2δpT〉 (3rd from
top-left) and Pearson coefficients ρ(v2

2, [pT]) (top-right) in Au+Au and U+U collisions with different deformation parameter β. The bottom
panels show the corresponding initial-state estimators in the Glauber model. The event class used for averaging is based on Nhadron(|η| < 1).

Therefore, v2-[pT] correlation in the UCC region can be used
to provide direct connection to the initial collision geometry
and connect back to the shape of the colliding nuclei. Detailed
comparison of the model prediction with the v2-[pT] correla-
tion data in Au+Au and U+U collisions should allow us to
constrain the β value of the highly deformed U nucleus.
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APPENDIX A: INFLUENCE OF NONFLOW
CORRELATIONS AND VOLUME FLUCTUATIONS

The vn-[pT] could have contributions that are unrelated to
the initial-state geometry but arise from correlated particle
production in the momentum space, such as jet fragmenta-
tion and resonance decays, known as “nonflow.” The nonflow
correlations can be suppressed by requiring pseudorapidity
gaps between the particles in each triplet in the context of
so-called standard, two-subevent and three-subevent methods
[27]. The influence of nonflow to vn-[pT] correlation has been
investigated in detail in Ref. [25] and was shown to be im-
portant only in the low multiplicity events. Here we repeat
the same study also in the AMPT model. In the standard
method used for the main results, all particles within |η| < 2
are included. In the two-subevent method, triplets are con-
structed by combining particles from two subevents labeled
as a and c with a gap in between to reduce nonflow effects:
−2 < ηa < −0.6, 0.6 < ηc < 2. The two particles contribut-
ing to the flow vector are chosen as one particle each from

a and c, while the third particle providing the pT weight is
taken from either a or c. In the three-subevent method, three
nonoverlapping subevents a, b, and c are chosen: −2 < ηa <

−0.6, |ηb| < 0.6, 0.6 < ηc < 2. The particles contributing to
flow are chosen from subevents a and c while the third particle
is taken from subevent b.

The comparison between these methods is shown in Fig. 5
for U+U collisions with several β values. The two-subevent
method agrees nearly perfectly with the standard method over
a broad Npart range, while the results from the three-subevent
method are systematically higher but the difference depends
weakly on Npart. This difference suggests possible longitudinal
decorrelation, which affects the strength of the correlation for
particles separated in pseudorapidity [43,44]. The decorrela-
tion effects were observed between the vn measured in two
η ranges [45–47], but in the present case the decorrelation
between vn and [pT] might also play a role. We leave this topic
to a dedicated study in the future.

Our main analysis is performed using all hadrons with
0.2 < pT < 2 GeV and |η| < 2, and the event centrality is de-
fined using either Npart or inclusive hadron multiplicity Nhadron

in |η| < 1. In the calculation of various observables, the values
obtained in each event are averaged over events with compara-
ble multiplicity in Nhadron. They are then combined in broader
multiplicity ranges of the event ensemble to obtain statistically
more precise results. The event averaging procedure (also
sometime referred to as centrality bin width correction) is
necessary to reduce the effects of volume fluctuation within
each event class definition [21,26,36], but not completely
eliminate it. This is because centrality for fixed value of Nhadron

is still smeared due to fluctuations in the particle production
process. Since the vn and [pT] values vary with centrality,
the smearing in centrality can lead to additional fluctuations
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FIG. 8. The centrality dependence of ρ(v2
2, [pT]) calculated for hadrons in 0.2 < pT < 2 GeV and |η| < 1 and compared among give

different event class definitions after mapping to the common x axis defined by Nhadron(|η| < 1)/3. They are shown separately for Au+Au or
U+U collisions with various β values as indicated in each panel. The vertical dashed lines indicate the locations for the top 1% and 5% highest
Nhadron values.

of shape and size of the overlap region. Indeed, significant
differences in ρ(v2

n, [pT]) were observed between centrality
defined in mid-rapidity and centrality defined in the forward
rapidity [29]. To quantify the volume fluctuation effects, we
performed a separate analysis. We calculated the ρ(v2

n, [pT])
using all hadrons with 0.2 < pT < 2 GeV and |η| < 1 (parti-
cles of interest, POI), but using four different η and pT choices
for particles used to define event class (particles of centrality,
POC): Nhadron(1.5 < |η| < 2), Nhadron(|η| < 1), Nhadron(1.5 <

|η| < 2, pT > 0.5 GeV), Nhadron(|η| < 1, pT > 0.5 GeV).

Note that particles used to define Nhadron(1.5 < |η| < 2) have
no overlap with particle used to calculate ρ(v2

n, [pT]), which
could reduce the auto-correlationeffects associated with non-
flow. In Fig. 6, we demonstrate the sensitivity to volume
fluctuation by comparing the results of ρ(v2

2, [pT]) for four
different POC. They are mapped to Npart and compared with
the results obtained directly by binning events according to
Npart. Each panel shows the results obtained for Au+Au or
U+U collisions with a particular β value. The results for
event class based on Npart always have the smallest ρ(v2

2, [pT])
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FIG. 9. The β2 dependence of various quantities for the v2-[pT] correlation (solid circles) and the ε2-S/A correlation (open circles) in the
top 0–1% centrality (top row) and 28–33% centrality (bottom row) based on the Nhadron(|η| < 1) event classes. The data points for β = −0.28
are shifted slightly to the right of the data points for β = 0.28.

values, except in the very peripheral region. Results obtained
for different Nhadron event classes show large spread in mid-
central collisions, but they converge to a common result in the
most central region and cross each other at Npart ≈ 80–120
depending on β, which corresponds approximately to the
average Npart for minimum-bias Au+Au or U+U collisions.
The spreads between different Nhadron are largest for β = 0
and reduce significantly for large |β| values, implying that the
deformation contribution is not affected by centrality resolu-
tion. Looking at each panel in more detail, we find that the
results based on Nhadron without pT cut are very close to each
other, albeit still a bit higher than in the Npart case. On the
other hand, the results based on Nhadron that include only high
pT hadrons, i.e., pT > 0.5 GeV, are much larger.

The largest enhancement is observed for Nhadron(|η| <

1, pT > 0.5 GeV), but only a slight increase is observed for
Nhadron(|η| > 1.5, pT > 0.5 GeV). We conclude that, when
only high pT hadrons are counted for Nhadron, there is a
large autocorrelation between Nhadron and ρ(v2

2, [pT]) if the η

ranges for these two quantities overlap. Such autocorrelation
is minimal, however, if the Nhadron definition also includes
low pT particles. The results from the STAR Collaboration
are based on number of charged particles with |η| < 0.5 and
pT > 0.2 GeV for event class and |η| < 1 and pT > 0.2 GeV
for calculation of ρ(v2

2, [pT]) [22]. In this case, we expect
the autocorrelation effects are rather modest. The results from
ATLAS Collaboration were based on |η| < 0.5 and pT > 0.5
GeV for both ρ(v2

2, [pT]) and event class definition. The au-
tocorrelation bias could be less severe since 〈pT〉 is larger at
LHC and pT > 0.5 GeV selection should already include most

of the hadrons. This point certainly deserves a dedicated study.
But, independenty of the finding, we would like to empha-
size that the results in the most central collisions, e.g., 0–1%
centrality as indicated by the vertical dashed line each panel,
are rather stable against autocorrelation and/or the volume
fluctuation effects. In the presence of large deformation, the
stable region increases further and may extend to top 0–5%
centrality. Therefore, the sign-change region of ρ(v2

2, [pT]) in
the U+U collisions observed by the STAR Collaboration [22],
covering the top 0–8% most central events, should be rather
robust and independent of the particular choice of centrality
used.

APPENDIX B: RESULTS CALCULATED WITH Nhadron

EVENT CLASS AND PLOTTED AS A FUNCTION OF Nhadron

So far, the results are calculated with either Npart or Nhadron

as POC, but are always presented as a function of Npart. Note
that, in the second case, Npart is defined as the average Npart

for events with given Nhadron. Due to relative smearing, events
in the top 0–1% of Nhadron are different from events in the
top 0–1% of Npart; in particular the 〈Npart〉 for events in the
top 0–1% of Nhadron is generally smaller than the 〈Npart〉 for
events in top 0–1% of Npart. This simply means that the influ-
ence of volume fluctuations for events in top 0–1% of Nhadron

is generally larger for events in the top 0–1% of Npart (see
Fig. 6).

Figure 7 shows the components of Pearson correlation co-
efficients calculated with final-state hadrons (top row) and the
initial-state participating nucleons (bottom row). They are cal-
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FIG. 10. The Npart dependence of ρ(v2
3, [pT]) (top left) and ρ(v2

4, [pT]) (top right) in Au+Au and U+U collisions with different deformation
parameter β. The bottom panels show the corresponding initial-state estimators in the Glauber model. The event class used for averaging is
based on the Npart .

culated using Nhadron as POC for event averaging and plotted
as a function of Nhadron. They should be contrasted to Fig. 2.
The main features are similar, except that the distributions
are much more smeared in the UCC region. Figure 8 shows
the influence of volume fluctuation with the POC defined
in the same way as in Fig. 6. In fact, they are exactly the
same data points, and the only difference is they are mapped
to Nhadron. One noticeable difference from Fig. 6, however,
is that the influence of volume fluctuations is still visible
in the top 0–1% centrality based on Nhadron. One needs to
use an even more extreme selection, such as the top 0–0.2%
range for Nhadron, in order to minimize the volume fluctuation
effects.

Finally, Fig. 9 shows the β dependence of the compo-
nents for v2-[pT] in the 0–1% (top row) and the 28–33%
(bottom row) centralities based on Nhadron. There are some
quantitative differences when comparing to Figs. 3 and 4.
but the qualitative behaviors are similar. The differences are
particularly noticeable for initial-state quantities since these
quantities are more directly connected to Npart than to Nhadron.

But the differences for the final-state quantities are much
smaller.

APPENDIX C: RESULTS FOR HIGHER ORDER
HARMONICS

Figure 10 show the results of Pearson correlation co-
efficients for higher-order flow harmonics n = 3 and n =
4. Within the present statistics precision, we conclude
that ρ(v2

3, [pT]) and ρ(v2
4, [pT]) are relatively insensitive to

the quadrupole deformation effects. We observe, however,
that the corresponding initial-state quantities ρ(ε2

3, S/A) and
ρ(ε2

4, S/A) show qualitatively very different Npart dependence
shape. This behavior implies that either they are not good
initial-state estimators for v3-[pT] and v4-[pT] correlations, or
correlation between higher-order flow and [pT] are dominated
by the dynamical effects in the final state. An alternative
estimator based on ratio of total energy and total entropy was
found to reproduce qualitatively the ρ(v2

3, [pT]) data from
ATLAS [19].
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