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Shape of atomic nuclei in heavy ion collisions
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In the hydrodynamic model description of heavy ion collisions, the final-state anisotropic flows vn are linearly
related to the strengths of the multipole shape of the distribution of nucleons in the transverse plane, εn: vn ∝ εn.
The εn, for n = 1, 2, 3, 4, are sensitive to the shapes of the colliding ions, characterized by the quadrupole β2,
octupole β3, and hexadecapole β4 deformations. This sensitivity is investigated analytically and also in a Monte
Carlo Glauber model. One observes a robust linear relation, 〈ε2

n〉 = a′
n + b′

nβ
2
n , for events in a fixed centrality.

The 〈ε2
1〉 has a contribution from β3 and β4, and 〈ε2

3〉 from β4. In ultracentral collisions, there are little cross
contributions between β2 and ε3 and between β3 and ε2, but clear cross contributions are present in noncentral
collisions. Additionally, 〈ε2

n〉 are insensitive to nonaxial shape parameters such as the triaxiality. This is good
news because the measurements of v2, v3, and v4 can be used to constrain simultaneously the β2, β3, and β4

values. This is best done by comparing two colliding ions with similar mass numbers and therefore nearly
identical a′

n, to obtain a simple equation that relates the βn of the two species. This opens up the possibility to
map the shape of the atomic nuclei at a timescale (<10−24 s) much shorter than probed by low-energy nuclear
structure physics (<10−21 s), which ultimately may provide information complementary to that obtained in the
nuclear structure experiments.
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I. INTRODUCTION

Most atomic nuclei in their ground state are deformed
from a well defined spherical shape. The deformation has
nontrivial dependence on the proton and neutron numbers,
especially in the vicinity of a full shell or subshell, reflecting
collective motion induced by interaction between valence nu-
cleons and shell structure [1]. The collective motion leads to
characteristic rotational spectra of nuclear excited state, where
the electric multipole transition probability B(En) between
low-lying rotational states with nh̄ difference in angular mo-
mentum can be used to infer the shape parameters. Past efforts
have led to the discovery of a rich variety of phenomena, such
as quadrupole deformation, shape evolution, triaxiality/shape
coexistence, octupole deformation, hexadecapole deforma-
tion, and other exotic shapes [2–6].

No one has directly observed the deformed nucleus, how-
ever. This is because the nucleus is deformed in the so-called
intrinsic (body-fixed) frame, and its wave function in the
laboratory frame actually does not pick a particular direc-
tion. Typical scattering experiments probe the nuclear form
factors averaged over all orientations, and the static defor-
mation appears mostly as an increased surface thickness [7].
On the other hand, high-energy heavy ion collisions at the
BNL Relativistic Heavy Ion Collider (RHIC) and the CERN
Large Hadron Collider (LHC), as illustrated in Fig. 1, can
image the shapes of nuclei by colliding them together and
looking at the collective expansion of the produced system
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responding to the geometry of the overlap. In these collisions,
two Lorentz-contracted nuclei, by a factor of 100 at RHIC and
more than a factor of 1000 at the LHC, cross each other over
a timescale τ < 0.1 fm/c ≈ 3 × 10−24 s, forming a hot and
dense quark-gluon plasma (QGP) [8] in the overlap region,
whose initial shape is correlated with the deformed shape
of the nuclei. Driven by the large pressure gradient forces,
the QGP expands hydrodynamically, converting the spatial
anisotropies into azimuthal anisotropies of final-state particles
in the momentum space [9]. Nuclear shape imaging is possible
because each collision probes simultaneously the entire mass
distribution of the nuclei, and one can use particle corre-
lations among thousands of produced particles to infer the
two-point and multipoint correlations of this mass distribution
and hence its spatial shape. Since the timescales involved in
these collisions are much shorter (<10−24 s) than the typical
timescale of the rotational bands (10−21 s [10]), this raises an
important question of whether the manifestation of nuclear
deformation—a collective feature of the nuclear many-body
system—is the same across energy scales [11].

The shape of the nucleus in nuclear physics is often mod-
eled though a nucleon density profile of the Woods-Saxon
form,

ρ(r, θ, φ) = ρ0

1 + e[r−R(θ,φ)/a0]
,

R(θ, φ) = R0

(
1 + β2[cos γY2,0 + sin γY2,2]

+β3

3∑
m=−3

α3,mY3,m + β4

4∑
m=−4

α4,mY4,m

)
, (1)
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FIG. 1. A diagram of the collision of nuclei with quadrupole (left), octupole (middle), and hexadecapole (right) deformations including
either the Yn,0 mode (top row) or the Yn,n mode (middle row) and with βn = 0.25. The Lorentz contractions in the z direction, by factor of 100 at
RHIC and more than a factor of 1000 at the LHC, are not shown. The bottom row represents the initial conditions of the QGP formed after the
collision in the transverse plane. The hollow arrows indicate the direction of maximum pressure gradients along which the medium expands
with largest velocity, leading to final state harmonic flow vn with n-fold symmetry.

where the nuclear surface R(θ, φ) is expanded in spherical
harmonics Yn,m, but keeping only the terms that are most
relevant in nuclear structure physics, i.e., quadrupole n =
2, octupole n = 3, and hexadecapole n = 4. Note that the
Y2,−1,Y2,1, and Y2,−2 are used to define the intrinsic frame,
leaving Y2,0 and Y2,2 as the only relevant quadrupole compo-
nents (higher order deformations defined in this frame should
have all components as relevant degrees of freedom). The
positive number β2 describes the overall quadrupole defor-
mation, and the triaxiality parameter γ controls the relative
order of the three radii Ra, Rb, Rc of the nucleus in the intrin-
sic frame. It has the range 0 � γ � π/3, with γ = 0, γ =
π/3, and γ = π/6 corresponding, respectively, to prolate
(Ra = Rb < Rc), oblate (Ra < Rb = Rc) or maximum triaxial-
ity (Ra < Rb < Rc and 2Rb = Ra + Rc). Similarly, β3 and β4

control the overall octupole and hexadecapole deformations,
respectively. The α3,m and α4,m, in analogy to γ , are internal
“angular” parameters describing deviation from axial and/or
reflection symmetry, and they satisfy the normalization condi-
tions

∑3
m=−3 α2

3m = 1 and
∑4

m=−4 α2
4m = 1.

In heavy ion collisions, the initial condition and dynamics
of QGP are naturally formulated in a cylindrical coordinate
system with the z axis coinciding with the beam line. The ini-
tial condition is determined by the distribution of nucleons in
the transverse plane ρ(r⊥, φ), which drives the collective flow
of final-state particles, reflected by the momentum spectrum
N (pT, φ). N (pT, φ) is often analyzed in terms of a Fourier ex-
pansion, dN/dφ ∝ 1 + 2

∑
n vn(pT) cos n[φ − �n(pT)]. The

ρ(r⊥, φ) is fully characterized via a two-dimensional 2D

multipole expansion, whose leading radial modes have the
following expression [12,13] in the center-of-mass frame:

ε1ei�1 = −
∫

d2r⊥r3
⊥eiφρ(�r⊥)

/ ∫
d2r⊥r3

⊥ρ(�r⊥),

εnein�n |n>1 = −
∫

d2r⊥rn
⊥einφρ(�r⊥)

/ ∫
d2r⊥rn

⊥ρ(�r⊥).

(2)

The 2D eccentricity vectors εnein�n are a close analog of Yn,m

in the 3D case. In fact, the eccentricity vectors for n > 1
are directly related to the multipole moments of the mass
distribution, εnein�n ∝ −〈Y n

n 〉, which I will show later lead to a
simple relation between εn and βn. Note that the radial weight
of ε1 is r3

⊥ instead of the naively expected r⊥, because the
latter contribution vanishes in the center-of-mass frame and
r3
⊥ weighting gives the next radial mode.

Study of the relation between the initial-state εn and final-
state vn, within the relativistic viscous hydrodynamics or
transport model framework, has always been a central focus
of the heavy ion community. Comprehensive model and data
comparisons [14] show very good linear relations, vn = knεn,
not only on average but also for each event,1 where the
response coefficients kn capture the transport properties of
the QGP produced in the collision. Thanks to the precision

1The linear relation is very good for n = 2 and 3 in general and for
n = 1 and n = 4 in the case of central collisions [15].
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measurements of vn and its event-by-event fluctuations p(vn)
[8,16], and detailed understanding of the properties of kn

[15,17–19], hydrodynamic models can now determine the εn

and p(εn) with enough precision to constrain the deformation
parameters.

Influence of nuclear deformation on dynamics of heavy
ion collisions was considered early on [20–22]. More re-
cent studies focused on the relation between β2 and v2

[23–28]. Experimental evidence for quadrupole deformation
appear as large differences of v2 between ultracentral col-
lisions (UCC) of different systems, in particular between
197Au + 197Au and 238U + 238U collisions at RHIC [29] and
between 129Xe + 129Xe and 208Pb + 208Pb collisions at the
LHC [30–32]. Reference [11] explored the parametric depen-
dence of various flow observables on β2, and find that both
ε2

2 and v2
2 depend linearly on β2

2 ; a simple formula is derived
relating the β2 in the two collision systems to the ratio of v2.
The influence of octupole deformation is considered recently
in Pb + Pb collisions to explain the order of v2 and v3 in the
UCC region [33].

Another observable showing a strong sensitivity to the
nuclear deformation is the Pearson correlation coefficient,
ρ(v2

2, [pT]), between v2 and the mean transverse momentum,
[pT], which probes both the β2 [34,35] and its triaxiality
γ [36] of the colliding ions. Recent measurement from the
STAR Collaboration [37] established unambiguously the large
and dominating influence of the nuclear quadrupole deforma-
tion of 238U. The large prolate deformation of 238U yields
a strong negative contribution to the ρ(v2

2, [pT]), enough to
make it change sign. Large influence of deformation is also
observed in the fluctuations of [pT] [37].

Continuing this line of work, I explore the parametric
dependence of ε1, ε2, ε3, and ε4 on various deformation
parameters βn and deviations from axial and reflection sym-
metries [γ and combinations of αn,m in Eq. (1)]. In the UCC
region, the mean square (ms) values of εn, 〈ε2

n〉, are found to
be driven primarily by βn of the same order, and the triaxiality
parameter γ only has very modest impact on ε2. Away from
the UCC region, 〈ε2

n〉 are insensitive to γ , but they receive
contributions from βm of a different order m 	= n. In other
words, I establish the following empirical relation:〈

ε2
n

〉 = a′
n + b′

nβ
2
n +

∑
m 	=n

b′
n,mβ2

m,

n = 1, 2, 3, 4, m = 2, 3, 4 and b′
1 = 0, (3)

with significant values of b′
n,m observed for b′

1,3, b′
1,4, and b′

3,4.
Since vn ∝ εn, one expects similar parametric dependencies
to hold between 〈v2

n〉 and βm. This simple scaling relation
provides a strong motivation for a collision system scan to
map out the shape of atomic nuclei in the most interesting
region of nuclear chart and compare with the knowledge from
nuclear structure physics.

II. ANALYTICAL ESTIMATE IN ULTRACENTRAL
COLLISIONS AND GLAUBER MODEL SETUP

To gain some intuitive insight on Eq. (3) it is useful to
demonstrate its validity using a simpler version of the nu-

clear surface. Here I consider a density distribution of the
liquid-drop model with a sharp surface, ρ(r, θ, φ) = ρ0 when
r < R(θ, φ) and zero otherwise, and I assume that the energy
density distribution is given by the distribution of participating
nucleons. I limit the discussion to head-on collisions with
nearly maximum overlap; i.e.; the two nuclei not only have
zero impact parameter, but are also required to align in a
way to ensure the overlap region contains all the nucleons
Npart = 2A. In reality, the selection of UCC events naturally
encompasses a wider range of rotation angles and also a finite
range of Npart, therefore I also study a second case which
requires zero impact parameter but independent rotations for
the two nuclei. The details of the calculation can be found in
Appendix A.

As illustrated in Fig. 1, the maximum εn for Yn,0 is reached
in a “body-body” configuration, when the symmetry axis of
the nuclei is perpendicular to the beam. In the case of Yn,n, the
maximum εn is reached in a “tip-tip” configuration, when the
z axis of the nuclei is aligned with the beam. For these two
configurations, it is straightforward to calculate eccentricities:
they are listed in the first two rows of Table I. However, one is
more interested in the eccentricity values averaged over ran-
dom orientations. The first nontrivial and the most important
moment is 〈ε2

n〉, which relates directly to the 〈v2
n〉 measured by

the two-particle correlation method. The results obtained by
requiring same random rotations for the two nuclei are listed
in the third row of Table I, and those obtained by requiring
independent random rotations the two nuclei are listed in the
last row of Table I. The two cases have the same dependencies
but the coefficients are a factor of 2 smaller in the second case.

A few remarks are in order. The maximum possible εn

values are different between Yn,n and Yn,0, and they are gen-
erally comparable to the corresponding βn value. However,
the ms values after averaging over random orientations have
exactly the same quadratic dependence on βn, showing no
explicit dependence on the internal angular variables γ and
αn,m in Eq. (1) to the leading order.2 Remarkably, the octupole
deformation also gives rise to a dipolar eccentricity, following
the same quadratic dependence on β3 but with a coefficient
that is a factor of 10 smaller. Furthermore, the quadrupole de-
formation gives rise to a quartic contribution to ε4, and, in an
analogy to the well-known non-inear contribution of ε2 to ε4

[13], scales as 〈ε2
4〉 ≈ (0.7–1.4)〈ε2

2〉2. Lastly, the coefficients
b′

n,m listed in the table are derived under a simplified scenario.
In a more realistic Monte Carlo Glauber model calculation
based on the Woods-Saxon nuclear profile, the coefficients in
the UCC region as shown in bottom row of Fig. 2 are com-
parable to or slightly smaller than those obtained by requiring
zero impact parameter and independent rotations.

For a more realistic estimation of influence of nuclear
deformation, a Monte Carlo Glauber model [38] is used to
simulate collisions of 238U and 96Zr systems and calculate
εn in each event. These systems are chosen because the
experimental collision data exist already. The nucleons are

2The actual probability density distribution p(εn) is different be-
tween deformations described by Yn,n and by Yn,0. This difference
can be captured by the fourth- and higher-order cumulants.
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TABLE I. The value of eccentricity generated by the deformation component Yn,0 (first row) and Yn,n (second row) for the special alignment
of two colliding nuclei similar to those shown in Fig. 1 which maximizes the eccentricity values, obtained within an optical Glauber model
with sharp surface by setting a0 = 0 in Eq. (1). Here only the leading- and subleading-order contributions are included. The leading-order
mean-square values 〈ε2

n〉 obtained by averaging over common random orientations for the two nuclei and independent random orientations for
the two nuclei are given in the third row and the last row, respectively. The values in the latter case are a factor of 2 smaller, but in both cases
they are independent of γ , α3,m, or α4,m.

n = 1 n = 2 n = 3 n = 4

16
5π

√
7π

β3

√
45

16π
β2 + 15

112π
β2

2
16

π
√

7π
β3

35
16

√
π
β4 + 45

16π
β2

2

1 + ∑4
m=2 βmYm,0

+ 302
3
√

35π2 β2β3+ 493967
√

7
73920π2 β3β4 + 9

√
5

7π
β2β4 + 75

77π
β2

4 + 1
π
β2

3 + 2
√

35
3π2 β2β3+ 2067

√
7

704π2 β3β4 + 215
√

5
352π

β2β4 + 315
176π

β2
3 + 43305

36608π
β2

4

εn (body-body)
= 0.22β3 =0.95β2+0.043β2

2 = 1.08β3 = 1.23β4 + 0.90β2
2

+1.7β2β3 + 1.8β3β4 +0.92β2β4 +0.31β2
4 +0.32β2

3 +0.40β2β3 + 0.79β3β4 +0.43β2β4 + 0.57β2
3 + 0.38β2

4

320√
378π2 β2β3 + 800

33π2
√

2
β3β4

√
15
4π

β2+ 15√
21π

β2β4− 15
8π

β2
2

64
π

√
70π

β3

√
35
4π

β4 + 15
4π

β2
2

1 + ∑4
m=2 βmYm,m

= 1.67β2β3 + 1.74β3β4 =1.09β2 + 1.0β2β4 − 0.6β2
2 − 12

√
6√

7π2 β2β3 − 81
16

√
2π2 β3β4 −

√
525

4π
β2β4 − 105

32π
β2

4

εn (tip-tip)
= 1.37β3 = 1.67β4 + 1.19β2

2

−1.13β2β3 − 0.36β3β4 −1.82β2β4 − 1.04β2
4

〈ε2
n〉 4096

3675π3 β2
3 = 0.036β2

3
3

2π
β2

2 = 0.477β2
2

4096
245π3 β2

3 = 0.539β2
3

35
18π

β2
4 + 45

14π2 β4
2

(same rotation)
= 0.62β2

4 + 0.32β4
2

〈ε2
n〉 2048

3675π3 β2
3 = 0.018β2

3
3

4π
β2

2 = 0.239β2
2

2048
245π3 β2

3 = 0.270β2
3

35
36π

β2
4 + 45

28π2 β4
2

(indep. rotation)
= 0.31β2

4 + 0.16β4
2

assumed to have a hard core of 0.4 fm in radii, with a density
described by Eq. (1). The nuclear radius R0 and the surface
thickness a0 are chosen to be R0 = 6.81 fm and a0 = 0.55
fm for 238U and R0 = 5.09 fm and a0 = 0.52 fm for 96Zr,
respectively. The nucleon-nucleon inelastic cross sections are
chosen to be σnn = 42 mb at

√
sNN = 200 GeV. In each colli-

sion event, nucleons are generated in each nuclei at a random
impact parameter from each other. Each nucleus is then ro-
tated by randomly generated three Euler angles before they
are set on a straight line trajectory towards each other along
the z direction. From this, the nucleons in the overlap region,
known as participants, are identified. The εn are calculated
from nucleon participants according to Eq. (2), and the results
are studied as a function of Npart. For a systematic study of
the influence of different shapes, one deformation component
or particular combination of components of the same n is en-
abled at a time, the latter is useful to understand the influence
of departure from axial and/or reflection symmetry. A special
study is performed to also investigate the presence of shapes
of different n, where two or three nonzero values for β2, β3,
and β4 are enabled simultaneously.

It is well known that the particle production in nucleus-
nucleus collisions only scales approximately with Npart. A
better scaling can be achieved by considering the constituent
quarks as an effective degree of freedom for particle produc-
tion [39–43], which would naturally give rise to different εn

in each event. Defining centrality with constituent quarks is
also expected to change the fluctuations of eccentricity [44],
and provide a way to quantify the centrality smearing effects.

For this purpose, a quark Glauber model from Ref. [41] is
used. Three quark constituents are generated for each nucleon
according to the “mod” configuration [45], which ensures that
the radial distribution of the three constituents after recen-
tering follow the proton form factor ρproton(r) = e−r/r0 with
r0 = 0.234 fm [46]. The value of quark-quark cross section is
chosen to be σqq = 8.2 mb in order to match the σnn. The εn

are then calculated from the list of quark participants in the
overlap region, and the number of quark participants Nquark

is used as an alternative centrality estimator. In the quark
Glauber model, I also explicitly keep track of the participant
nucleons, i.e., a nucleon is counted as participant as long
as one of its quarks participate in the collision. This paper
presents and compares results obtained from both nucleon
participants and quark participants.

In the presence of large deformation, the total vol-
ume of the nucleus increases slightly for fixed R0 [47].
Considering the quadrupole deformation only, for the
largest value considered, β2 = 0.34, the ratio to the origi-
nal volume is approximately 1 + 3

4π
β2

2 +
√

5
28π3/2 cos(3γ )β3

2 =
1.021 + 0.0004 cos(3γ ). In order to keep the overall volume
fixed, it would require a small, less than 1%, decrease of R0,
which is safely ignored in the present study.

III. RESULTS

The goal of this paper is to explore the relation be-
tween 〈ε2

n〉 and various deformation parameters in Eq. (1),
and to provide insights on the deformation dependence of
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FIG. 2. Top row: The Npart dependence of mean square eccentricity 〈ε2
n〉 for several βn values considering only the Yn,0 component,

with markers and lines corresponding to d⊥ obtained with nucleons and quarks, respectively. Middle row: The β2
n dependence of 〈ε2

n〉 in
several centrality ranges based on Npart , which can be nicely described by a linear function 〈ε2

n〉 − 〈ε2
n〉βn=0 = b′

nβ
2
n . Bottom row: the centrality

dependence of the slope parameter b′
n in U + U (black) and Zr + Zr (red) systems for εn calculated based on nucleons (markers) or quarks

(lines). The results are shown for n = 2 (left column), n = 3 (middle column), and n = 4 (right column). The first three points in the bottom
panels correspond to 0–0.2%, 0.2–0.5%, and 0.5–1%, respectively.

experimentally measured 〈v2
n〉. The influence of nuclear de-

formation on higher-order cumulants of εn will be explored
in a separate study. Section III A establishes the quadratic
relation (3) by considering the axial-symmetric deformation
Yn,0, n = 2, 3, and 4. The influences of nonaxial deformation,
Yn,m 	=0, characterized by the triaxiality parameter γ and αn,m

parameters are considered in Sec. III B. One finds that the
slope parameters b′

n,m have a very weak dependence on the
γ and αn,m. Section III C considers the presence of multiple
shape components β2, β3, and β4, which is generally ex-

pected in nuclear structure physics. For moderate deformation
values, one finds that the nonlinear contributions, terms like
βnβm, m 	= n, are subdominant and Eq. (3) still holds well.
Section III D discusses ways to constrain these deformations
simultaneously using flow measurements.

A. Influence of axial-symmetric multipole deformation

The top row of Fig. 2 shows the Npart dependence of 〈ε2
n〉,

n = 2, 3, and 4, for various βn values in U + U collisions, cal-
culated from the participating nucleons according to Eq. (2).
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One observes that the larger β2 values increase ε2 mostly in
the central region, while larger β3 values increase ε3 over
the full centrality range. The reason is that the contribution
associated with the average elliptic geometry to ε2 dominates
over the deformation effects in the mid-central and periph-
eral collisions. On the other hand, the ε3 without nuclear
deformation arises solely from random fluctuations of nucleon
positions and has a much smaller value, therefore the ε3 is
more sensitive to β3. The increase of ε4 with β4 is observed
only in the central region. In fact, the peripheral region shows
a slight decrease of ε4 with β4. Overall, the influence of
deformation on εn is largest in the most central region for all
harmonics.

In the same plots, I also show the 〈ε2
n〉 calculated from

quark participants as solid lines, with the same color as those
calculated from nucleon participants. Small differences are
observed in the UCC region when βn are small, or in the
peripheral region for n = 2, implying that the influences of
deformation are insensitive to nucleon substructures.

To quantify these dependencies, 〈ε2
n〉 values obtained for

fixed Npart are averaged in narrow centrality ranges, and plot-
ted as a function of β2

n in the middle row of Fig. 2. A linear
dependence is observed in all cases, confirming the first part
of the relation in Eq. (3) involving a′

n and b′
n. Note that a′

n
correspond to eccentricities in the absence of deformation,
a′

n = 〈ε2
n〉|βn=0, shown by the black solid circles in the top

row, while b′
n describes the slope of the β2

n dependencies in
the middle row.

The bottom row of Fig. 2 shows the centrality dependence
of b′

n for U + U and Zr + Zr collisions. The values of b′
n are

largest in the UCC region and decrease toward mid-central
and peripheral regions. It is quite remarkable that the value of
b′

n starts at around 0.2–0.3 for all harmonics in both collision
systems. This value of b′

n reflects an effect that is purely
geometrical. If the two nuclei were to collide head-on in the
direction perpendicular to maximum deformation as shown
in Fig. 1, b′

n should be on the order of unity; see Table I. In
reality, after averaging over all possible random orientations,
the b′

n values are reduced to about 0.2–0.3. In a Monte Carlo
Glauber model with finite number of nucleons, the random
fluctuation of nucleon positions smear the correlation between
the shape of the overlap region and the Npart. This smear-
ing is expected to be larger for smaller system, leading to a
slightly smaller b′

n in the Zr + Zr collisions than in the U + U
collisions. Note that the centrality and collision system depen-
dencies of b′

n are just the opposite of a′
n (the latter corresponds

to the 〈ε2
n〉 without deformation shown in the top row). The

values for a′
n are smallest in the UCC region and increase

towards more peripheral regions and exhibit a much larger
difference between Zr + Zr and U + U.

The bottom row of Fig. 2 also compares the b′
n calculated

from nucleon participants with that calculated from quark
participants. In the central and mid-central collisions, the dif-
ferences are negligible for n = 2, but for n = 3 and n = 4 the
results based on quark participants are systematically smaller.
At this point, one may wonder if the εn are also affected
by the βm of different order, m 	= n. I have performed such
calculations. In most cases, the influences are small. But I
identified three cases for which the influences are quite large.

In particular, I find that the octupole deformation contributes
strongly to the dipolar eccentricity in all centralities, and
the hexadecapole deformation contributes to both dipolar and
triangular eccentricities in the mid-central collisions. They
are presented in Fig. 3 with a layout similar to Fig. 2. As
these contributions are a global geometry effect with a radial
distribution different from contributions arising from random
fluctuation in nucleon positions in each event, they probably
will be damped differently by viscous effects in comparison to
a′

n. Similar effects are known in the context of hydrodynamic
model studies as leading and subleading eccentricities, which
characterize different length scales in the radial direction for
εn, and subleading εn with higher frequency in radial direction
is more damped than the leading εn [48,49]. Results for other
b′

n,m can be found in Figs. 10–13 in Appendix B, including the
quartic dependence of 〈ε2

4〉 on β2 predicted in Table I.
The middle row of Fig. 3 shows that contributions between

different orders also follow a quadratic dependence, confirm-
ing the second part of Eq. (3). The slopes, b′

1,3, b′
1,4, and b′

2,4,
are summarized in the bottom row of Fig. 3. One should not
be tricked by the apparent small value of b′

1,3, though. Since
the value of a′

1, the 〈ε2
1〉 without deformation, is very small in

the UCC region, even a value of b′
1,3 = 0.015 together with a

modest octupole deformation of β3 = 0.1 could increase the
〈ε2

1〉 by about 15%. In mid-central collisions, due to a much
larger a′

1, the combined contributions from β3 = 0.1 and β4 =
0.1 are less than 10%. This result suggests that the dipolar
flow in the UCC region could in principle be used to probe
the octupole deformation. On the other hand, the influence
of β4 on ε3 is significant in the mid-central collisions, and is
negligible in the UCC region. The bottom row of Fig. 3 also
compares the slope parameters between U + U and Zr + Zr
collisions; they are very similar in the UCC region, but values
in Zr + Zr are about 20% smaller in the mid-central collisions.

To summarize the main message of Fig. 3, the εn for n = 2,
3, and 4 in the UCC region are not affected by deformations
of different order βm, m 	= n, leading to a particularly simple
expression, 〈ε2

n〉UCC = a′
n + b′

nβ
2
n . Exploiting this relation in

the UCC collisions from experimentally measured vn values
provides a clean way to constrain the βn parameters, as will
be discussed in Sec. III D.

B. Influence of nonaxial deformations

I first consider the influence of triaxiality parameter γ ,
which mixes the contribution from Y20 and Y22 components,
while keeping the overall magnitude of quadrupole deforma-
tion β2 fixed. The top-left panel of Fig. 4 shows the Npart

dependence of 〈ε2
2〉 for β2 = 0.28 but different γ values in the

U + U collisions. They are contrasted to the case for spherical
nuclei β2 = 0. It is clear that, over most of the centrality range,
〈ε2

2〉 have very little sensitivity to γ . The 〈ε2
2〉 calculated with

quark participants, shown as solid lines in the same panel, also
give very similar results.

To test the influence of volume/centrality fluctuations,
results obtained using Nquark as centrality are shown in the
top-right panel. Large splittings between different γ cases are
observed in the UCC region of 0–1%. Namely, the 〈ε2

2〉 for
oblate deformation γ = π/3 shows a stronger increase as a
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FIG. 3. Characterization of the influence of β3 to 〈ε2
1〉 (left column), β4 to 〈ε2

1〉 (middle column), and β4 to 〈ε2
3〉 (right column). The top row

shows the centrality dependence of 〈ε2
n〉 for several values of β3 or β4 as indicated in the panels, with markers and lines corresponding to d⊥

obtained with nucleons and quarks, respectively. The middle row shows the β2
3 or β2

4 dependence of 〈ε2
1〉 or 〈ε2

1〉 in several centrality ranges.
The bottom row shows the centrality dependence of the extracted slope parameter b′

1,3 (left), b′
1,4 (middle), or b′

3,4 (right) for U + U (black) and
Zr + Zr (red) systems for εn calculated based on nucleons (markers) or quarks (lines). The first three points in the bottom panels correspond
to 0–0.2%, 0.2–0.5%, and 0.5–1%, respectively.

function of Nquark before they all start to decrease slightly at
the largest Nquark values. This behavior suggests that the events
selection based on Npart or Nquark have different correlation
with, and therefore different sensitivity to, the triaxiality of the
nucleus. The largest difference is reached between the prolate
deformation and the oblate deformation, consistent with a
previous study based on the AMPT model [11,36]. In that study,
a similar dependence on γ is observed for the final-state v2.
Interestingly, the U + U v2 data from the STAR Collaboration
show a decreasing behavior as a function of Nch in the UCC

region, while the Au + Au v2 data show a slight rising trend
[29], compatible with a prolate deformation of 238U nucleus
and a oblate deformation of 197Au. In summary, my results
suggest that the two-particle correlators 〈v2

2〉 are sensitive to
the triaxiality only in the UCC region, and the level of sensi-
tivity depends on the choice of centrality estimator.

The middle row of Fig. 4 quantifies the γ dependence of
〈ε2

2〉 in several centrality ranges in Npart on the left and Nquark

on the right in the U + U collisions. The γ dependence is
well described by a linear function of cos(3γ ), reflecting the
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FIG. 4. Characterization of the influence of triaxiality γ on 〈ε2
2〉. Top row: The Npart (left) and Nquark (right) dependencies of 〈ε2

2〉 for different
values of γ , where markers and lines correspond d⊥ obtained with nucleons and quarks, respectively. Middle row: 〈ε2

2〉 − 〈ε2
2 (γ = π/6)〉 as a

function of cos(3γ ) in several centrality ranges based on Npart (left) and Nquark (right), which follows a linear function of cos(3γ ), whose slope
is parametrized as c′

2β
2
2 [see Eq. (4)]. Bottom row: the extracted c′

2 as a function of centrality for U + U (black) and Zr + Zr (red) systems for
εn calculated based on nucleons (markers) or quarks (lines). The first three points in the bottom panels correspond to 0–0.2%, 0.2–0.5%, and
0.5–1%, respectively.

expected threefold periodicity. A similar observation is also
made in the Zr + Zr collisions, although the sensitivity to γ is
observed over a larger centrality range. Based on this finding,
I arrive the following empirical formula that accounts for the
dependence on both β2 and γ :〈

ε2
2

〉 = a′
2 + [b′

2 + c′
2 cos(3γ )]β2

2 . (4)

Note that the c′
2β

2
2 is the slope of the cos(3γ ) dependence in

the middle row of Fig. 4. The bottom row of Fig. 4 shows the
centrality dependence of c′

2. The value of c′
2 is generally much

smaller than b′
2, c′

2 � b′
2, and approaches zero in the periph-

eral collisions. However, its value in the UCC region changes
sign and could gain a sizable magnitude depending on the
centrality estimator. Lastly, for other eccentricities εn, n 	= 2,
only very small dependencies on the triaxiality are observed,
typically less than 5%. However, these dependencies to a good
extent can also be described by a cos(3γ ) function (see the left
column of Figs. 10–13).

This result prompts the question of whether the finding
about triaxiality also applies for the octupole and hexade-
capole deformations. These higher-order deformations have
many more shape parameters. In the intrinsic frame defined
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FIG. 5. Left: The Npart dependence of 〈ε2
3〉 for different components of octupole deformation Y3,m with a deformation value of β3 = 0.2.

Right: The Npart dependence of 〈ε2
4〉 for different components of octupole deformation Y4,m with a deformation value of β4 = 0.2. The εn are

calculated either from nucleons (symbols) or quarks (lines). For all cases β2 = 0.

by the quadrupole deformation, after taking out the βn that
describe the overall strength of the deformation, there are
still six and eight independent shape variables for octupole
and hexadecapole deformations, respectively. Besides, there
are also large redundancies in the parameter space due to
spatial symmetry of spherical harmonics. For example, if the
underlying quadrupole deformation is axial symmetric, terms
like cos(δ)Yn,m + sin(δ)Yn,−m can be absorbed by an azimuthal
rotation of Yn,m without real physical consequence. There have
been several attempts to find efficient parametrizations to re-
duce this redundancy; see Refs. [50,51]. My paper follows a
more relaxed approach, where I just test special cases of the
octupole and hexadecapole shapes. It is reassuring that 〈ε2

n〉
has very small sensitivity to these internal angular parameters,
as will be described below.

For this study, I consider all real valued spherical har-
monics Y3,m and Y4,m. They are introduced one at a time in
the Glauber model and the resulting εn are calculated. The
results are summarized in Fig. 5. I found that ε3 values are
the same for all Y3,m components, except for small differences
in the UCC region. I also tried several combinations, such as
cos(δ)Y3,0 + sin(δ)Y3,1 with δ a free mixing angle, and the
conclusion remains the same. I suspect that this is true for
general mixing of all components α3,m in Eq. (1), as long as∑3

m=−3 α2
3m = 1 is satisfied. This independence is also ob-

served for β3 contribution to the dipolar eccentricity ε1 and
probably is a property for all odd-order deformations.

On the other hand, the 〈ε2
4〉 values show modest differ-

encexs, at a level of 15%, among different Y4,m components for
β4 = 0.2. Results for nonaxial components 1 + β4Y4,m, m 	= 0
lie exactly between 1 + β4Y4,0 and 1 − β4Y4,0. The differences
are largest in central collisions but are present throughout the
entire centrality range. This is different from 〈ε2

2〉, for which
the dependence on the triaxiality is observed only in the UCC
region. I initially thought that the 〈ε2

4〉 for the most general
hexadecapole shape should be in between the results for Y40

and −Y40, which turns out is not the case. In fact, the extrema
of 〈ε2

4〉 are reached for deformation described by
√

7/12Y4,0 +

√
5/12Y4,4 and

√
5/12Y4,0 − √

7/12Y4,4, with the maximum
for β4 = |β4| and minimum for β4 = −|β4| [51]. Identifying
heavy ion observables that are sensitive to the sign of β4 will
be particularly useful for understanding nuclear fission data
[52]. A more detailed investigation of this topic is given in
Appendix B.

C. Simultaneous presence of
quadrupole-octupole-hexadecapole deformations

Although the axial quadrupole distortion is the nuclear
deformation of primary importance, secondary contributions
from octupole and hexadecapole components often coexist
and can be important in some regions of nuclear chart [53].
One example is the pear-shaped 224Ra [54] with a (β2, β3, β4)
value of (0.1545, 0.097, 0.080) [55]. A summary of the defor-
mation parameters for the large systems collided at RHIC and
the LHC is given in Table II, highlighting the importance of
possible higher-order deformations. It would be interesting to
study how the eccentricities depend on the simultaneous pres-
ence of these different deformations; in particular, whether
the contribution from each component to εn is independent
of each other.

For this exploratory study, only combinations of axial-
symmetric components Yn,0, n = 2, 3, 4 are considered, from

TABLE II. Some estimates of the deformation values β2, β3, and
β4 for tlarge nuclei collided at RHIC and the LHC with references
given, mostly based on global analysis of the B(En) transition data.

β2 β3 β4

238U 0.286 [56] 0.078 [57] 0.07–0.09 [58,59]
208Pb 0.05 [56] 0.04 [60]
197Au −(0.13–0.16) [59,61] −0.03 [59]
129Xe 0.16 [59]
96Ru 0.05–0.16 [56,59]
96Zr 0.08 [56] 0.20–0.27 [62] 0.06 [59]
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FIG. 6. Relative change of 〈ε2
1〉 (left column), 〈ε2

2〉 (second column), 〈ε2
3〉 (third column), 〈ε2

4〉 (rightmost column) for U + U (top row) and
Zr + Zr (bottom row) collisions, relative to the undeformed case, for different combinations of β2, β3, and β4 as indicated in the left panels.
Only the axial components of the deformation, Y2,0, Y3,0, and Y4,0, are considered.

which the ε1, ε2, ε3, and ε4 are calculated. The analysis is
carried out for different combinations of (β2, β3, β4) from the
values β2 = ±0.1, 0, β3 = 0.1, 0, and β4 = 0.1, 0. The results
for U + U and Zr + Zr, in terms of ratios to the spherical
nuclei, are shown in Fig. 6. The contributions to eccentricities
from different deformation components are almost indepen-
dent of each other, i.e., following Eq. (3). Modest deviations
are observed in a few cases, however. In particular, the ε2 is
observed to increase with β3 in noncentral region, and the
difference of εn between β2 = 0.1 and −0.1 is also larger
when β3 and/or β4 are nonzero. Remarkably, such nonlinear
effects are very small in the UCC region, where εn is only
sensitive to βn except for n = 1. For the odd harmonics ε1 and
ε3, both β3 and β4 can have large contribution in noncentral
collisions.

Figure 7 considers a different scenario where the
quadrupole component is much larger than the octupole and
hexadecapole. For this case, I increase the β2 to the value
of 0.28. Most trends remain qualitatively the same as Fig. 6.
In particular, the ε1 and ε3 over most the centrality range,
as well as ε4 in the UCC region, are still dominated by the
β3 and β4. The behaviors for (β2, β3, β4) = (0.28, 0.1, 0.1)
for 238U, comparable to the values obtained from nuclear
structure calculations in Table II, are particularly interesting.
A significant enhancement of 〈ε2

3〉 of about 40% is expected
in the central collisions relative to the case of no deformation.
Since 〈ε2

3〉 ∝ 1/A without deformation in a large system, the

〈ε2
3〉 in the UCC Au + Au collisions should be 238/197 −

1 = 21% larger than those in the UCC U + U collisions.
Therefore in the presence of nonzero β3 and β4, the ordering
is expected to be flipped: the 〈ε2

3〉U is expected to be 20%
larger than 〈ε2

3〉Au, and consequently 〈v2
3〉U is expected to

be larger than 〈v2
3〉Au. The reverse ordering of v3 between

U + U and Au + Au collisions, if observed, would be a strong
indication for the presence of octupole deformation in 238U
nucleus.

Another useful example is the 96Zr + 96Zr and 96Ru + 96Ru
isobar collisions taken by the STAR Collaboration in 2018.

The ratio 〈v2
n〉Zr/〈v2

n〉Ru will directly constrain the relative
ordering of βn,Zr and βn,Ru [63], especially in the UCC region,
where other effects associated with the radial distribution of
nucleons, such as neutron skin, are less important [64,65].
Therefore observation of significant deviation of the ratio

〈v2
3〉Zr/〈v2

3〉Ru from unity with the characteristic centrality
dependence, similar to that shown in the bottom panels of
Fig. 6, would be strong evidence for the presence of octupole
correlations in these isobar systems.

In summary, the contributions of deformation to εn arise
mainly from βn for n = 2, 3, and 4. In particular, there are
small cross-contributions and nonlinear effects between β2

and ε3 and between β3 and ε2, especially in the UCC region.
This should be contrasted to the well-known anticorrelation
between a′

2 = 〈ε2
2〉|βn=0 and a′

3 = 〈ε2
3〉|βn=0 in the absence of
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FIG. 7. Relative change of 〈ε2
1〉 (left column), 〈ε2

2〉 (second column), 〈ε2
3〉 (third column), 〈ε2

4〉 (rightmost column) for U + U (top row) and
Zr + Zr (bottom row) collisions, relative to the undeformed case, for different combinations of β2, β3, and β4 as indicated in the left panels.
Only the axial components of the deformation, Y2,0, Y3,0, and Y4,0 are considered. The only difference from Fig. 6 is that a larger β2 value of
0.28 is considered.

nuclear deformation [66], where ε3 arises from random posi-
tion fluctuations of nucleons, the latter having opposite effects
for ε3 and ε2. Therefore, one can constrain the values of
β2, β3, and β4 by combining the information from v1, v2,
v3, and v4 in the ultracentral collisions, as will be discussed
next.

D. Constraining quadrupole, octupole, and hexadecapole
deformations using collective flow data

Exploiting the linear dependence of between ε2
2 and β2

2 , I
previously proposed a method [11] to relate the quadrupole
deformation between two collision systems of similar sizes.
This method can be straightforwardly generalized to octupole
and hexadecapole deformations.

Recall that, in the UCC region, vn for n = 2–4 depends
linearly on εn, and εn is sensitive only to βn according to
Eq. (3). Therefore, one expects that the vn in the UCC region
to also follow a similar dependence on βn,〈

v2
n

〉 = an + bnβ
2
n , n = 2, 3, 4, (5)

where averages are performed over events in a narrow cen-
trality class and an = 〈v2

n〉|βn=0. Following the argument of
Ref. [11], I write down a simple equation relating the defor-
mation and flow in two collision systems X + X and Y + Y
that are close in mass number, with subscript X (Y ) indicating

a quantity evaluated in X + X (Y + Y ) collisions:

β2
n,Y =

(
rv2

n
ra,n − 1

rn,Y

)
+ (

rv2
n
rb,n

)
β2

n,X , rv2
n
≡

〈
v2

n

〉
Y〈

v2
n

〉
X

,

rb,n = bn,X

bn,Y
, ra,n = an,X

an,Y
, rn,Y = bn,Y

an,Y
. (6)

As shown in the bottom panels of Fig. 2, b′
n has very

weak dependence on system size, therefore one expects it
is true also for bn and therefore rb,n ≈ 1. In the absence of
deformation, βn,X = βn,Y = 0, using the linear response re-
lation 〈v2

n〉 = k2
n〈ε2

n〉, the relative difference of harmonic flow
between X + X and Y + Y collisions, �〈v2

n〉/〈v2
n〉 = (〈v2

n〉X −
〈v2

n〉Y )/〈v2
2〉Y , can be decomposed as

�
〈
v2

n

〉
|βn=0〈

v2
n

〉
|βn=0

= �k2
n

k2
n

+
�

〈
ε2

n

〉
|βn=0〈

ε2
n

〉
|βn=0

→ �an

an
= �k2

n

k2
n

+ �a′
n

a′
n

.

(7)

In the UCC region, the eccentricities are dominated by the
random fluctuations of nucleon positions and to a good extent
can be approximated by 〈ε2

n〉 ∝ 1/A [67,68], and therefore
�〈ε2

n〉/〈ε2
n〉 ≈ � 1

A/ 1
A . The response coefficient kn is damped

with the respect to the ideal hydrodynamic value, kn,ih. In the
simplified acoustic scaling scenario of Ref. [15,69–71], one
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FIG. 8. The ratio of mean square eccentricity and mean square flow harmonics without deformation, a′
n = 〈ε2

n〉βn=0 and an = 〈v2
n〉βn=0,

between Au + Au and U + U collisions for n = 2 (top left), n = 3 (top right), n = 4 (bottom left) as a function of centrality based on
Nch obtained from the AMPT model in Ref. [11]. The arrows indicate the expected ratios of ms eccentricity in the large system limit:
(1/AAu)/(1/AU ) = 238/197 = 1.21. The bottom right panel shows the difference between r′

a,n = a′
n,Au/a′

n,U and ra,n = an,Au/an,U, scaled by
the expected viscous damping factor according to Eq. (9).

has kn/kn,ih ≈ 1 − Kn2, where K encodes the viscous cor-
rection. This leads to �kn/kn ≈ −�Kn2kn,ih/kn. For central
collisions of large systems [67], kn is close to the ideal hydro
limit, and kn,ih/kn are nearly independent of n, therefore one
obtains

�k2
n

k2
n

= n2

m2

�k2
m

k2
m

. (8)

Combining Eqs. (7) and (8) yields two coupled equations,

r′
a,2 − ra,2 = x3(r′

a,3 − ra,3) = x4(r′
a,4 − ra,4),

x3 ≈ 4
9 , x4 ≈ 4

16 . (9)

These equations involve only ratios of quantities between
two systems close in size. All these ratios are close to
unity and can be reliably estimated from the hydrodynamic
model. I have verified these relations explicitly in the AMPT

model simulation of Au + Au and U + U collisions without
deformations in a previous study [11,36]. The centrality de-
pendencies of these ratios are shown in Fig. 8 with X = 197Au,
Y = 238U. It is immediately clear that ra,n follows closely
the centrality dependence trends of r′

a,n, but has smaller

values due to viscous damping. The difference grows with
n, reflecting the stronger viscous damping for higher-order
flow harmonics. In the 0–1% most central collisions (the
rightmost point for each dataset), one has r′

a,n = 1.23 inde-
pendently of the harmonic number. This number is very close
to the expected ratio of atomic numbers (1/AAu)/(1/AU) =
238/197 = 1.21.

The bottom right panel demonstrates the robustness of
Eq. (9). Using the viscous damping relation (8), the predicted
values in the 0–1% most central collisions converge remark-
ably within 0.005 between different harmonics. But deviations
from this scaling appear away from the most central region.
For v3, one finds a value of x3 = 5/9 ≈ 0.55 achieves best
agreements over the 1%–25% centrality range as shown. This
value is close to x3 = 0.57 ≈ 5/9 from a recent state-of-the-
art hydrodynamic simulation [72]. For the v4, I found x4 =
5/16 ≈ 0.31 has the best agreement in the 1%–25% centrality
range, although the interpretation may be complicated by the
mode-mixing contribution from elliptic flow that scales like
v4 ∼ v2

2 , for which a smaller damping x4 = 8/16 is expected
[15]. For the remaining discussion, I shall focus simply on the
0–1% most central bin.
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First, I use the approximation 〈ε2
n〉|βn=0 ∝ 1/A and rewrite

Eqs. (9) and (6) as

β2
n,Y = rv2

n
ra,n − 1

rn,Y
+ rv2

n
β2

n,X , ra,2 = (1 − x3)
AY

AX
+ x3ra,3

= (1 − x4)
AY

AX
+ x4ra,4, x3 ≈ 4

9
, x4 ≈ 4

16
. (10)

Presumably, if one deformation e.g., n = 3 is absent, ra,3 =
〈v2

3,X 〉|β3=0/〈v2
3,Y 〉|β3=0 can be obtained directly from ex-

periments, which allows me to fix ra,2 and ra,4 values.
Alternatively, ra,n can be cross-calibrated by picking nuclei
with similar mass number, therefore all of them are very
close to unity. One such example is the Zr + Zr and Ru + Ru
isobar datasets for which both rb,n and ra,n should be very
close to unity.3 The only variable that needs to be evaluated
numerically in the hydrodynamic model is rn,Y = bn,Y /an,Y ,
which is the property of a single collision system.

One such numerical analysis has been performed in
Ref. [11]; here I offer a bit more discussion on the expected
behavior. Defining two response coefficients, kb,n = √

bn/b′
n

and ka,n = √
an/a′

n, rn can be rewritten as

rn = bn

an
= k2

b,n

k2
a,n

b′
n

a′
n

. (11)

The k2
a,n is the usual viscous damping coefficient for 〈v2

n〉 in
the absence of deformation, while k2

b,n describes the damping
of the β2

n -dependent part of the 〈v2
n〉 in Eq. (5). From the

AMPT model study, I found the ratio of the two damping
coefficients for n = 2 is kb,2/ka,2 ≈ 0.75 in the UCC region
in U + U collisions, and only has a very weak dependence on
Npart, suggesting that kb,2/ka,2 is not very sensitive to viscosity.
If this is the case, the model dependence lies in the ratio
r′

n = b′
n/a′

n, whose uncertainty arises mainly from centrality
smearing effects, e.g., the relative smearing of centrality based
on the final state charged particle multiplicity Nch and on Npart.

IV. DISCUSSION AND SUMMARY

The main finding of the paper is the simple parametric
relation between εn and multipole deformation of nuclei βn,
〈ε2

n〉 = a′
n + b′

nβ
2
n for n = 2, 3, and 4, valid in all centralities

and different collision systems. The a′
n reflects the eccen-

tricities for spherical nuclei, i.e., a′
n = 〈ε2

2〉|βn=0. The a′
2 is

dominated by elliptic shape of the overlap region, which starts
at a small value in central collisions and grows rapidly to-
ward mid-central and peripheral collisions. Other a′

n, n 	= 2
are generated by random fluctuations of participating nu-
cleons and typically scales as 1/Npart. On the other hand,
βn influences the global shape of the overlap region on an
event-by-event bases, and its contribution to eccentricity b′

nβ
2
n

plays a role similar to the so-called reaction plane elliptic-
ity ε2,RP associated with the average elliptic shape of the

3A few percent difference in ε2 might arise because the difference
in neutron skin effects between 96Zr and 96Ru [64,65], but these
effects are much smaller than the influence of nuclear deformation
in the UCC region.
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FIG. 9. Correlation of mean square elliptic eccentricity and β2

in 0–1% centrality, 〈ε2
2〉 = a′

2 + b′
2βn, estimated from the Glauber

model for various large collision species, where is a′
2 and b′

2 are
approximately a′

2 = 1.3/A and b′
2 = 0.23. For even-even nuclei, the

values of deformation come from low-energy data, as in Table II.
For 197Au, whose β2 is not directly measured, I also include a recent
estimate based on the v2 data from Au + Au and U + U collisions,
|β2,Au| ≈ 0.18 [11]. Offsets between different species are due to
differences in mass numbers A, therefore each group of nuclei with
very similar masses, (197Au, 198Hg, 208Pb) or (144Sm, 148Sm, 154Sm),
almost fall on the same curve.

overlap. Due to linear response vn = knεn predicted by hydro-
dynamic models, I expect a similar dependence for vn, 〈v2

n〉 =
an + bnβ

2
n . From these, I define deformation-dependent and

deformation-independent hydrodynamic response coefficients
kb,n = √

bn/b′
n and ka,n = √

an/a′
n. It would be insightful to

investigate and compare ka,n and kb,n, which will provide a
new kind of test on the hydrodynamic models.

The best place to reveal nuclear deformation is the ul-
tracentral collisions (UCC) of large systems, where the
deformation-driven components become comparable to or
even larger than the values without deformation. For this
purpose, I propose a collision-system scan of a few species of
similar size at RHIC to systematically establish the influence
of deformation; see the sketch in Fig. 9.

First, it would be useful to scan two nuclei, e.g., 208Pb
and another species, in the vicinity of 197Au, to improve the
modeling of Au + Au collisions, providing information which
is crucial for the precision interpretation of high-statistics
flow data. Comparison between Pb + Pb at RHIC and the
LHC will constrain any possible energy dependence of the
initial state effects and pre-equilibrium dynamics. Since 208Pb
is nearly spherical, a comparison of Pb + Pb with Au + Au
collisions at the same energy will also allow one to better
understand the impact of the moderate deformation of 197Au
in Au + Au collisions. The collisions of another species, e.g.,
198Hg + 198Hg (β2 = −0.11) would then probe more deeply
the nature of the deformation of 197Au, which, being an odd-
mass nucleus, has not been directly measured in low-energy
experiments. Having additional systems also provides an
independent cross-check on the initial state, for example one
can set up three relations like Eq. (10) to “triangulate” the
consistency of the three deformation values.
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In the second step, one can use flow measurements in con-
junction with hydrodynamics to map out the evolution of the
quadrupole deformation along the chain of stable samarium
isotopes. As proposed in Ref. [11], it would be useful to col-
lide three isotopes: 144Sm (β2 = 0.08, as spherical as 208Pb),
148Sm (β2 = 0.18, triaxial, much like 129Xe and 197Au), and
154Sm (β2 = 0.32 well-deformed like 238U). The evolution of
the quadrupole deformation can be mapped precisely at RHIC,
thus offering a valuable test of nuclear structure knowledge.
This scan also enables a search for enhanced octupole corre-
lations, i.e., β3 values, which are predicted to be present in
the region Z ≈ 56, N ≈ 88 [53] including the samarium iso-
topes. The influence of octupole correlations would manifest
in high-energy collisions as enhanced v3, as well as a modified
ρ(v2

3, [pT]) correlator. Evidence of static octupole moments at
low energies is rather sparse, and heavy ion collisions might
be a more sensitive approach.

In summary, I have studied the parametric dependence
of eccentricity εn on the quadrupole β2, octupole β3, and
hexadecapole β4 deformations of the nucleus in heavy ion
collisions. The mean square eccentricities 〈ε2

n〉 are found to
depend linearly on β2

n for n = 2, 3, and 4. I also find that β3

contributes significantly to ε1, and in noncentral collisions the
β4 also contributes to ε1 and ε3. In central collisions, there is
very little cross contribution between β2 and ε3 and between
β3 and ε2, although in noncentral collisions β3 (β2) contributes
modestly to ε2 (ε3). Since harmonic flow vn is directly driven
by the corresponding eccentricity, vn ∝ εn, one expects very
similar parametric dependencies between vn and βm for both
m = n and m 	= n. These findings provide a strong motivation
to use heavy ion collisions as a precision tool to scan and map
out the ground state nuclear deformations and compare with
low energy nuclear measurements, not only for the quadrupole
deformation, but also for the octupole deformation, whose
evidence is quite sparse in nuclear structure physics. The
procedure for doing this is presented. One finds that the
nonaxial deformations, in particular the triaxiality of
quadrupole deformation, do not influence 〈ε2

n〉, but they can
be probed by other observables such as vn − [pT] correlation,
and possibly higher-order cumulants of vn and [pT]. The infor-
mation about the shape of atomic nuclei obtained in heavy-ion
collisions is fully complementary to that obtained in nuclear
structure experiments. A carefully planned system scan of
stable species in the nuclear chart at RHIC, the LHC, and
other collider facilities could open a new direction of research
in nuclear physics.
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APPENDIX A: AN ANALYTICAL ESTIMATE IN
HEAD-ON COLLISIONS

I consider a liquid-drop nuclear potential with a sharp sur-
face, ρ(r, θ, φ) = ρ0 when r < R(θ, φ) and zero otherwise,

and focus on head-on collisions with maximum overlap, i.e.,
the two nuclei not only have zero impact parameter, but also
need to be aligned in a way to ensure that the overlap region
contains all the nucleons Npart = 2A. However, at the end of
this section, I also relax the requirement to consider only
zero impact parameter, which corresponds more closely to
the realistic scenario when the effects of centrality resolution
are taken into account. My goal is to establish the simple
parametric dependence between 〈ε2

n〉 and βm in Eq. (3).
For this discussion, I switch back to using complex spher-

ical harmonics Y m
n with the normalization condition on the

coefficients,
∑n

m=−n |αn,m|2 = 1 and αn,m = α∗
n,−m. I first re-

express Eq. (2) as an integral in 3D, using the relation r⊥ =
r sin θ :

εnein�n = −
∫

rn sinnθeinφρ(�r)d3�r∫
rn sinnθρ(�r)d3�r = −

√
4π (2n)!!

(2n + 1)!!

×
∫

(1 + ∑
l,m βlαl,mY m

l )n+3Y n
n sinθ dθ dφ∫

(1 + ∑
l,m βlαl,mY m

l )n+3 sinn+1θ dθ dφ
, (A1)

where I have used Y n
n =

√
(2n+1)!!
4π (2n)!! sinnθeinφ and the fact

that the range of integration along radial direction is r ∈
[0, R0(1 + ∑

l,m βlαl,mY m
l )]. Keeping the integration to lead-

ing order in βn, one has

εnein�n =−An

∫ (∑
l,m

βlαl,mY m
l Y n

n

)
sinθ dθ dφ=−Anβnαn,n,

An ≡ (n + 3)�(1 + 1/2 + n/2)

π�(1 + n/2)

√
(2n)!!

(2n + 1)!!
. (A2)

This result is easy to understand: for tip-tip collisions where
the z axis is aligned with beam direction (middle row
of Fig. 1), only the Y n

n component can contribute to the
eccentricity. The results, εn = Anβn/

√
2, for a nuclear sur-

face containing only this mode R = R0(1 + βnYn,n) = R0(1 +
βn/

√
2[Y −n

n + (−1)nY n
n ]), are listed as the first term of each

entry in the second row of Table I.
In order to calculate the body-body collision for Yn,0 =

Y 0
n shown in the top row of Fig. 1, the nuclear surface,

or equivalently the direction of projection Y n
n , needs to

be rotated by Euler angles (αe, βe, γe) = (0, π/2, 0), i.e.,
Y n

n = ∑
m′ Dn

n,m′ (0, π/2, 0)Y m′
n , where Dn

n,m′ is the Wigner
rotational matrix. Plugging this into Eq. (A2) and consid-
ering only axial deformation R = R0(1 + βnY 0

n ) give εn =
AnDn

n,0(0, π/2, 0)βn = √
(2n)!/(n!2n)Anβn. The values are

provided as the first term of each entry in the top row of
Table I.

The calculation of Eq. (A1) including higher-order terms
in βn is straightforward, and the full expressions up to the
second-order expansion are listed in the table. Interestingly, It
is found that if one only considers the expansion for a nuclear
surface described by axial deformations R = R0(1 + β2Y2,0 +
β3Y3,0 + β4Y4,0) in the numerator of an equation similar to
Eq. (A1), the ratios of the coefficients of the high-order terms
to that of the leading order in the first row of Table I are
exactly the same as Eq. (13) in Ref. [73]. However, including
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also the influence of the denominator of Eq. (A1) modifies the
coefficients of some of the second-order terms.

Next, I consider random orientation of the nucleus around
its center of mass described by Euler angles � = (αe, βe, γe),

and the rotations of the two nuclei are required to be the
same. For the purpose to calculating the εn, it is equivalent
to rotate the transverse plane by applying the substitution
Y n

n → ∑
m′ Dn

n,m′ (α, β, γ )Y m′
n , in Eq. (A2):

εnein�n = −An

∫ ( ∑
l,m,m′

βlαl,mDn
n,m′Y m

l Y m′
n

)
sinθ dθ dφ = −An

( ∑
l,m,m′

βlαl,mDn
n,m′δlnδm,−m′

)
= −Anβn

∑
m

αn,mDn
n,m. (A3)

Using the orthogonality relation for the D matrix, the mean square average over Euler angles is

〈
ε2

n

〉 = A2
nβ

2
n

∫ (∑
m

αn,mDn
n,m

)(∑
m′

αn,m′Dn
n,m′

)∗
d�

8π2
= A2

n

2n + 1
β2

n . (A4)

The result apparently is independent of the mixture of different shape components Y m
n , as long as the overall magnitude βn

remains the same. The numerical values are listed in the third row of Table I.
The dipolar eccentricity can be calculated in a similar way. The angular weight involved is decomposed into two spherical

harmonics, sin3θeiφ = 8/5
√

π/21(Y 1
3 − √

14Y 1
1 ), which implies that an octupole nuclear shape can give rise to a dipole

eccentricity. As the original nuclear surface has no dipole component, Y 1
1 drops out, and one obtains,

ε1ei�1 = −
∫

r3 sin3θ eiφρ(�r)d3�r∫
r3 sin3θ ρ(�r)d3�r ≈ − 64

5
√

21π3
β3

∫ ∑
m

α3,mY m
3

(∑
m′

D3
1,m′Y m′

3

)
= − 64

5
√

21π3
β3

∑
m

α3,mD3
1,m. (A5)

Therefore the ms average of dipolar eccentricity over all orientations gives

〈
ε2

1

〉 = 642

525π3
β2

3
1

8π2

∫ ∑
m,m′

α3,mα∗
3,m′D3

1,mD3∗
1,md� = 4096

3625π3
β2

3 , (A6)

again independently of the mixture of different shape components Y m
3 . Note that this remarkable contribution is present entirely

because of the r3
⊥ weight in the definition of ε1 in Eq. (2), which is naturally required by the cumulant framework [13].

Next, I consider the possible contribution of quadrupole deformation to the ε4. For this purpose, one expands the nuclear
shape in the numerator of Eq. (A1) and, keeping terms that are proportional to β2

2 ,

ε4 ≈ 3A4β
2
2

∫ ∑
m,m′

α2,mα2,m′D4
4,−m−m′Y m

2 Y m′
2 Y −m−m′

4 sinθ dθ dφ

= 3A4β
2
2

15√
4π

∑
m,m′

α2,mα2,m′D4
4,−m−m′

(
2 2 4
0 0 0

)(
2 2 4
m m′ −m − m′

)
(A7)

= 45

2π

√
2

35
β2

2

[
α′

4,0D4
4,0 + α′

4,2√
2

(
D4

4,2 + D4
4,−2

) + α′
4,4√
2

(
D4

4,4 + D4
4,−4

)]
, (A8)

where α′
4,0 = [7 + 5 cos(2γ )]/12, α′

4,2 = √
5/12 sin(2γ ), and α′

4,4 = [1 − cos(2γ )]
√

35/12, satisfying (α′
4,0)2 + (α′

4,2)2 +
(α′

4,4)2 = 1. The average over Euler angles gives

〈
ε2

4

〉 = 452

4π2

2

35
β4

2

∫ (∑
m

α′
4,mD4

4,m

)(∑
m′

α′
4,m′D4

4,m′

)∗
d�

8π2
= 45

14π2
β4

2 . (A9)

Lastly, I consider the case when one only keeps the zero
impact parameter requirement. Ignoring the few nucleons (or
a small portion of the volume) that may not be in the overlap
region, Eq. (A3) is simply the average of two nuclei with
different Euler angles �1 and �2:4

εnein�n = −An
βn

2

∑
m

αn,m[Dn
n,m(�1) + Dn

n,m(�2)]. (A10)

4I am unable to derive an analytical formula for the contribution
of the small portion of volume not included in the overlap region.
For a few special cases, not including this volume is found to reduce
slightly the coefficients of the β2

n dependence.

From this, the mean square average, similarly to Eq. (A4),
needs to be integrated over both �1 and �2. The crossing
terms such as Dn

n,m(�1)Dn
n,m(�2)∗ vanish after this integra-

tion, and the final result is exactly half of the original value.
This argument also applies to the 〈ε2

1〉 in Eq. (A6) and the
quadrupole contribution to ε4 in Eq. (A9). So for a more
realistic selection of ultracentral collisions corresponding to
close to zero impact parameter, the coefficients of the β2

n
dependence are a factor of 2 smaller. These values are listed
in the bottom row of Table I and they are closer to Monte
Carlo Glauber model result shown in the bottom row of Figs. 2
and 3.
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FIG. 10. The centrality dependence, characterized by Npart , of 〈ε2
n〉 in U + U collisions in the presence of different quadrupole triaxiality

γ for β2 = 0.28 (left column), different axial quadrupole deformation β2 (second column), different axial octupole deformation β3 (third
column), and different axial hexadecapole deformation β4 (last column) for n = 1 (top row), n = 2 (second row), n = 3 (third row), and n = 4
(bottom row). The markers and line curves represent 〈ε2

n〉 calculated from the nucleon Glauber model and quark Glauber model, respectively.
The functional form of the deformation and different parameters are given in the top-row panel for each corresponding column.

APPENDIX B: MORE DETAILED RESULTS

For completeness, the full set of correlations between
mean square eccentricities 〈ε2

n〉 and deformation parameters

γ , β2, β3, and β4 in Eq. (1) are included here. The 〈ε2
n〉

are calculated using the nucleon Glauber model and quark
Glauber model in the U + U collisions. They are compiled
in Figs. 10 and 11 as a function of two centrality estimators,
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FIG. 11. Same as Fig. 10 but using the Nquark as centrality.

Npart and Nquark, respectively. From these plots, the ratios
of 〈ε2

n〉 to that obtained for default choice of each param-
eter are plotted in Figs. 12 and 13, respectively. For the
smaller Zr + Zr collision system, I only show the ratios in
Figs. 14 and 15.

The main difference between the two centrality estimators
is in the behavior of 〈ε2

n〉 in the UCC region, more clearly
visible in the ratio plots. However, whether 〈ε2

n〉 themselves

are calculated from nucleons or quarks has little influence on
these ratios. Another important point is about the contribution
of βm to 〈ε2

n〉 for m 	= n. Although such mixings could in
principle be used to constrain the β3 using v1 as well as
β4 using v1 and v3, this mixing also forbids a straightfor-
ward disentanglement of different deformation components.
Fortunately, such mixing effects are minimal in the UCC colli-
sions, and, if one stays in the 0–1% centrality range, each 〈ε2

n〉
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FIG. 12. The ratio of 〈ε2
n〉 to the 〈ε2

n〉 in U + U collisions calculated with the default choice of each parameter (indicated by marks or lines
around unity in each panel); they are obtained directly from Fig. 10. The three solid vertical bars around unity in each one of these ratio plots
indicate the locations of 2%, 1%, and 0.2% centrality.

only has one dominating contribution: 〈ε2
n〉UCC = a′

n + b′
nβ

2
n

for n = 2, 3, and 4 and 〈ε2
1〉UCC = a′

1 + b′
3,1β

2
3 . In noncentral

collisions, there is a modest cross-correlation between β3

and 〈ε2
2〉 and between β2 and 〈ε2

3〉, with the former having
somewhat larger amplitudes. However, in the medium-size
Zr + Zr collision system, the cross correlation between β3 and

〈ε2
2〉 is still significant, but almost disappears between β2 and

〈ε2
3〉 (see Figs. 14 and 15). The reason can be explained as

follows. In the large U + U collision system, one notes that
the maximum influence of β3 on 〈ε2

2〉 appears at larger Npart

or Nquark (around 3.5% centrality) than the location of the
maximum influence of β2 on 〈ε2

3〉 (around 6% centrality). In
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FIG. 13. Same as Fig. 12 but using the Nquark as centrality.

the smaller Zr + Zr collision system, the peak location shifts
towards the more peripheral region, maximum influence of
β3 on 〈ε2

2〉 shifts to around 7% centrality, and the maximum
influence of β3 on 〈ε2

2〉 shifts to around 15% centrality. In
the latter case, the fluctuation-driven 〈ε2

3〉 component is much
more important than enhancement from β2. In the former case,
the 〈ε2

2〉 value for the undeformed case is also larger, leading

to a smaller relative increase compared to U + U for the
same β3.

Focusing on the 0–1% centrality range, I then obtain the
〈ε2

n〉 as a function of various β2
n . The results are summarized

in Figs. 16 and 17 for U + U and Zr + Zr collisions, respec-
tively. In most cases, strict linear dependencies are observed.
One noticeable exception is the relation between 〈ε2

4〉 and
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FIG. 14. Same as Fig. 12 but for Zr + Zr collisions.

β2, which is better described by a quartic dependence β4
2

in the UCC region of U + U, consistent with the analytical
results in Table I. However, in the mid-central and periph-
eral U + U collisions and in Zr + Zr over the full centrality
range, one finds that it is still better described by a β2

2 de-
pendence. Lastly, the slopes of these dependencies are nearly
independent of whether nucleons or quarks are used for εn

or the centrality, with the exception of the γ dependence
of 〈ε2

2〉.
Section III B discusses briefly the influence of nonax-

ial higher-order deformation, analogous to the triaxiality
for the quadrupole deformation. This aspect is explored by
mixing two different octupole or hexadecapole components,
while keeping the overall magnitude of the deformation
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FIG. 15. Same as Fig. 13 but for Zr + Zr collisions.

the same. Three cases are studied for the octupole de-
formation, 1 + β3(cos δY3,0 + sin δY3,1), 1 + β3(cos δY3,0 +
sin δY3,2), and 1 + β3(cos δY3,0 + sin δY3,3); the results are
shown in the left three columns of Fig. 18. Only a small, less
than 3%, dependence on the mixing angle δ is observed for
〈ε2

3〉. The situation for hexadecapole is a bit more involved.
To simplify the discussion, I consider only the components
respecting all three reflection symmetries, Y4,0, Y4,2, and Y4,4.

The nuclear surface can be parametrized with two angular
variables γ4 and δ4, in addition to β4 [51,74]:

R(θ, φ) = R0(1+β4{cos δ4Z0+sin δ4[cos γ4Z1 + sin γ4Z2]}),

Z0 =
√

7

12
Y4,0 +

√
5

12
Y4,4,

Z1 =
√

5

12
Y4,0 −

√
7

12
Y4,4, Z2 = Y4,2. (B1)
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FIG. 16. The parametric dependence of 〈ε2
n〉 in 0–1% centrality U + U collisions on the quadrupole triaxiality γ for β2 = 0.28 (left

column), axial quadrupole deformation β2 (second column), axial octupole deformation β3 (third column), and axial hexadecapole deformation
β4 (last column) for n = 1 (top row), n = 2 (second row), n = 3 (third row), and n = 4 (bottom row). The 〈ε2

n〉 and centrality can be determined
from either the nucleon Glauber or quark Glauber, model leading to four different curves in each panel as indicated by the legend in the top-left
panel. They are obtained directly from plots like Figs. 10 and 11, where each panel provides the two set of data points in the corresponding
panel in this figure.

The parameter γ4 plays a role similar to the triaxiality
parameter γ . For example, for δ4 = acos(

√
7/12), γ4 = 0,

2π/3, and 4π/3 would correspond to axial-hexadecapole

shape around z, x, and y axes, respectively. The right two
columns of Fig. 18 show results for the two mixing cases,
1 + β4(cos γ4Z1 + sin γ4Z2) and 1 + β4(cos δ4Z0 + sin δ4Z1),
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FIG. 17. Same as Fig. 16 but for 0–1% most central Zr + Zr collisions.

respectively. A clear linear dependence on cos 3γ4 is ob-
served in the first case. The dependence in the second case
is somewhat more complex, but I do observe it reaches
maximum when δ4 = 0 or π/2, for which hexadecapole shape

is described by Z0 =
√

7
12Y4,0 +

√
5

12Y4,4 or Z1 =
√

5
12Y4,0 −

√
7

12Y4,4 and positive β4 = |β4|. The minimum on the other
hand corresponds to the same shape components but with
β4 = −|β4|. This behavior is similar to the influence the pro-
late vs oblate quadrupole deformation on the 〈ε2

2〉 as seen in
Fig. 4.
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FIG. 18. Effects of mixing between three pairs of octupole components in the left three columns, 1 + β3(cos δY3,0 + sin δY3,1), 1 +
β3(cos δY3,0 + sin δY3,2), and 1 + β3(cos δY3,0 + sin δY3,3), and between two pairs of hexadecapole components in the right two columns,

1 + β4(cos γ4Z1 + sin γ4Z2) and 1 + β4(cos δ4Z0 + sin δ4Z1), where Z0 =
√

7
12Y4,0 +

√
5

12Y4,4, Z1 =
√

5
12Y4,0 −

√
7

12Y4,4, and Z2 = Y4,2 (see

text). The results are obtained for 0–1% central U + U collisions and are presented separately for 〈ε2
n〉, n = 1, 2, 3, and 4 from the top to

the bottom rows. The 〈ε2
n〉 and centrality are determined from either a nucleon Glauber or quark Glauber model, leading to four different

curves in each panel as indicated by the legend in the right panel of the second row.
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