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The dynamical cluster-decay model (DCM) is employed to study the excitation functions and fusion evapora-
tion residue (ER) cross sections for the production of 283Cn and 282Cn isotopes via 3n and 4n decay channels from
the 286Cn∗ compound nucleus. The study includes quadrupole deformation β2i and hot-optimum orientations θi

at various 48Ca-beam energies Elab = 233.3–240 MeV (equivalently, excitation energies E∗ = 34.4–39.8 MeV),
supporting symmetric fission, which agrees well with the experimental data. The reaction was investigated
by using a hot compact configuration. The Skyrme forces used are new forces GSkI and KDE0(v1), and the
conventional force SIII. Apparently, the DCM with the pocket formula for nuclear proximity potential reproduces
the measured data on fusion ER nicely within single-parameter fitting of �R, independently of the nuclear
interaction potential and Skyrme force used. We have also calculated the fusion-fission cross section (σ predicted

f f )
at E∗ = 35 MeV and ER cross sections for the experimentally unobserved neutron emission channels 1n, 2n,
and 4n at different excitation energies E∗. Further, we have proposed new target-projectile (t-p) combinations
for the synthesis of 286Cn for future experiments.

DOI: 10.1103/PhysRevC.105.014628

I. INTRODUCTION

The establishment of the center of an island of stability
in the region of superheavy nuclei has been a long-standing
problem of nuclear structure studies, i.e., to identify the next
doubly magic nucleus (magic Z and magic N) heavier than
208Pb [1]. The stability of superheavy nuclei depends strongly
on shell effects and increases significantly at closed proton
and neutron shells. For instance, beyond uranium the stability
of these nuclei lessens quickly with the increasing element
number Z and increases sharply when their neutron number
approaches the spherical shell closure. According to vari-
ous theoretical models, the next spherical shell closure for
the neutrons beyond neutron number N = 126 is predicted
at N = 184 [2–4]. Thus, to synthesize spherical superheavy
nuclide, it is more appropriate to select reaction partners with
the highest possible number of neutrons as close as possible to
N = 184 in order to approach the shell closure [5]. During the
last three decades transfermium elements with Z = 107–112
were synthesized through the so-called cold fusion reactions
using lead and bismuth targets [6]. The advantage of these
reactions is that only slightly excited (E∗ = 10–20 MeV)
compound nuclei are produced at bombarding energies near
the fusion barrier. This is an outcome of the double magic
structure of the 208Pb target and the strongly bound projec-
tiles from 54Cr to 70Zn. The main reason behind survival
against prompt fission is considered to be the low excitation
energies of fragile heavy compound nuclei. The isotopes of
the elements Z = 102–112 were also synthesized through hot
fusion reactions using targets Th to Cf [7,8]. However the
excitation energies of compound nuclei are relatively high

(30–50 MeV) in case of hot fusion reactions in comparison
to cold fusion reactions, which results in reduction of the sur-
vival probability of compound nuclei in hot fusion reactions.
It can be partially compensated by using highly asymmetric
target-projectile (t-p) combinations [5] such as 238U + 48Ca
leading to enhanced cross section for the formation of a
compound nucleus. Therefore various asymmetric t-p com-
binations have been used to synthesize superheavy elements
through hot fusion reactions [9]. Among these, the reactions
induced by the doubly magic 48Ca nucleus on the deformed
reaction partner 238U has attracted a lot of attention because,
from the point of view of a cold reaction, the fusion barrier is
lowest for the 48Ca plus deformed-target combination as com-
pared to other t-p combinations. Further, it provides suitable
platform to investigate the role of deformation and orientation
in the fusion reaction as studied in [9] using the proximity
potential. Therefore the combination 238U + 48Ca has been
used to produce isotopes of the superheavy element coper-
nicium (Z = 112) through neutron evaporation from 286Cn∗

[8,10–13] and is studied theoretically in the present work. It is
worth mentioning here that the Cn is a d-block transactinide
element and belongs to group 12 elements in the periodic
table. Recently it was found that Cn is a relativistic noble
liquid and also it is of medicinal importance in treatment of
cancers and tumors by using Cn nanoparticles [14,15].

Theoretically various models/approaches like the dynam-
ical cluster-decay model (DCM) [9,16], the Langevin model
[17,18], time-dependent Hartree-Fock [19–21], and the dinu-
clear system (DNS) model [22,23] have been used to describe
the dynamics of fusion-fission processes. However, in the
present study the excitation function of 286Cn∗ formed via
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238U + 48Ca reaction has been studied within the framework
of the DCM using Skyrme forces. Theoretically the DCM,
wherein the neck-lenth parameter �R is the only parameter,
is based on the quantum mechanical fragmentation theory
(QMFT) and is an excellent framework to describe the syn-
thesis of superheavy elements. Here, we have used the DCM
to analyze the excitation function of 286Cn∗ produced in the
238U + 48Ca reaction by using the nuclear potential derived
from the Skyrme energy density formalism (SEDF) [24–26]
based on the semiclassical extended Thomas-Fermi (ETF)
approach under the frozen density approximation [27]. Specif-
ically, the conventional SIII and newer GSkI and KDE0(v1)
Skyrme forces have been used, and it has been found that
all three chosen Skyrme forces fit the data nicely for 3n-4n
decays from 286Cn∗, for which the measured ER cross sec-
tions are maximum. However, for the production of 286Cn∗,
the experiments suggest that the hot compact configuration is
preferred over the cold elongated configuration [8]. Neverthe-
less we have made our calculations for both the cold elongated
and hot compact configurations.

Now, the questions we would like to answer are whether or
not the excitation functions for both hot and cold processes
depend on the nuclear interaction, and whether or not the
production cross section depends on the mass asymmetry
[η = (A2 − A1)/(A1 + A2)] of the reaction system in the en-
trance channel. Also, we would like to identify, among all the
possible t-p combinations that form a cold compound nucleus
(CN), which one is most probable and results in largest cross
section. Further, we would also like to predict the fission cross
section for 286Cn∗.

In the following, we find that exactly the same t-p combina-
tions as are used in the experiment [8,12], plus a few more, are
suggested for the synthesis of CN 286Cn∗ on the basis of the
Skyrme force included the DCM. Thus, the aim of this paper is
at least fourfold: First, we search for the optimal reaction part-
ners for the synthesis of the 286Cn∗ compound system other
than those already used in experiments. Second, depending
on the choice of orientation degree of freedom (cold or hot
configuration), does the CN 286Cn∗ fission via symmetric or
asymmetric mass distribution? Third, we analyze excitation
functions data for 3n and 4n emission (ER cross sections σxn,
x = 3–4, as a function of excitation energy E∗) in the decay
of 286Cn∗ in terms of a single parameter of the model, the
neck-length parameter �R. Finally we predict the fission cross
section of 286Cn∗.

The paper is organized as follows. Section II gives the very
relevant details of the theoretical model used, comprising the
QMFT and the DCM, and of SEDF in the semiclassical ap-
proach. In Sec. III the formation of compound nucleus 286Cn∗

in terms of the QMFT and its decay via 3n and 4n emission
by using the DCM are studied. The discussion of our results
and a summary constitute Sec. IV.

II. THEORETICAL FORMALISM

In this section, we first introduce the well-known quan-
tum mechanical fragmentation theory (QMFT) [28–33] and
then describe the very essential details of the DCM based on
QMFT and SEDF in the semiclassical ETF approach.

FIG. 1. Scattering potentials V (R, �) for 286Cn∗ → 283Cn∗ +3n at
excitation energy E∗ = 35 MeV and at fixed temperature T = 1.124
MeV at different angular momentum � values varying from �min =
20h̄ to �max = 80h̄ for the Skyrme force KDE0(v1) (� < �min do not
contribute).

A. The dynamical cluster-decay model (DCM)

When a projectile having energy larger than the barrier
energy is projected onto some target, compound nucleus for-
mation takes place. If the so formed nuclear system is heavy
enough, i.e., ACN � 200, then the most probable decay mode
is fragment emission. The process of decay through fragments
can be described very well within the framework of the DCM
based on QMFT.

The DCM [16,34–54] is worked out in terms of collec-
tive coordinates of mass [and charge] asymmetry η = (A1 −
A2)/(A1 + A2) [and ηZ = (Z1 − Z2)/(Z1 + Z2)], and relative
separation R, the multipole deformations βλi, and orientations

FIG. 2. Schematic diagram showing the angles (θ1, θ2, α1, and α2).
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FIG. 3. Mass fragmentation potential V (Ai ), i = 1, 2 at � = �max for the formation of CN 286Cn∗ at T = 1.124 MeV corresponding to
E∗=35 MeV, calculated at fixed R = Rt + �R with �R = 1.0 fm, and with β2i deformations and “optimum hot” orientations included for all
possible t-p combinations, using Skyrme forces (a) GSkI, (b) KDE0(v1), and (c) SIII.

θi (i = 1, 2) of two nuclei in the same plane. Here A1 and
A2 (Z1 and Z1) are the mass (charge) numbers of fragments
and A1 + A2 (= A) is the mass number of the compound
nucleus. In the DCM, using decoupled approximation to R
and η motion, we define the compound nucleus decay (or
fragment production) cross section in terms of partial wave
analysis which is given as

σ =
�max∑
�=0

σ� = π

k2

�max∑
�=0

(2� + 1)P�
0 P�, k =

√
2μEc.m.

h̄2 , (1)

where the preformation probability P�
0 refers to η motion

and the penetrability P� to R motion. �max is the maximum
angular momentum, fixed here for the light particle cross
section approaching zero, i.e., σER(�) → 0 at � = �max, μ =
[A1A2/(A1 + A2)]m = 1

4 Am(1 − η2) is the reduced mass with
m the nucleon mass, and Ec.m. is the entrance channel center-
of-mass (c.m.) energy.

P0 for each � is the solution of the stationary Schrödinger
equation in η, at fixed R = Ra, the first turning point(s) of the
penetration path(s) (illustrated, e.g., in Fig. 1 for different �

values):

[
− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ V (η)

]
ψν (η) = E ν

η ψν (η), (2)

with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-states solutions. Above, V is a potential which in
general depends on various quantities like η, R, �, T , β, θ ,
etc.; however, only η dependence is explicitly shown here for
brevity. The mass parameters Bηη in Eq. (2) are the smooth
classical hydrodynamical masses [55], used for simplicity.
In principle, the shell corrected masses, like the Cranking
masses, should be used. The probability

P0(Ai ) = |ψ (η(Ai ))|2
√

Bηη

2

A
, (3)

where, for a Boltzmann-like function,

|ψ |2 =
∞∑

ν=0

|ψν |2 exp(−E ν/T ). (4)

P0 contains the structure information of the compound nu-
cleus, which enter via the fragmentation potential.
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FIG. 4. Same as Fig. 3, but for “optimum cold” orientations.

The penetrability P� is the Wentzel-Kramers-Brillouin
(WKB) integral between Ra and Rb,

P� = exp

[
−2

h̄

∫ Rb

Ra

{2μ[V (R, �) − Qeff ]}1/2dR

]
, (5)

with Rb as the second turning point, satisfying

V (Ra, �) = V (Rb, �) = Qeff (T, �) = TKE(T ). (6)

Here TKE(T ) is the temperature-dependent total kinetic en-
ergy. The � dependence of Ra is defined by

V (Ra, �) = Qeff (T, � = �min), (7)

which means that Ra, given by Eq. (7), is the same for all � val-
ues, and that V (Ra, �) acts like an effective Q value, Qeff (T, �),
given by the total kinetic energy TKE(T ). �min refers to the
minimum value that starts to contribute to the WKB integral.
Apparently, as the � value increases, the Qeff (T ) value [=
TKE(T )] increases and hence V (Ra, �) increases (see Fig. 1).

For the decay of a hot compound nucleus, we use the
following postulate for the first turning point:

Ra(T ) = R1(α1, T ) + R2(α2, T ) + �R(T )

= Rt (α1, α2, T ) + �R(T ), (8)

with �R(T ) as the neck-length parameter, assimilating the
neck formation effects [56,57]. This method of introducing
a neck-length parameter is similar to that used in both the
scission-point [58] and saddle-point [59,60] statistical fission
models. Note that Ra(T ) in Eq. (8) are α dependent since
Rt (T ) are different for different α values.

Then, the deformation and orientation dependent fragmen-
tation potential V (η) in Eq. (2), at any temperature T , is given
as

V (η, T ) =
2∑

i=1

VLDM(Ai, Zi, T ) +
2∑

i=1

δU exp

(
−T 2

T 2
0

)

+VC (R, Zi, βλi, θi, T ) + V�(R, Ai, βλi, θi, T )

+VN (R, Ai, βλi, θi, T ). (9)

Here, VLDM is the T -dependent liquid drop energy of
Davidson et al. [61] with its constants at T = 0 refitted in
Refs. [39,40,44,62]. The shell correction δU calculations are
done with the help of the “empirical” estimates of Myers
and Swiatecki [63]. The Coulomb potential for a multipole-
multipole interaction between two separated, deformed, and
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FIG. 5. Preformation yields for “hot configurations” referring to the fragmentation potentials in Fig. 3.

oriented nuclei is

VC = Z1Z2e2

R
+ 3Z1Z2e2

∑
λ,i=1,2

Rλ
i (αi, T )

(2λ + 1)Rλ+1

×Y (0)
λ (θi )

[
βλi + 4

7
β2

λiY
(0)
λ (θi)

]
, (10)

with θi and αi the angles as shown in Fig. 2, and the angular
momentum dependent potential is

V� = h̄2�(� + 1)

2I
(11)

with I = IS = μR2 + 2
5 A1mR2

1(α1, T ) + 2
5 A2mR2

2(α2, T ), the
moment of inertia in the sticking limit. VN is the nuclear
interaction potential discussed in the next subsection.

Apparently, in the DCM, both the light particles (A2 � 4 or
5), referring to ER, and the complex, heavy mass fragments,
referring to fusion-fission (ff) processes, are treated as the
dynamical collective mass motion of preformed clusters or
fragments through the barrier. The same formula [Eq. (1)]
is also applicable to the noncompound, competing quasifis-
sion (qf) decay channel σq f where P0 = 1 for the incoming

channel, since both the target and projectile nuclei can be
considered to have not yet lost their identity.

B. Nuclear interaction potential based on SEDF
in the semiclassical ETF approach

The nuclear interaction potential within the energy density
formalism is defined as (see, e.g., [64,65])

VN (R) = E (R) − E (∞), (12)

i.e., the nucleus-nucleus interaction potential as a function of
separation distance, VN (R), is the difference of the energy ex-
pectation value E of the colliding nuclei that are overlapping
(at a finite separation distance R) and are completely separated
(at R = ∞), where

E =
∫

H (�r)d�r, (13)

For the Skyrme interaction the energy density H (�r) is an
algebraic function of the nucleon densities ρn (ρp), the ki-
netic energy τn (τp) and spin densities �Jn ( �Jp). The Skyrme
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FIG. 6. Preformation yields for “cold configurations” referring to the fragmentation potentials in Fig. 4.

Hamiltonian density is defined as [66,67]

H (ρ, τ, �J ) = h̄2

2m
τ + 1

2
t0

[(
1 + 1

2
x0

)
ρ2 −

(
x0 + 1

2

)(
ρ2

n + ρ2
p

)] + 1

2

3∑
i=1

t3iρ
αi

[(
1 + 1

2
x3i

)
ρ2 −

(
x3i + 1

2

)(
ρ2

n + ρ2
p

)]

+1

4

[
t1

(
1 + 1

2
x1

)
+ t2

(
1 + 1

2
x2

)]
ρτ − 1

4

[
t1

(
x1 + 1

2

)
− t2

(
x2 + 1

2

)]
(ρnτn + ρpτp)

+ 1

16

[
3t1

(
1 + 1

2
x1

)
− t2

(
1 + 1

2
x2

)]
( �∇ρ)2 − 1

16

[
3t1

(
x1 + 1

2

)
+ t2

(
x2 + 1

2

)]
[( �∇ρn)2 + ( �∇ρp)2]

−1

2
W0[ρ �∇ · �J + ρn �∇ · �Jn + ρp �∇ · �Jp] − C

[
1

16
(t1x1 + t2x2) �J2 − 1

16
(t1 − t2)

( �J2
p + �J2

n

)]
. (14)

Here, ρ = ρn + ρp, τ = τn + τp, and �J = �Jn + �Jp are the
nuclear, kinetic energy, and spin-orbit densities for the com-
posite system, respectively. m is the nucleon mass, and x j , t j

( j = 0, 1, 2), x3i, t3i, αi (i = 1, 2, 3), W0, and C are the Skyrme
force parameters, fitted by different authors to ground state
properties of various nuclei. For a conventional force [25], like

SIII, some constants [C, x3i, t3i, and αi (i = 2, 3)] are zero,
and t31 = 1

6 t3, x31 = x3, and α1 = α. Then, for newer forces
of Agrawal et al. [66,68], like GSkI and KDE0(v1), we have
C = 1 and six additional constants [two each of x3i, t3i and
αi], determined by a fit to several properties of the normal and
isospin-rich nuclei.
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TABLE I. The t-p combinations (A1, A2), referring to min-
ima in the potential energy surface (PES) at �max = 80h̄ and for
quadrupole deformed and “optimum cold” oriented nuclei forming
the CN 286Cn∗ at T = 1.124 MeV (E∗ = 35 MeV) for the illustrative
KDE0(v1) Skyrme force, and their other characteristic properties.

Reaction VB RB

A1 + A2 β21 β22 (MeV) (fm)

278Mt + 8Li 0.136 −0.09 76.645 9.79
272Sg + 14C 0.201 −0.016 108.179 10.34
264Lr + 22F 0.22 −0.028 138.825 10.96
248Cm + 38S 0.235 0.0 182.966 12.06
238U + 48Ca 0.215 0.0 207.605 12.47
218Po + 68Ni 0.039 0.018 249.316 13.08
202Pt + 84Se −0.061 0.053 281.344 12.92
195Os + 91Kr 0.127 0.209 293.468 12.72
178Er + 108Ru 0.279 0.283 329.629 12.25
152Nd + 134Te 0.262 0.0 338.994 12.51
148Ce + 138Xe 0.216 0.0 339.095 12.97

The kinetic energy density in the ETF method, considered
here up to second-order terms for reasons of being enough for
numerical convergence [26], is (q = n or p)

τq(�r) = 3

5
(3π2)2/3ρ5/3

q + 1

36

( �∇ρq)2

ρq
+ 1

3
�ρq

+1

6

�∇ρq · �∇ fq + ρq� fq

fq
− 1

12
ρq

( �∇ fq

fq

)2

+1

2
ρq

(
2m

h̄2

)2(W0

2

�∇(ρ + ρq)

fq

)2

, (15)

with fq as the effective mass form factor,

fq(�r) = 1 + 2m

h̄2

1

4

{
t1

(
1 + x1

2

)
+ t2

(
1 + x2

2

)}
ρ(�r)

−2m

h̄2

1

4

{
t1

(
x1 + 1

2

)
− t2

(
x2 + 1

2

)}
ρq(�r). (16)

FIG. 7. Scattering potentials V (R) for “hot fusion” reaction
valleys with “hot-compact” configurations of Fig. 3(b) at a fixed tem-
perature T = 1.124 MeV (E∗=35 MeV) and �max = 80h̄, illustrated
for KDE0(v1) Skyrme force. The potentials for the t-p combinations
predicted for future experiments are shown by solid lines while for
that used in experiments [8,12] is shown by a dotted line.

Note that both τq and fq are each a function of ρq and/or ρ

only.
The spin-orbit density �J is a purely quantal property, and

hence has no contribution in the lowest Thomas-Fermi (TF)
order. However, at the ETF level, the second-order contribu-
tion gives

�Jq(�r) = −2m

h̄2

1

2
W0

1

fq
ρq �∇(ρ + ρq), (17)

also a function of ρq and/or ρ alone.

TABLE II. The excitation function of 3n and 4n evaporation channels from 286Cn∗ due to entrance channel 238U + 48Ca calculated by using
the DCM for a best fit of �R, at different E∗ = 34.4 to 39.8 MeV energies for various Skyrme forces, compared with experimental data [8,12],
and also with results from Wu’s calculation by DNS model [76] are shown in this table. The predicted fission cross section (σ predicted

f f ) for CN
286Cn at E∗ = 35 MeV is 1.63 × 10−12 mb for GSkI, 9.87 × 10−10 mb for KDE0(v1), and 3.38 × 10−17 mb for SIII Skyrme forces.

DCM

E∗ T �R (fm) σ DCM
Calc. (pb)

(MeV) xn (MeV) GSkI KDE0(v1) SIII GSkI KDE0(v1) SIII σ DNS
Calc. (pb) σExpt. (pb)

34.4 3n 1.114 1.7556 1.5558 1.9811 1.0 1.0 1.0 1.0+1.0
−0.6

34.6 3n 1.118 1.7561 1.6120 1.9739 0.72 0.72 0.72 0.719+0.58
−0.35

34.8 3n 1.121 1.7289 1.5365 1.9501 0.7 0.699 0.699 0.701+1.6
−0.6

35 3n 1.124 1.7705 1.7396 1.9311 2.5 2.5 2.43 1.18 2.5+1.8
−1.1

35 4n 1.124 2.1190 1.9350 2.2467 0.809 0.836 0.822 ≈0.82

39.8 4n 1.197 2.0260 1.6411 2.1114 0.593 0.530 0.584 2.38 0.6+1.6
−0.5
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TABLE III. The excitation function of 1n, 2n, and 4n evaporation
channels from 286Cn∗ due to entrance channel 238U + 48Ca predicted
by using the DCM for a best fit of �R, at different E∗ = 34.4 to
39.8 MeV energies by using GSkI Skyrme forces.

E∗ T σ DCM
predicted

(MeV) xn (MeV) (pb)

34.4 1n 1.114 8.86 × 10−11

34.4 2n 1.114 6.30 × 10−13

34.4 4n 1.114 3.49 × 10−17

34.6 1n 1.118 6.0 × 10−11

34.6 2n 1.118 4.23 × 10−13

34.6 4n 1.118 2.31 × 10−17

34.8 1n 1.121 1.53 × 10−10

34.8 2n 1.121 1.12 × 10−12

34.8 4n 1.121 6.68 × 10−17

35 1n 1.124 1.57 × 10−10

35 2n 1.124 1.11 × 10−12

39.8 1n 1.197 7.34 × 10−10

39.8 2n 1.197 3.97 × 10−12

39.8 3n 1.197 3.16 × 10−13

The densities for the composite system, under the frozen
density approximation used here, are [27]

ρ = ρ1 + ρ2,

τ (ρ) = τ1(ρ1) + τ2(ρ2), (18)

�J (ρ) = �J1(ρ1) + �J2(ρ2),

with

ρi = ρin + ρip, τi(ρi ) = τin(ρin) + τip(ρip), and

�Ji(ρi ) = �Jin(ρin ) + �Jip(ρip).

Then, following Blocki et al. [69] and Gupta et al. [70],
for the nuclear proximity potential [41,71,72], we introduce
the slab approximation with interaction energy per unit area
e(s) between two flat slabs of semi-infinite nuclear matter
with surfaces parallel to the X -Y plane and moving in the z
direction, and separated by distance s having minimum value
s0. Then, the interaction potential VN (R) between two nuclei

FIG. 8. Same as Fig. 3, but for �R3n,4n = 1.7705 and 2.1190 fm for GSkI force, �R3n,4n = 1.7396 and 1.9350 fm for KDE0(v1) force, and
�R3n,4n = 1.9311 and 2.2467 fm for SIII force, which fit the data in Fig. 11 at E∗ = 35 MeV for 3n and 4n emission from 286Cn∗ formed via
238U + 48Ca reaction. The �R = 0.1 fm is fixed for the light fragment masses A2 = 1–2 and 5–143 (the complementary heavy fragments).
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FIG. 9. Channel cross sections σxn, x = 3 and 4, for 286Cn∗, plotted as a function of �; the cutoff point is σxn < 10−20 pb, limiting �min =
27h̄, �max = 80h̄ for all three Skyrme forces.

separated by R = R1 + R2 + s, is given as

VN (R) = 2π R̄
∫ ∞

s0

e(s)ds

= 2π R̄
∫

{H (ρ, τ, �J )

−[H1(ρ1, τ1, �J1) + H2(ρ2, τ2, �J2)]}dZ

= 4π R̄γ bφ(D) = VP(R) + VJ (R), (19)

where VP(R) and VJ (R) are the spin-density independent and
spin-density dependent parts of the nuclear interaction poten-
tial. H , H1, and H2 are the Hamiltonians of composite system
and the separated nuclei respectively. R̄ = R1R2/(R1 + R2)
is the mean curvature radius, defining the geometry of the
system, and φ(D) is the universal function in terms of
a dimensionless variable D = s0/b, with b as the surface
width. The nuclear surface energy constant γ = 0.9517[1 −
1.7826( N−Z

A )
2
] MeV fm−2. For further details on φ(D), etc.,

see Ref. [41].
For nuclear density ρi of each nucleus, the T -dependent,

two-parameter Fermi density (FD) distribution for the slab

approximation is given by [41]

ρi(zi, αi, T ) = ρ0i(T )

[
1 + exp

(
zi − Ri(T )

ai(T )

)]−1

− ∞ � z � ∞ (20)

with z2 = R − z1 = [R1(α1, T ) + R2(α2, T ) + s] − z1 Here

ρ0i(T ) = 3Ai

4πR3
i (T )

[
1 + π2a2

i (T )

R2
i (T )

]−1

, (21)

and

Ri(αi, T ) = R0i(T )

[
1 +

∑
λ

βλiY
(0)
λ (αi)

]
, (22)

are the central density and the radii for deformed nuclei
Ri(αi, T ) respectively. Above the T -dependent spherical or
half-density nuclear radius R0i and surface thickness param-
eters ai are given by R0i(T ) = R0i(T = 0)[1 + 0.0005T 2 and
ai(T ) = ai(T = 0)[1 + 0.01T 2] and at T = 0 are obtained by
fitting the experimental data [73,74] to respective polynomials
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FIG. 10. Excitation function of individual 3n evaporation chan-
nels for the 238U + 48Ca reaction in the “hot fusion” process. The
experimental data (circle symbol) are from Ref. [8,12], and the rect-
angle, down triangle, and up triangle represent our calculations made
for different Skyrme forces (a) GSkI, (b) KDE0(v1), and (c) SIII for
the best fitted �R values given in Fig. 11. The calculations are made
for the observed excitation energies E∗, and the lines or curves are to
guide the eyes.

in nuclear mass region A = 4–238 [41], as

R0i(T = 0) = 0.9543 + 0.0994Ai − 9.8851 × 10−4A2
i

+4.8399 × 10−6A3
i − 8.4366 × 10−9A4

i ,

ai(T = 0) = 0.3719 + 0.0086Ai − 1.1898 × 10−4A2
i

+6.1678 × 10−7A3
i − 1.0721 × 10−9A4

i . (23)

In Eq. (22), λ = 2, 3, 4, . . . are the multipole deforma-
tions, and αi are the angles between radius vector Ri(αi ) and
the symmetry axis measured clockwise from the symmetry
axis.

The temperature T is related to the incoming center-of-
mass energy Ec.m. or the compound nucleus excitation energy
E∗ via the entrance channel Qin value, as

E∗ = Ec.m. + Qin = 1

ac
AT 2 − T (T in MeV), (24)

with ac (a constant) = 9 or 10, respectively, for intermedi-
ate mass or superheavy systems. Qin = B1 + B2 − BCN, with
binding energies B’s taken from [75]. Furthermore, since ρi =
ρni + ρpi , for nucleon density we define

ρni = (Ni/Ai )ρi and ρpi = (Zi/Ai )ρi. (25)

III. CALCULATIONS AND DISCUSSION

In this section, we first identify all the possible t-p com-
binations (minima in potential energy surface, PES) at hot
or cold orientations, i.e., hot-compact or cold-elongated con-
figurations leading to the formation of CN 286Cn∗ at a fixed
temperature T and, among these, the most optimum reaction

FIG. 11. The best fitted neck-length parameter �R as a function
of E∗ energy for 3n ER from 286Cn∗ formed in reaction channel
238U + 48Ca at excitation energy of 34.4–35 MeV. The rectangle,
down triangle, and up triangle represent our calculations made
for different Skyrme forces (a) GSkI, (b) KDE0(v1), and (c) SIII
respectively.

the giving largest fusion cross section. The best choice of ei-
ther hot or cold configuration depends on the calculated yields
compared with measured fission mass distribution. Then, in
the next subsection, the decay of 286Cn∗ for 3n and 4n emis-
sion is discussed. We have performed calculations using the
DCM, with the nuclear interaction potential obtained from the
SEDF-based ETF method for three illustrative Skyrme forces:
GSkI, KDE0(v1), and SIII.

A. Synthesis of compound nucleus 286Cn∗

First, for the given compound nucleus 286Cn∗, we
calculate the fragmentation potential V (η) for all possible
t-p combinations (η values) forming optimum hot fusion
configurations (or cold fusion configurations) at a fixed
�R = 1.0 fm for each Skyrme force. This is shown in
Fig. 3 for hot and in Fig. 4 for cold configurations, using
(a) GSkI (b) KDE0(v1), and (c) SIII forces. We notice
from each of these two figures that all minima are nearly
common for all the three forces i.e., all the three forces
behave nearly alike since almost the same t-p combination
refer to the minimum. Interestingly, in Fig. 3 for hot-fusion
configurations, for all three cases, the potential energy
minima occur at the symmetric fragmentation, whereas
the same in Fig. 4 for cold-fusion configurations occur
at the asymmetric fragmentation. The above results from
fragmentation potentials can be better understood in terms
of the corresponding production yields for the two cases
(hot and cold fusion processes), shown in Figs. 5 and 6,
respectively, for the fragmentation potentials in Figs. 3
and 4. We notice that, independently of the Skyrme force
used, there is a strong dissimilarity in the hot and cold
paths of fragmentation, and the symmetric fission mass
distribution is given only for the hot fusion case, in complete
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FIG. 12. �-summed preformation probability P0, penetration probability P, and channel cross section σAi , i = 1, 2, plotted as a function of
fragment mass number Ai.

accordance with experiments [8,12]. Hence, in the following,
we focus only on hot fusion configurations, i.e., Figs. 3
and 5. The resulting t-p combinations, referring to minima
in PES for the hot-fusion configuration, marked in Fig. 3,
are listed in Table I for Skyrme force KDE0(v1), together
with their other characteristics, i.e., quadrupole deformations
β2i [75], and calculated barrier heights VB and positions
RB for optimum hot-compact orientations. We notice that,
in addition to the 48Ca-induced reaction, there are a few
other possibilities; specifically, 278Mt + 8Li, 272Sg + 14C,
264Lr + 22F, 248Cm + 38S, 218Po + 68Ni, 202Pt + 84Se,
195Os + 91Kr, 178Er + 108Ru, 152Pb + 134Te, and 148Ce + 138Xe
are suggested, in principle, for future experiments. However,
because of the technical constraints on the preparation of
targets, the best suited t-p combinations suggested here are
218Po + 68Ni and 202Pt + 84Se. Except for these reactions,
many other reactions do not survive in the calculated yields
due to the reduced shell effect at the considered temperature

and low binding energies of incoming reaction partners,
so other t-p combinations are not predictable. Hence, a
theoretical basis for the choice of t-p combinations for
the synthesis of 286Cn∗—which have so far been chosen
by experimentalists simply on the basis of availability—is
provided by QMFT. The next important task is to make an
optimum choice of t-p combination for the production of CN
286Cn with largest cross section. Note that all t-p combinations
considered above refer to cold reaction valleys (minima in
PES) with hot-compact configurations, which when put
together means that the interaction radius is smallest and the
interaction barrier is lowest [41,42]. Thus, of all the cold t-p
combinations forming the same hot CN system, the optimum
t-p refers to one with lowest interaction barrier and smallest
(most compact) interaction radius. Figure 7 shows the
interaction (scattering) potentials for all the t-p combinations
given in Table I, which appear as minima in Fig. 3(b), together
with the one 238U + 48Ca, which is used in experiment.
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B. Decay of compound nucleus 286Cn∗

In this subsection, we estimate the light-particle decay
channel cross sections σxn, the fusion-fission cross sec-
tion σ

predicted
f f , and noncompound nucleus quasifission cross

sections σq f using the DCM, for a best fit of �R to the
measured data on decay of 286Cn∗, which is available only
for σxn, x = 3 and 4. The fitting is done here for the reaction
238U + 48Ca for Elab = 233.3–240 MeV using all the three
chosen Skyrme forces. We have presented our calculated re-
sults in Table II and compared with experimental data [8,12],
and also with results from Wu’s calculation by the DNS model
[76]. Further we have also calculated unobserved (experimen-
tally) 1n, 2n, and 4n evaporation cross sections at different
E∗ = 34.4 to 39.8 MeV by using the DCM model with the
application of GSkI Skyrme force, and corresponding results
are shown in Table III.

For all three Skyrme forces used, Fig. 8 presents the
calculated mass fragmentation potential V (Ai ), i = 1, 2 for
the decay of CN 286Cn∗ at maximum angular momen-
tum (lmax = 80h̄, which is fixed later in Fig. 9), using the
best fitted �R values (given in the figure caption) at T =
1.124 MeV corresponding to the incident energy Elab = 234
MeV of the reaction 238U + 48Ca. We note here that this
fragmentation potential differs from the one in Fig. 3 since dif-
ferent decay products (here xn) occur in different timescales
(different �R’s) whereas the compound nucleus is formed at
a fixed relative separation �R (fixed �R). Also, we observe
that all three forces GSkI, KDE0(v1), and SIII behave nearly
alike, except for the relative depths of their minima. Figure 9
presents the calculated channel cross section as a function of
angular momentum for the reaction 238U + 48Ca and shows an
increase with � up to about 45h̄ for SIII, 60h̄ for GSkI, and 63h̄
for KDE0(v1) forces, but then a decrease with the increase
of �. Here we have fixed the maximum (�max) and minimum
(�min) values of angular momentum for the calculated channel
cross sections σxn for x = 3–4, which become negligibly small
(σxn < 10−20, x = 3, 4) for � values other than those lying
in the range �min � � � �max. Thus, for the limiting value
of σxn < 10−20, the window is set as 27h̄ � � � 80h̄, i.e.,
�max = 80h̄ and �min = 27h̄.

In Fig. 10, we have compared experimental and the DCM
calculated σxn, x = 3n, from 286Cn∗ at a fixed E∗ = 35 MeV
for the entrance channel 238U + 48Ca. The experimental data
are taken from Refs. [8,12] and the calculations are made for
the neck-length parameter �R obtained for the best fit to 3n
ER cross section from 286Cn using the three Skyrme forces,
namely (a) GSkI, (b) KDE0(v1), and (c) SIII, as plotted in
Fig. 11. Here at each excitation energy E∗, the �R is largest
for 4n emission followed by 3n emission (see Table II) from
the compound system 286Cn∗, which suggests that the 4n
emission occur earliest, then 3n emission, in complete agree-
ment with experimental data implying that compound system
283Cn∗ has the highest cross section and 282Cn∗ the lowest.
Clearly, as shown in Table II, for all the three forces, the 3n
decay channel has the largest cross section, followed by 4n
decay cross sections, in complete agreement with experimen-
tal results. Apparently, the DCM reproduces the data nicely

TABLE IV. The DCM predicted ER cross sections σxn for 3n and
4n decay channels of 286Cn∗, formed in the “hot fusion” reaction
proposed on the basis of QMFT, at E∗ = 35 MeV, for all three
Skyrme forces.

A1 + A2 σ3n σ4n

For Skyrme force GSkI
278Mt + 8Li 6.28 × 101 3.96 × 10−2

272Sg + 14C 3.03 × 102 6.12 × 10−1

264Lr + 22F 3.26 × 103 2.36 × 101

248Cm + 38S 4.08 × 105 3.22 × 10−10

232Th + 54Ti 4.29 × 104 2.33 × 10−7

202Pt + 84Se 1.19 × 10−3 7.43 × 10−8

For Skyrme force KDE0(v1)
278Mt + 8Li 1.14 × 100 1.25 × 10−3

272Sg + 14C 4.48 × 10−4 6.87 × 10−7

264Lr + 22F 2.07 × 10−1 2.89 × 10−4

248Cm + 38S 1.42 × 10−7 1.55 × 10−12

232Th + 54Ti 1.19 × 10−15 4.05 × 10−26

202Pt + 84Se 6.44 × 10−10 2.37 × 10−16

For Skyrme force SIII
278Mt + 8Li 8.95 × 101 1.82 × 101

272Sg + 14C 2.25 × 101 1.13 × 10−2

264Lr + 22F 2.64 × 100 6.44 × 10−4

248Cm + 38S 1.14 × 10−7 7.87 × 101

232Th + 54Ti 1.65 × 10−16 2.54 × 10−23

202Pt + 84Se 1.91 × 10−10 1.17 × 10−1

within one-parameter fitting �R, nearly independent of the
Skyrme force used.

Figure 12 shows a plot of �-summed penetration prob-
ability P, preformation probability P0, and channel cross-
section σxn, plotted as a function of fragment mass number.
We notice that, for all the three Skyrme forces, P(Ai ) is
nearly constant and contributes only to the magnitude of cross
section; P0(Ai ) provides the structure to the cross section.
An interesting result of this graph is that CN 286Cn∗ decay
via symmetric fission and the predicted fission mass region
for GSkI and KDE0(v1) is 138 to 148, i.e., A/2±5. Further
the quasifission peaks appears at 202Pt (+ 84Se), similar to
one observed experimentally in superheavy nucleus Z = 122
[77]. This result is again independent of the choice of Skyrme
force and is in complete agreement with experimental results
[8,12]. The predicted fission cross section (σ predicted

f f ) for CN
286Cn∗ at E∗ = 35 MeV comes out to be 1.63 × 10−12 mb
for GSkI force, 9.87 × 10−10 mb for KDE0(v1) force, and
3.38 × 10−17 mb for SIII force. In Table IV, we have also
presented our calculations for the other proposed t-p combina-
tions for “hot fusion” reactions at an illustrative E∗ = 34.4 to
39.8 MeV, using the same neck length parameters as extracted
from Fig. 11 and Table II for 238U + 48Ca reaction.

IV. SUMMARY AND CONCLUSIONS

Quantum mechanical fragmentation theory (QMFT), in-
volving nuclear interaction potentials derived from SEDF
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based on the semiclassical ETF approach with densities added
in the frozen densities approximation, is used to identify the
cold t-p combinations, referring to potential energy minima,
for the formation of CN 286Cn∗ at a fixed relative separation
�R (within a nuclear limit of ≈2 fm) at a given excitation
energy E∗. Both the conventional (SIII) and newer [GSkI
and KDE0(v1)] Skyrme forces are used, which account for
the properties of both the normal and isospin-rich nuclei,
with nuclei considered quadrupole deformed and optimally
hot oriented, lying in the same plane (coplanar nuclei). An
interesting result is that, in addition to hot a fusion reaction,
namely 238U + 48Ca already used in experiments to synthe-
size 286Cn∗, a number of other reactions are predicted which
lie at minima in the PES, shown in Fig. 7 and Table I for
Skyrme force KDE0(v1) along with their other characteristics:
quadrupole deformations β2i, calculated barrier heights VB,
and barrier positions RB for optimum hot orientations. Of all
the t-p combinations shown in Table I and Fig. 7, specifically
218Po + 68Ni and 202Pt + 84Se are suggested for synthesis of
CN 286Cn∗ in future experiments. We have also calculated
channel cross sections for the predicted t-p combinations.
These calculations are made for the hot-compact configura-
tion since it favors symmetric fission, in complete agreement
with experiments. The decay of 286Cn∗ via 3n-4n emission is
then studied by using the DCM with effects of quadrupole
deformations and compact orientations. The Skyrme force

included DCM is used to calculate the fusion excitation func-
tion of optimum hot fusion reactions 238U + 48Ca, giving a
nice description of data, independently of Skyrme force used,
within one-parameter fitting of neck length (�R). Further, we
have also calculated experimentally unobserved 1n, 2n, and 4n
evaporation cross sections at different E∗ = 34.4 to 39.8 MeV
by using the DCM model with the application of GSkI Skyrme
force, and corresponding data are shown in Table III. The
predicted fission mass region lies at A=138 to A=148, i.e.,
A/2±5, and the quasi-fission peaks appears at 202Pt (+ 84Se).
The predicted fission cross section (σ predicted

f f ) for CN 286Cn∗

at E∗ = 35 MeV comes out to be 1.63 × 10−12 mb for GSkI
force, 9.87 × 10−10 mb for KDE0(v1) force and 3.38 × 10−17

mb for SIII force.
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