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Neutron skin of neutron-rich nuclei
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An extension to our previous method to deduce the neutron radii of neutron-rich nuclei is presented. This
method requires measuring the reaction cross sections of both the neutron-rich nucleus and its stable isotope
at the same energy per nucleon on a carbon target. Using this method and the available experimental data, the
neutron radii of 21–29F, 21–32Ne, 24–35Na, 25–38Mg, and 45–51Ca isotopes have been deduced. The neutron skin of
these isotopes (in the mass region A = 21–51) exhibited a linear relationship with the isospin (N − Z )/A at a
slope equal to 3.216 ± 0.11 fm. This tends to be much larger than that previously reported for nuclei in the mass
region A = 40–238 at 0.9 ± 0.15 fm.
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I. INTRODUCTION

Determination of neutron radii is highly important in both
nuclear physics and astrophysics. Neutron radii are essential
to extract the neutron skin thickness. The neutron skin thick-
ness of nuclei is a sensitive probe of the nuclear symmetry
energy and has multiple implications for nuclear and astro-
physical studies [1,2]. However, precision measurements of
neutron radii are difficult to obtain. Recently, we proposed
a new method to deduce the neutron radii of neutron-rich
nuclei [3]. This method requires measuring the reaction cross
sections of both the neutron-rich nucleus and its stable isotope
at the same energy per nucleon on a proton target. Using this
method we successfully determined the neutron radii of both
22C and 14Be.

Experimentalists preferr a carbon target to study neutron-
rich isotopes due to technical difficulties. Most of the available
experimental reaction/interaction cross section data are mea-
sured with a carbon target. This encouraged us to extend our
method to involve a carbon target.

In this paper, we extend our previous work [3] so that one
can use the reaction cross section (or interaction cross section)
of the given isotope with a carbon target to obtain the neutron
radii of the given isotope. Meanwhile, we assume the carbon
target to be a point particle and introduce a profile function
�NT for the nucleon-target (NT) scattering [4].

In this approach, to obtain the neutron radius of a neutron-
rich nucleus, one needs only the difference between the
reaction cross sections of the studied neutron-rich nucleus and
its stable isotope on a carbon target at the same energy per
nucleon. We demonstrated the efficiency of the method by
applying it to determine the neutron radii of fluorine, neon,
sodium, magnesium, and calcium isotopes.

II. THE THEORETICAL FRAMEWORK

The total reaction cross section of a nucleus (A = p + n)
incident on a carbon target is expressed in the optical limit
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approximation (OLA) of Glauber theory [5] as b

σ R
A =

∫
d �b (1 − e−2 Im[χA(�b)] ), (1)

where �b is the impact parameter vector perpendicular to the
beam (z) direction, and χ (�b) is the phase-shift function.

The OLA does not properly account for the breakup effect,
which is important for loosely coupled nuclei. It overestimates
the cross section, which tends to predict smaller radii for
loosely bound nuclei [6]. To overcome this problem, several
improvements to the OLA have been introduced [4,6,7]. In
this regard, nucleon-target (NT) scattering is considered as
an elementary vehicle in the Glauber theory [4]. Assum-
ing the target as a scatterer, the authors have introduced
a profile function �NT for the NT scattering [4]. In this
formalism, various effects such as the Fermi motion, Pauli
correlations, short range dynamic correlations, etc., would be
automatically included to some extent in the NT amplitude.
Accordingly, the phase-shift function is defined as iχA(�b) =
−∫

d�s ρA(�s)�NT(�s + �b), where, ρA is the projectile density. In
addition, the profile function �NT for the nucleon-12C interac-
tion appears in the form given by

�NT(�b) =
m∑

j=1

1 − iα j

4πβ j
σ tot

j e−b2/(2β j ), (2)

where the parameters σ j , β j , and α j are determined by fitting
the experimental elastic angular distribution as well as the to-
tal and reaction cross sections of protons incident on a carbon
target.

Besides, the reaction cross section shift between a neutron-
rich nucleus (A2) and its stable isotope (A1) is defined as
δσ R

A2,A1
= σ R

A2
− σ R

A1
. Both σ R

A2
and σ R

A1
are measured on a car-

bon target and at the same energy per nucleon. From Eq. (1),
the reaction cross section shift is given by

δσ R
A2,A1

= 2π

∫ ∞

0
b e−2 Im[χA1 (�b)](1 − e−2 Im[
χA(�b)] )db, (3)
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TABLE I. Parameters of proton-12C profile functions used in the
present calculations; see Eq. (2). The total and reaction cross sec-
tions, σT and σR, calculated by the profile functions are also shown.
The experimental values are shown in parenthesEs [18].

Tp (MeV) σT (mb) σR (mb) σ (fm2) β (fm2) α

250 285 202 (202 ± 20) 39.354 2.0182 −0.016
−9.8799 0.95994 −0.4033

300 284 189 39.986 1.8393 0.5856
−11.562 1.0348 0.91887

where 
χA(�b) = χA2 (�b) − χA1 (�b) and

−2 Im[
χA(�b)]

= −
m∑

j=1

σ tot
j

2πβ j

∫
d�s [ρA2 (�s) − ρA1 (�s)]e−(�b+�s)2/(2β j ). (4)

In accordance with recent experimental data for the pro-
ton radii of calcium isotopes [3], the point proton density
distribution for both A2 and A1 are taken to be nearly the
same. The maximum difference between proton radii of Ca
isotopes (A = 40–52) is reported to be ultimately 0.077 fm
[8] while that for Al isotopes (A = 27–32) attains 0.05 fm
[9]. This means that ρA2 − ρA1 � ρn2 − ρn1 , with ρn2 and ρn1

representing the neutron densities of A2 and A1, respectively.
Thereupon, Eq. (3) reduces to

δσ R
A2,A1

� 2π

∫ ∞

0
b e−2 Im[χA1(b)](1 − e−2 Im[
χn(b)] )db. (5)

It is worth noting that the proton density of the neutron-rich
isotope has no bearing on the ensuing phase shift. In Eq. (5),
the neutron and proton density distributions of the stable iso-
tope can be obtained from literature [10,11], while still the
neutron density distribution of the neutron-rich isotope is the
key quantity.

TABLE II. Reaction cross section (in mb) of nucleus-12C at E =
250 MeV/n for the projectile stable nuclei 19F, 20Ne, 23Na, 24Mg,
and at E = 300 MeV/n for 42Ca.

Nucleus Expt. data Our work

19F 1031 ± 15 [19] 1066
20Ne 1053 ± 10 [20] 1091
23Na 1122 ± 11 [21] 1155
24Mg 1173 ± 27 [22] 1177
42Ca 1463 [16] 1459

To check the validity of the approximation in Eq. (5), we
define the FS factor as

FS = δσ R
A2,A1

[Eq. (3)] − δσ R
A2,A1

[Eq. (5)]

δσ R
A2,A1

[Eq. (3)]
× 100%, (6)

which gives the percentage deviation of δσ R
A2,A1

calculated
using Eq. (5) from the exact values obtained from Eq. (3).

III. RESULTS

Except for calcium isotopes (280 MeV/n), most of the
experimental reaction (interaction) cross section data used
in this paper are measured around 250 MeV/n. Therefore,
we first determine the parameters of first two �NT terms
by fitting p-12C elastic scattering reaction cross section and
total cross section experimental data at 250 MeV as listed
in Table I. Harmonic oscillator (HO) density distribution is
considered for 12C. The configuration of the 12C wave func-
tion is assumed to be (0s1/2)2(0p3/2)4 for both protons and
neutrons. The HO length parameter is fixed in such a way
as to reproduce the proton (neutron) radius, 2.33 (2.30) fm
[12], extracted from the charge radius. Figure 1(a) shows
the differential cross section of p-12C at Tp = 250 MeV. The
solid curve is the phenomenological fit by Eq. (2), whose
parameters are listed in Table I. As we can see �NT reproduces

(b)

E

(a)

E

FIG. 1. The elastic differential cross section of p-12C at 250 MeV (a) and at 300 MeV (b). The solid curve is a phenomenological fit of
Eq. (2). The data are taken from Ref. [23].
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FIG. 2. The FS factor against the mass number A, calculated with
Eq. (6) for F, Ne, Na, Mg, and Ca at 250 MeV/n.

the experimental data fairly well. Also, using Eqs. (1) and
(2) we calculated the reaction cross section of 12C - 12C and
obtained a value of 822 mb, which is in good agreement with
the experimental values 873 ± 60 mb [13,14] and 786 mb
[15]. For calcium isotopes, the available experimental data
are at 280 MeV/n [16] whereas the nearest experimental data
we found for p-12C scattering are at 300 MeV/n. The best
fit of the experimental elastic angular distribution as well as
the total and reaction cross sections of p-12C scattering by
Eq. (2) yields the parameters listed in Table I. Correspond-
ingly, Fig. 1(b) shows the differential cross section of p-12C
at Tp = 300 MeV. The solid curve is the phenomenological fit
by Eq. (2). The calculated reaction cross section of 12C - 12C
at 300 MeV/n using Eqs. (1) and (2) is found to be 786 mb,
while the experimental value is 858 ± 60 mb [13]. In addition,
the reaction cross sections obtained according to Eqs. (1) and
(2) for all the stable nuclei, 20Ne, 23Na, 24Mg, and 42Ca, with

densities from Hartree-Fock-Bogoliubov calculations with the
BSK2 Skyrme force [17] on the 12C target, are in good agree-
ment with the corresponding experimental data, as shown in
Table II.

To assess the validity of the approximation given in Eq. (5),
we calculated the FS factor for all the nuclei studied in this
paper at 250 MeV/n. Figure 2 reveals a maximum percentage
error about 5% with respect to the exact calculations using
[Eq. (3)].

We apply the proposed method to determine the neutron
radii of fluorine (A = 21–29), neon (A = 21–32), sodium
(A = 24–35), magnesium (A = 25–38), and calcium (A =
45–51) isotopes. We used two types of point-neutron density
distributions: harmonic oscillator (HO) and two-parameter
Fermi (2pF) densities. Assuming the usual shell model
structure for all the studied isotopes, a suitable neutron con-
figuration for the ground state is adopted for the HO wave
function. Then, the HO length parameter is varied to fit the
experimental reaction cross section shift. On the other hand,
in case of 2pF density distribution, we fixed the diffuseness
parameter to be 0.49 fm [16]. Also, the density constant ρ0 is
determined from its normalization to neutron number, while
the half-density radius is varied to fit the experimental reaction
cross section shift.

For fluorine isotopes, the stable nucleus is 19F, and the
neutron and proton radii are taken to be 2.83 fm and
2.78 fm respectively, as calculated using Hartree-Fock-
Bogoliubov with the BSK2 Skyrme force [17]. The re-
action cross sections of 19F and 29F on a carbon tar-
get are measured and found to be 1031 ± 15 [19] and
1396 ± 28 mb [24], respectively. Thus, the reaction cross
section shift for 29F and 19F incident on a carbon
target at 240 MeV/n is δσ R

29,19[Expt.] = 365 ± 43 mb.
Meanwhile, a HO wave function is assumed for 29F,
with the neutron configuration for the ground state being
(0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(0d3/2)4(1s1/2)2.

Figure 3 shows the reaction cross section shift δσ R
29,19 as

a function of the neutron radius of 29F using HO density

(a) (b)

FIG. 3. The reaction cross section shift δσ R
29F,19F

as a function of the neutron radius of 29F, using HO density (a) and using 2pF density (b).
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TABLE III. The root-mean-square neutron radii 〈r2
n 〉1/2 in units of fm for fluorine, neon, sodium, magnesium, and calcium isotopes; the

first column represents the neutron number of each isotope.

F Ne Na Mg Ca

N Our work BSK2 Our work BSK2 Our work BSK2 Our work BSK2 Our work BSK2

11 2.84 ± 0.13 2.88
12 2.96 ± 0.09 2.96 2.80 ± 0.13 2.94
13 3.01 ± 0.08 3.00 2.84 ± 0.14 2.99 2.83 ± 0.16 2.98 2.84 ± 0.33 2.98
14 2.96 ± 0.22 3.06 2.88 ± 0.14 3.04 2.91 ± 0.12 3.03 2.83 ± 0.24 3.03
15 3.29 ± 0.22 3.12 3.10 ± 0.11 3.10 3.07 ± 0.13 3.09 2.84 ± 0.23 3.08
16 3.23 ± 0.18 3.21 3.18 ± 0.10 3.18 3.12 ± 0.06 3.16 3.10 ± 0.23 3.14
17 3.19 ± 0.17 3.28 3.36 ± 0.11 3.24 3.27 ± 0.05 3.22 3.14 ± 0.17 3.20
18 3.32 ± 0.12 3.35 3.40 ± 0.08 3.31 3.32 ± 0.10 3.28 3.09 ± 0.17 3.26
19 3.60 ± 0.08 3.37 3.42 ± 0.04 3.34 3.32 ± 0.16 3.31
20 3.75 ± 0.14 3.48 3.56 ± 0.10 3.43 3.50 ± 0.04 3.39 3.38 ± 0.14 3.36
21 3.80 ± 0.11 3.58 3.57 ± 0.04 3.43 3.49 ± 0.14 3.41
22 3.60 ± 0.15 3.57 3.61 ± 0.04 3.49 3.58 ± 0.15 3.46
23 3.70 ± 0.07 3.54 3.57 ± 0.14 3.50
24 3.75 ± 0.09 3.61 3.63 ± 0.11 3.55
25 3.81 ± 0.13 3.60 3.43 ± 0.14 3.53
26 3.77 ± 0.16 3.65 3.51 ± 0.13 3.56
27 3.50 ± 0.16 3.58
28 3.43 ± 0.16 3.61
29 3.65 ± 0.12 3.65
30 3.82 ± 0.10 3.70
31 3.91 ± 0.21 3.74

in Fig. 3(a) and using 2pF density in Fig. 3(b). From the
figures, the neutron radius of 29F is obtained as 3.75 ± 0.14 fm
using HO density, while using 2pF density it was found to be
3.78 ± 0.15 fm. The neutron radius of 29F obtained here is
in good agreement with Ref. [24]. Equally, both HO density
and 2pF density yield similar neutron radii for all isotopes and
nuclei studied, therefore it suffices to rely on results with HO
density only. Interestingly, the neutron configuration for the
ground states 0d3/2 or 1p3/2 hardly incur any variation in the
calculated neutron radii either. The neutron skin thickness of
29F is evaluated to be 0.85 ± 0.14 fm.

The same procedure is repeated for all fluorine, neon,
sodium, magnesium and calcium isotopes. Experimental data
for the reaction cross section shift on a carbon target
at 240 or 280 MeV/n have been reported by several
authors [16,19–22,24,25]. The obtained neutron radii are
consistent with the corresponding ones calculated using
densities from Hartree-Fock-Bogoliubov calculations
with the BSK2 Skyrme force [17] and they are given
in Table III. It is worth noting that the stable nuclei for
neon, sodium, magnesium, and calcium isotopes are 20Ne,
23Na, 24Mg, and 42Ca, respectively. Consequently, the
neutron radius for 31Ne, using the HO wave function
with the neutron configuration for the ground state
(0s1/2)2(0p3/2)4(0p1/2)2(0d5/2)6(0d3/2)4(1s1/2)2(1p3/2)1, is
found to be 3.80 ± 0.11 fm, which is consistent with that
of Refs. [26,27]. In addition, the neutron radii of calcium
isotopes obtained in this work are in good agreement with
those obtained in Ref. [28]. Nevertheless, in the case of
magnesium isotopes, the strong deformation in 32,34Mg has
not been taken into account.

The neutron skin of all isotopes of F, Ne, Na, Mg, and Ca is
subsequently determined based on the corresponding neutron
radii obtained in this work. In Fig. 4, the skin is plotted against
the isospin I = (N − Z )/A. It can be seen that the skin has
a strong correlation with iso-spin. The relation is a straight
line with a slope equal to 3.216 ± 0.11 fm. The straight line
relation was also predicted in Ref. [29] for nuclei heavier than
Ca but at a rather smaller slope of about 0.9 ± 0.15 fm. The

FIG. 4. The neutron skin deduced in this work as a function
of the isospin (N − Z )/A. The solid line represents the fitting as
explained in the text.

014626-4



NEUTRON SKIN OF NEUTRON-RICH NUCLEI PHYSICAL REVIEW C 105, 014626 (2022)

slope of the skin against the isospin in the mass region from
21 to 51 studied in this work is much larger than that found
in the mass region from 40 to 238 [29]. Also, Aumann [30]
obtained a nearly straight line relation between the neutron
skin and mass number for 124 � A � 134 nuclei.

IV. CONCLUSION

We have introduced a method to deduce the neutron
radii of neutron-rich nuclei. The method requires measur-

ing the reaction cross sections (or interaction cross sections)
of both a neutron-rich nucleus and its stable isotope at
the same energy per nucleon on a carbon target. We
used the available experimental data to deduce the neu-
tron radii of 21–29F, 21–32Ne, 24–35Na, 25–38Mg, and 45–51Ca
isotopes.

The behavior of the neutron skin of the studied isotopes (in
the mass region A = 21–51) as a function of their isospin T =
(N − Z )/A was found to feature a linear relation at a slope
equal to 3.216 ± 0.11 fm. This is three times larger than that
deduced in the mass region A = 40–238, which reflects the
large skin in unstable nuclei.
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