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How Bayesian methods can improve R-matrix analyses of data: The example of the dt reaction
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We use one- and two-level R-matrix approximations to analyze data on the cross section for this reaction at
center-of-mass energies below 215 keV. We critically examine the data sets using a Bayesian statistical model that
allows for both common-mode and additional point-to-point uncertainties. We use Markov chain Monte Carlo
sampling to evaluate this R-matrix-plus-statistical model and find two-level R-matrix results that are stable with
respect to variations in the channel radii. The S factor at 40 keV evaluates to 25.36(19) MeV b (68% credibility
interval). We discuss our Bayesian analysis in detail and provide guidance for future applications of Bayesian
methods to R-matrix analyses. We also discuss possible paths to further reduction of the S-factor uncertainty.
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I. INTRODUCTION

The 3H(d, n) 4He reaction is of significant interest in nu-
clear astrophysics and nuclear applications. Accordingly, a
number of measurements at low energies have been taken.
Data sets with small statistical error bars exist that, taken
together, cover the energy range 5–250 keV,1 including the
broad resonance feature at E ≈ 60 keV [1–5].

Accurate knowledge of this resonance is important because
the large, low-energy cross section associated with it, together
with the reaction Q value of 17.6 MeV, mean the dt reaction
is an efficient approach for energy generation from nuclear
fusion. For commercial fusion reactor purposes this knowl-
edge is needed at energies below 100 keV. The 3H(d, n) 4He
reaction also plays a role in big-bang nucleosynthesis. In that
case the relevant energy range is a bit larger [6], extending to
the upper end of the domain covered by the experiments listed
above.

A recent ab initio calculation provides a good description
of the data in the energy region of interest [7]. But even this
calculation requires phenomenological adjustment if it is to
provide an accurate description of the low-energy dt data. The
presence of a single, broad resonance in this kinematic domain
has made R-matrix methods the tool of choice for evaluation
and extrapolation of the 3H(d, n) 4He cross section, although
effective field theory also provides a simple parametrization
that can accommodate these data [8]. The most sophisticated
R-matrix analyses of this reaction are by Hale et al. [9] and
Bosch and Hale [10,11]. They yield a value for the S factor of
the reaction at the canonical E = 40 keV evaluation point of
25.87 ± 0.49 MeV b [11]. More recently de Souza et al. [12]
employed a Bayesian methodology and a one-level R-matrix
approximation to study the dt reaction in the 5–250 keV

1All energies in this paper refer to the center-of-mass (c.m.) system,
unless otherwise indicated.

energy range. Reference [12] used the R-matrix parametriza-
tion of Lane and Thomas [13] and computed the posterior
probability density function (pdf) of the R-matrix parame-
ters in a seven-dimensional parameter space. This allowed de
Souza et al. to straightforwardly propagate the uncertainties
in parameters to final results for the S factor. It also made
it straightforward for them to introduce what we shall refer
to as a “statistical model” to go along with their one-level
R-matrix physics model. That statistical model accounted for
imperfections in the experiment by introducing “nuisance”
parameters associated with the normalization error in a partic-
ular data set, systematic shifts in the actual energies compared
to those quoted, additional point-to-point errors beyond those
quoted in the original papers, etc. In a Bayesian framework the
(several) additional parameters introduced to account for the
possibility that such effects are present can be marginalized
over, meaning that the corresponding uncertainty is included
in the final error bar for S(40 keV). Of particular note is the
finding by de Souza et al. that the data sets referenced in
the first paragraph should have their point-to-point S factor
errors enhanced by as much as 0.5 MeV b if they are to be
statistically consistent with one another.

In this work we adopt a strategy similar to that of de Souza
et al., using Markov chain Monte Carlo (MCMC) sampling
to explore the posterior pdf of the combination of R-matrix
and statistical parameters. We were unable to reproduce the
S-factor results of [12], consistently observing S(40 keV)
uncertainties that are approximately twice those reported in
[12]. We validated our results by checking that our posterior
probability density encodes relationships and correlations be-
tween R-matrix parameters that can be derived analytically.
Those correlations were not observed by de Souza et al.. We
conclude that their MCMC sampling failed to explore all of
the necessary regions of the posterior, and the error bar they
quote is artificially reduced by this failure.

This is the main difference between our work and that of
Ref. [12]. We also improve upon their study in several other
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ways, but these do not have as large an impact on the final
result.

First, we point out that two of the R-matrix parameters de
Souza et al. sampled are degenerate with regard to their impact
on the reaction cross section. We therefore eliminate one. Sec-
ond, we show that including the channel radii as parameters
results in extended nonlinear correlations in parameter space.
This makes MCMC sampling slow to converge. Our sampling
uncovers these structures, which, notably, are not present in
the posteriors of de Souza et al. [12]. Third, we investigate the
limitations of the assumption by de Souza et al. that this reac-
tion can be described by a single R-matrix level. We include
an angular-momentum channel other than the one in which the
resonance lies, the 3/2+, and also examine whether a second,
background, level in the 3/2+ channel improves the R-matrix
result. Fourth, we note that the additional point-to-point errors
of de Souza et al. were absolute in the S factor, i.e., they
are given as additions (or subtractions) to S. We suggest an
alternative statistical model, in which the additional error is
fractional in the dt cross section. We test this model, and our
eventual fit to the data, by examining the residuals of that fit
and seeing if they are consistent with the statistical assump-
tions underlying our treatment of the experimental errors.

The paper is structured as follows. In Sec. II we de-
scribe the aspects of R-matrix theory pertinent to this study.
Section III reviews Bayes’s theorem, discusses the likeli-
hood employed to connect data to the R-matrix model, and
lists and explains the priors on R-matrix parameters. It also
briefly describes our MCMC sampling package and strategy.
(More details on the MCMC aspects of our work are given
in Appendices A–C.) Section IV describes the experiments
and discusses the model we adopt for experimental errors,
including the priors on the corresponding nuisance param-
eters. Section V derives the correlations that arise between
several R-matrix parameters sampled in the analysis by de
Souza et al.. Understanding those correlations (1) allows us
to eliminate redundant parameters, (2) supports the accuracy
of our analysis, and (3) justifies the need for another low-
energy dt analysis. We display and discuss the posterior for
the remaining independent parameters in Sec. VI. Section VII
examines the data set of Ref. [3] in detail and concludes there
is a systematic problem with the data that cannot be remedied
without additional knowledge. In Sec. VIII we then present
the parameter posterior for our multilevel R-matrix analysis,
and our final evaluation of the S factor. We draw some general
lessons for Bayesian R-matrix analyses in Sec. IX before
summarizing our findings regarding the dt reaction in Sec. X.

II. R-MATRIX THEORY

In the R-matrix approach nuclear wave functions are de-
scribed inside the channel radii by many-body basis functions;
outside the channel radii they are described by a linear com-
bination of two-body Coulomb functions. The projection of a
basis function on to a particular (two-body) channel config-
uration at the channel radius is its reduced width amplitude.
This description assumes that nuclear interactions beyond the
channel radii may be neglected and that channels involving
three or more nuclei can be ignored. Here, we further assume

the basis functions are eigenfunctions of the Hamiltonian
satisfying specified boundary conditions at the channel radii
[13,15].

Observables can be calculated in the R-matrix approach
as long as one has knowledge of the energy eigenvalues and
reduced width amplitudes that summarize the dynamics inside
the channel radius. In this sense one does not need the full
calculation of the interior, but only those parameters. In a
phenomenological R-matrix analysis, the energy eigenvalues
and reduced width amplitudes are treated as adjustable pa-
rameters. In such a calculation it is necessary to truncate the
number of levels and channels in order to have a tractable
number of unknown parameters. But it should always be
borne in mind that—modulo its underlying assumptions stated
above—the R-matrix method should converge to the full result
if enough levels and channels are included in the calculation.

The elements of the R matrix are defined by

Rc′c =
∑

λ

γλc′γλc

Eλ − E
, (1)

where Eλ and γλc are the level energies and reduced-width
amplitudes, respectively. Here, the index λ labels the levels
and c (or c′) the channels. Channels are defined as unique
combinations of particle pair type α, orbital angular momen-
tum �, channel spin s, and total angular momentum J . The
scattering (or collision) matrix, S, is then given by

S = 2iρ1/2O−1[1 − R(L − B)]−1Rρ1/2O−1 + IO−1, (2)

with definitions of ρ, I, O, L, and B given in Ref. [16,
Eq. (3)]. The conservation of total angular momentum and
parity implies that the R and S matrices are block diagonal
with respect to Jπ . The cross section for reaction channels
(α �= α′) is given by [13, Sec. X 3, Eq. (3.4), p. 301]

σαα′ = π

k2
α

∑
J��′ss′

2J + 1

(2 jα1 + 1)(2 jα2 + 1)

∣∣SJ
α′s′�′,αs�

∣∣2
, (3)

where kα is the incoming wave number and jα1 and jα2 are the
intrinsic spins of the nuclei making up the incoming pair α.

Since we will be performing phenomenological analyses
covering a limited range of energy, the level expansion given
by Eq. (1) must be truncated. A background level at a much
higher energy will be used to represent the strength supplied
by the omitted levels. The calculation of the S matrix involves
the Coulomb functions evaluated at the channel radii, the radii
beyond which the nuclear interactions are assumed to vanish,
and so it is not immediately obvious that observables will be
independent of these channel radii. In fact, the background
level plays a critical role in allowing the S matrix to be
approximately invariant as the channel radii are modified over
a reasonable range [17]. Since the proper value of the chan-
nel radii are somewhat ambiguous, a range of values should
be investigated, in order to ensure the conclusions do not
strongly depend upon the channel radius. One might think that
one can modify the channel radius to values that are much
larger than the distance beyond which the nuclei cease to
interact, absorbing the difference in the evaluated S-matrix
in the background level(s). However, very large channel radii
produce artificial energy dependence in the cross section that
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can only be canceled by background level(s) at lower energies,
ultimately rendering an analysis with a single background
level impossible and the calculation inefficient. On the other
hand, nuclear interactions do not completely vanish beyond
the channel radii used in phenomenological analyses. The
reduced-width amplitudes should thus be interpreted as renor-
malized quantities, i.e., they have to absorb the effects of the
nuclear interaction beyond the channel radius. If those effects
become too large the calculation again becomes inefficient.
Thus the best strategy is to use channel radii that cover a
reasonable range at and not too far beyond the sum of the radii
of the nuclei involved in the collision. Further discussion of
the channel radius is available in Ref. [18, Sec. IV F].

In this work, we consider the 3H(d, n) 4He reaction for
center-of-mass energies below 250 keV. In this energy regime
the cross section is dominated by a very strong Jπ = 3/2+
resonance, which is formed with � = 0 in the entrance chan-
nel. While this resonance alone may be sufficient to describe
the reaction, we also consider the possibility of a nonresonant
contribution (background level) with Jπ = 1/2+, which can
also be formed with � = 0. The role a background level with
Jπ = 3/2+ is also investigated. The contributions of higher
partial waves are smaller still: Bém et al. [19] measured angu-
lar asymmetries of <1% in this energy domain. We therefore
neglect higher partial waves in this study.

With the limitation to Jπ = 1/2+ or 3/2+ and � = 0 in
the entrance (3H + d) channel, we also have s = J here. In
the exit (4He + n) channel, we have � = 0 (J = 1/2) or � = 2
(J = 3/2) and s = 1/2. For a given J , the channels may thus
be labeled unambiguously by d and n for the entrance and exit
channels, respectively. The particle-pair labels on the cross
section, wave number, etc. will be dropped when there is no
ambiguity. The cross section for the 3H(d, n) 4He reaction
may now be written as

σ = π

3k2

(∣∣S1/2
dn

∣∣2 + 2
∣∣S3/2

dn

∣∣2)
. (4)

The astrophysical S factor is related to the cross section via

S = σ E e2πη, (5)

where E = (h̄k)2

2μ
is the 3H-d center-of-mass energy, μ is the

3H-d reduced mass, and η is the 3H-d Coulomb parameter.
If there is only a single level for a particular Jπ , the square

of the d-n S-matrix element for that J becomes

∣∣SJ
dn

∣∣2 = 	̂d 	̂n

(E0 + 
 − E )2 + (	̂/2)2
, (6)

with

	̂ = 	̂d + 	̂n, 	̂c = 2γ 2
c Pc, (7)


 = 
d + 
n, and 
c = −γ 2
c (Sc − Bc). (8)

Here Pc, Sc, and Bc are the penetration factors, shift factors,
and boundary condition constants, respectively. The 	̂c de-
fined by (7) are formal partial widths. The penetration and

shift factors are given by [13]

Pc(ηc, kcac) = kcac

F 2
l (η, kcac) + G2

l (η, kcac)
(9)

Sc(ηc, kcac) = Pc(ηc, kcac)[Fl (η, kcac)F ′
l (η, kcac)

+ Gl (η, kcac)G′
l (η, kcac)], (10)

where the ′ indicates differentiation with respect to kcac, and
Fl and Gl denote the regular and irregular Coulomb functions.
We note that ηn = 0, so hereafter we simply write ηd ≡ η.
If one further assumes that the level is a distant background
level, as we do for Jπ = 1/2+, i.e., E0 + 
 � E , the de-
nominator of the S matrix becomes approximately energy
independent. To leading order the energy dependence of this
denominator can be neglected, leading to an expression in
which the S matrix only depends on E0, γd , and γn through a
single combination A:∣∣S1/2

dn

∣∣2 = 4

π
A1/2Pl=0(η, kd ad )Pl=0(0, knan), (11)

The S matrix—and hence all physical observables—are
independent of the choice of the boundary condition constants
Bc, even if the number of levels is finite [16,20,21]. The
transformation of Eλ and γλc which ensures this as Bc changes
is given by Barker [21]. Since physics is independent of Bc we
make the convenient choice

Bc = Sc(Eλ) (12)

for a particular level λ. In this case, 
, as defined by Eq. (8),
vanishes at Eλ and the cross section has a maximum in the
vicinity of this energy. One may then interpret this particular
Eλ as a resonance energy Er .

When there are two or more levels for a given Jπ , as is
the case for some of our fits to the 3/2+ contribution to the
3H(d, n) 4He reaction, it is advantageous to use the alterna-
tive level energies and reduced width amplitudes defined by
Brune [16]. This approach is mathematically equivalent to the
standard R-matrix parametrization [13,15], but allows all of
the parameters to be directly interpreted in terms of resonance
energies and partial widths. The relationship between these
parameters and the S matrix is given in Ref. [16, Eqs. (33) and
(34)]. In this parametrization, there are no boundary-condition
constants Bc.

Lastly, we note that de Souza et al. [12] allow for the
modification of the cross section at very low energies due
to the screening of the internuclear Coulomb interaction by
electrons in the target molecules. Following Refs. [22,23],
they replace

S(E ) → eπη(Ue/E )S(E ). (13)

This introduces another parameter into the physical descrip-
tion of the reaction, the electron screening potential, Ue. Ue

depends on the chemical form of the target and has been es-
timated to be ≈20–40 eV for positive hydrogen ions incident
on diatomic hydrogen gas [24]. Below we refer to Ue as an
R-matrix parameter even though strictly speaking electron-
screening effects are a separate issue from the treatment of
the internuclear Coulomb and strong forces using the R-matrix
formalism.
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III. BAYESIAN STATISTICS

In a phenomenological R-matrix analysis the level energy
and reduced width parameters must be estimated from one
or more experimental data sets. Denoting the parameters col-
lectively as θ and the data sets as D our goal is to compute
the posterior probability distribution P ≡ p(θ |D, I ), where I
is other information used in the analysis, e.g., the number of
channels and levels included in the analysis and the channel
radii selected. Bayes’ theorem relates this posterior to the
likelihood L ≡ p(D|θ, I ) and the prior p(θ |I ), according to

P = p(D|θ, I ) p(θ |I )

p(D|I )
∝ p(D|θ, I ) p(θ |I ). (14)

For the purposes of this paper the factor in the denominator,
p(D|I ), is a constant, and we can focus solely on the numera-
tor.

A. Likelihood

In many R-matrix analyses, and in ours too, the parame-
ters θ include not just R-matrix parameters such as reduced
width amplitudes and level energies, but also what we will
term “statistical parameters,” e.g., normalization factors that
account for common-mode errors in data sets. We will also
follow Ref. [12] and allow for the possibility that point-to-
point uncertainties were underestimated. We consider Nexpt

data sets {D1, . . . , Dj} where each data set consists of Nj

measurements of the 3H(d, n) 4He cross section, with a cor-
responding error bar, σi, j ± δi, j , taken at a nominal energy
Ei, j (with i = 1, . . . , Nj indexing the measurements in the jth
data set). If we assign to the experiment a normalization factor
f j and an additional (fractional) point-to-point uncertainty
α j then the likelihood takes the standard product form for
independent measurements:

L ≡ p(D|θR, f, α, I ) =
Nexpt∏
j=1

Nj∏
i=1

[
1(

2π
(
δ2

i, j + α2
j σ

2
i, j

))1/2

× exp

(
− 1

2

(
σi, j − f jσR

(
Ei, j ; θR

))2

δ2
i, j + α2

j σ
2
i, j

)]
. (15)

But, we now have additional parameters that allow for
common-mode and enhanced “statistical” (point-to-point) er-
rors in each data set. These parameters are listed as the
vectors f = { f1, . . . , fNexpt } (for common-mode error) and α =
{α1, . . . , αNexpt } (for point-to-point error). We will refer to
these unreported point-to-point errors as “extrinsic” errors in
keeping with the terminology of [12]. Meanwhile σR(E ; θR) is
the R-matrix result for the cross section at energy E , evaluated
at particular values θR of the R-matrix parameters.

B. Priors

Below we present results for several R-matrix and statis-
tical models. Each of the parameters in these models has a
prior. The first model we work with is intentionally chosen to
be very similar to that used by de Souza et al. [12]. The prior
distributions taken for our initial model are (for more details

TABLE I. Summary of the 3H(d, n) 4He cross section data sets
analyzed. The columns provide the data set number j, reference,
year, energy range, number Nj of points included, and relative sys-
tematic uncertainties δ f , j . The data set numbers chosen in [12] are
replicated in this work.

Energy range
j Reference Year (keV) Nj δ f , j

5 Conner et al. [1] 1952 12 � E � 214 43 0.030
4 Arnold et al. [2] 1953 9 � E � 70 53 0.020
3 Kobzev et al. [3] 1966 46 � E � 264 45 0.025
1 Jarmie et al. [4] 1984 5 � E � 47 17 0.0126
2 Brown et al. [5] 1987 48 � E � 70 8 0.5

on the physical meaning of these parameters, see Sec. II)

Er ∼ U (0.020 keV, 0.100 keV), (16)

γ 2
d ∼ T (0,∞)N (0, 3 MeV2), (17)

γ 2
n ∼ T (0,∞)N (0, 3 MeV2), (18)

Ue ∼ T (0,∞)N (0, 1 keV2), (19)

δ j,extr ∼ T (0,∞)N (0, 2 b2), (20)

f j ∼ T (0,∞)N
(
1, δ2

f , j

)
. (21)

Here a uniform distribution in x is

U (a, b) =
{

1
b−a , a � x � b,
0, x otherwise,

(22)

a normal distribution in x is

N (μ, σ 2) = 1√
2πσ

e− (x−μ)2

2σ2 , (23)

while the truncation function, T , suppresses values outside of
the interval defined by its arguments.

The widths of the truncated normal distributions for f j are
fixed according the the systematic uncertainties reported with
the data sets. They are given in the last column of Table I.
As discussed in Sec. IV, the Brown data set did not report an
independent determination of its absolute normalization, so a
large width was assigned to its prior. The other experiments
all have small values of δ f , j , so for them the Gaussian prior
on f j is effectively the same as the log-normal prior used in
Ref. [12].

The priors on other (statistical and R-matrix) parameters
introduced in later variants of our analysis will be stated as
those parameters are introduced.

C. Tools

The addition of the statistical parameters α and f means
that, even in a relatively simple reaction like 3H(d, n) 4He,
we need to determine the posterior p(θ |D, I ) in a space of
dimensionality as high as 17. The only efficient way to sample
the posterior is via MCMC sampling.

In this work we employ the package EMCEE [25] which
implements an affine-invariant ensemble sampler. The sam-
pler deploys many simultaneous, interdependent walkers to
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explore the provided posterior and allows the practitioner full
control over their physical, statistical, and data models.

We now discuss some details of our MCMC sampling,
in the interest of future reproducibility. While the standard
parameters of EMCEE generically work well, we found that
in many cases, tuning some of the sampler parameters can
significantly improve the efficiency of the sampler. Specifi-
cally, in the language of EMCEE, proposals are generated by
“moves.” By default, these moves are Goodman and Weare
[26] “stretch” moves. Empirically, we found a mixture of
differential evolution (20%) and snooker proposals (80%) re-
duces autocorrelation times appreciably.

If we treat the channel radii ad and an as part of the
parameter set θR then, as we will show in Sec. V, the poste-
rior is extended and involves nonlinear correlations. Several
attempts were made to overcome the long autocorrelation
times induced by these correlations. Sampling techniques and
reparametrizations used in those attempts are discussed briefly
in Appendix C.

IV. EXPERIMENTAL DATA

The data D used to obtain the posterior includes
3H(d, n) 4He cross sections from Refs. [1–5], the same five
sources used by de Souza et al. [12]. We agree with their data
selection criteria, as other sources have much larger uncertain-
ties and/or are higher in energy. We use the same data points
from each reference as were employed in de Souza et al.
[12], although some details in the treatment of data differ,
as discussed below. A summary of the data sets is given in
Table I.

A. Conner et al. [1] (1952)

We take 43 of their reported 90◦ differential cross sec-
tion measurements with 21 � Ed � 357 keV, where Ed is
the deuteron laboratory energy, corresponding to 12 � E �
214 keV. Following de Souza et al. [12], we do not include the
two lowest energy points which are subject to larger uncertain-
ties. The differential cross sections are converted to total cross
sections by converting to the c.m. system and multiplying
by 4π . The correction from converting to the c.m. system
is small, but not negligible, amounting to a 1.6% increase in
the cross section for the highest energy we consider. We note
that de Souza et al. [12] did not convert to the c.m. system.
Following de Souza et al. [12], we assume a 1% point-to-point
uncertainty for this data set. The original paper is not clear on
this point, as on page 471 it states “The statistical probable
error from each target was about 1 percent” but on page 472
it states “The probable error in the number of counts is less
than 1

2 percent.” Conner et al. [1] do not provide a detailed
discussion of systematic errors in their cross sections, but they
do estimate the probable error to be “about 2%.” Converting
the probable error to a standard deviation assuming a Gaussian
distribution, we adopt 3.0% for the normalization uncertainty.
This value is significantly larger that the 1.8% assumed by
de Souza et al. [12]. Conner et al. [1] do not make a clear
statement about their energy uncertainties.

B. Arnold et al. [2] (1953)

We utilize 53 of their reported total cross sections with
15 � Ed � 117 keV, corresponding to 9 � E � 70 keV. Fol-
lowing de Souza et al. [12], we do not include points with
7 � Ed � 11 keV, due to larger uncertainties, and four other
points with factor of 10 clerical errors are not included. The
available description of the experiment is very detailed and
systematic errors are carefully considered and well controlled.
The measurement was conducted by measuring α particles
at 90◦ in the laboratory; the correction for c.m. motion in
the determination of the total cross section was taken into
account. We utilize the same point-to-point uncertainties as de
Souza et al. [12], which are based on Table VIII of the original
paper. The absolute systematic normalization uncertainty of
2.0% adopted by de Souza et al. [12] appears reasonable and is
also adopted here. The uncertainty in the c.m. energy is given
in Table VIII of the original paper as 0.18 keV at E = 15 keV,
0.17 keV at E = 30 keV, and 0.077 keV at E = 60 keV.

C. Kobzev et al. [3] (1966)

We employ 45 of their reported 90◦ differential cross sec-
tion measurements with 115 � Et � 660 keV, where Et is the
triton laboratory energy, corresponding to 46 � E � 264 keV.
The differential cross sections are converted to total cross
sections by converting to the c.m. system and multiplying
by 4π . The correction from converting to the c.m. system is
significant, amounting to a 4.7% increase in the cross section
for the highest energy we consider. We again note that—as
with the Conner et al. [1] data set—de Souza et al. [12] did
not convert to the c.m. system. The publication [3] supplies
little information regarding experimental details or systematic
errors. We follow de Souza et al. [12] and assume a point-
to-point uncertainty varying with energy between 2.0% and
2.5%, and a 2.5% systematic uncertainty in the absolute cross
section. These experimental data are also subject to rather
large uncertainties in the energy, with the uncertainty quoted
to be 2.5% for measurements with E � 60 and 2.0% for
60 � E � 480 keV. The energy uncertainty is most probably
dominated by the calibration of the magnetic analyzer and the
energy loss corrections, which would make them highly corre-
lated in energy. Evidence for an energy-dependent systematic
error in this data set is presented below in Sec. VII.

D. Jarmie et al. [4] (1984)

We consider their 17 reported total cross sections cover-
ing 12.5 � Et � 117 keV, corresponding to 5 � E � 47 keV.
This experiment took extensive steps to minimize systematic
uncertainties and the publication [4] provides considerable
documentation of those uncertainties and of the experiment
in general. The differential cross section for α particles was
measured at six laboratory angles, which were converted the
c.m. system. The differential data were consistent with c.m.
isotropy and converted to a total cross section by averaging
and multiplying by 4π . We and de Souza et al. [12] adopt
the quoted point-to-point uncertainties and absolute normal-
ization uncertainty of 1.26%. The systematic error in energy
varies from 0.048% at the lowest energy to 0.014% at the
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highest energy, while the random uncertainty in the energy
calibration varies from 0.008% at the lowest energy to 0.004%
at the highest energy.

E. Brown et al. [5] (1987)

We use their 8 reported total cross sections covering 80 �
Ed � 116 keV, corresponding to 48 � E � 70 keV. These
data were taken using the same equipment as the experi-
ment reported in Ref. [4], but with the role of beam and
target interchanged. In this case, the absolute target density
was not determined, leaving the absolute cross section scale
undetermined. The data are therefore treated as relative mea-
surements. Otherwise, the methods of data reduction are as in
Ref. [4]. We and de Souza et al. [12] utilize the quoted point-
to-point uncertainties. The uncertainty in the c.m. energy is
9 eV.

V. UNDERSTANDING THE CORRELATIONS BETWEEN
R-MATRIX PARAMETERS THAT EMERGE FROM

SAMPLING

de Souza et al. [12] combines a sophisticated Bayesian
model with a single-level, two-channel R-matrix parametriza-
tion. In addition to the parameters identified above—E0, γ 2

d ,
and γ 2

n , Ue—de Souza et al. choose to also indirectly sam-
ple the boundary-condition parameter B. Although, instead
of sampling and reporting B they parametrize their model in
terms of the energy, EB, at which the level shift 
c is zero, i.e.,
EB and B are related by B = Sc(EB). As already mentioned,
de Souza et al. also consider the channel radii, ad and an,
as parameters to be sampled. The de Souza et al. R-matrix
parameter set, θR,deS, is thus

θR,deS ≡ {
E0, EB, γ 2

d , γ 2
n , ad , an,Ue

}
. (24)

In this section we identify one redundancy and three correla-
tions inherent to this version of the R-matrix parametrization.
We eliminate the redundancy, thereby reducing the dimen-
sionality of the θR space we are sampling. We also discuss
how we deal with complications introduced by the correlation
of channel radii with the reduced channel widths.

We observe significant E0-EB, γ 2
d -ad , γ 2

n -an, and γ 2
d -γ 2

n
correlations when we sample the posterior p(θR,deS, f, α|D, I );
see Figs. 1, 2, and 4. These correlations—especially the last
two—lead to untenably large autocorrelation times: as much
as an order of magnitude larger than those reported in [12].

A. E0-EB correlation

It has been shown by Barker [21] that level energies and
reduced widths can be “renormalized” as the boundary condi-
tion is changed: there exists a relationship between EB and E0

that leaves physical observables invariant [21]. This relation-
ship presents itself as a correlation in the multidimensional
posterior for θR,deS; see Fig. 1.

To derive an analytic description of the relationship we
start from (6). The first term in the denominator of Eq. (6)
is

E0 + 
d + 
n − E , (25)

FIG. 1. Correlation between E0 and EB. Blue, shaded regions are
the samples from the MCMC analysis. The solid, orange line is the
predicted correlation according to Eq. (26). The green, dashed lines
are the boundaries of the uniform prior applied to E0 in Ref. [12].

where the EB prescription means that 
c = −γ 2
c [Sc −

Sc(EB)]. For a single-level parametrization, the combination
E0 + 
d + 
n determines the location (in E ) of the peak of
the resonance. For this case, we know from Barker [21] that

FIG. 2. Correlations between γ 2
d and ad (top) and γ 2

n and an (bot-
tom). Samples from the MCMC analysis are shown as blue circles.
Solid, orange lines represent the correlation imposed by Eq. (28).
Dashed, green lines represent the fitted results of Eq. (29).
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different boundary condition parameters, Bc = Sc(EB), will
reproduce the same cross section provided that E0 is suitably
adjusted. In light of that, we take the derivative of (25) with
respect to EB and set it to zero. Solving for dE0

dEB
gives

dE0

dEB
= −γ 2

d

dSd

dE

∣∣∣∣
E=EB

− γ 2
n

dSn

dE

∣∣∣∣
E=EB

. (26)

Assuming that the derivatives on the right-hand side do not
vary significantly with EB yields the result that the E0-EB

correlation will be a straight line whose slope is given by the
right-hand side of (26). The comparison with a set of MCMC
samples is shown in 1. The agreement between the predicted
slope and the samples is excellent. The E0 prior taken in
Ref. [12] was a uniform distribution from 20 to 80 keV. Those
bounds are shown in the Fig. 1. Equation (26) maps this
information on E0 into what is apparently a tight constraint
on EB; cf. Ref. [12, Table I]. In fact, the correlation between
E0 and EB extends much further than this in both directions.

B. The correlation between ac and γ2
c

An essential component of R-matrix theory is the divi-
sion of the relative particle separation at the channel radius.
Outside of the channel radius, it is assumed that the nu-
clear interaction does not contribute. This assumption leads
to channel-radius dependence in the R-matrix parameters. In
this sense, the channel radius is not a parameter but rather a
regulator that separates internal dynamics from the asymptotic
wave functions. Suitable choices of the channel radius make
the assumption that the nuclear reaction is finite-ranged easier
to accept, but an R-matrix with an infinite number of levels
should produce results for observables that are independent
of the channel radius. The channel radius should thus not be
thought of as a parameter to be optimized or sampled; instead
observables should be largely independent of it.

Here we show in detail the correlations between the
channel radii and reduced width amplitudes. Again, this is
expected. The fact that Ref. [12] did not observe these cor-
relations is strong motivation for the present work.

The single-level R-matrix formulation for the cross section
may be mapped into the traditional Breit-Wigner formula if
one chooses Bc = Sc(Er ). If one further performs a first-order
Taylor expansion of Sc around the resonance energy, Er , the
resulting partial widths are

	c = 2γ 2
c Pc

1 + ∑
c′ γ 2

c′
dSc′
dE

, (27)

where Pc and the energy derivative of the shift functions are
evaluated at Er . If the channel radii are varied and the R-
matrix parameters Er and γ 2

c reoptimized at new values of ac,
it is reasonable to expect the 	c will remain constant. This
condition should govern how γ 2

c depends on ac.
We note that these “Breit-Wigner” or “observed” partial

widths differ from the formal partial widths of R-matrix theory
[13] by the volume renormalization factor 1 + ∑

c′ γ 2
c′

dSc′
dE . Be-

cause of this term 	c depends on all of the γ 2
c ’s. Typically, the

volume renormalization factor is close to unity. However, for
the low-energy 3/2+ resonance in the 3H(d, n) 4He reaction,

this is not the case: for the R-matrix parameters found by
Barker [27] it is approximately 6, with the dominant contri-
bution coming from the deuteron channel. Nevertheless, as
shown in [28], Eq. (27) may be inverted to yield

γ 2
c = 	c

Pc

[
2 −

∑
c′

	c′

Pc′

dSc′

dE

]−1

. (28)

Imposing invariance of 	c as ac is changed leads to a
relationship between γ 2

c and ac that can be parametrized as
a power law,

aαc
c γ 2

c = βc, (29)

where αc and βc are extracted from solutions of Eq. (28).
These solutions suggest αn = 1.25 and βn = 0.352; αd =
4.28 and βd = 6970.

We compare these semianalytical predictions to the sam-
pling results for both deuteron and neutron channels in Fig. 2.
The agreement between the samples and the two predicted
results is excellent.

The nonlinearity and extended nature of these ac-γ 2
c

correlations is largely responsible for the extremely long au-
tocorrelation times we saw when sampling with the parameter
set which includes the radii that was defined in de Souza et al.
[12]. For more discussion of possible ways to overcome those
correlations see Appendix C.

C. γ2
d -γ2

n correlation

Finally, we discuss a correlation that is very clear in the R-
matrix parameter posterior Fig. 4, but—unlike the correlations
discussed so far in this section—represents physics and not
parameter redundancy. The correlation between γ 2

d and γ 2
n is

a consequence of the fact that the cross section for dt fusion
at low energies almost saturates the maximum value allowed
by quantum-mechanical unitarity, when |SJ

dn|
2 = 1 [27].

In the single-level formulation, Eq. (6) shows that this limit
is achieved at the resonance energy if 	d = 	n. The height of
a single resonance peak is always proportional to 	d	n and so
this product is well constrained by data. The sum 	 = 	d +
	n is also well determined, since it is the total width of the
resonance in the Breit-Wigner formula. This makes it seem as
if 	d and 	n can be independently determined, but in fact if
	d and 	n are approximately equal the predicted cross section
is insensitive to the individual values of 	d or 	n. This can be
seen by fixing 	, in which case the product 	d	n = 	d (	 −
	d ). The derivative of this product with respect to 	d then
vanishes when 	d = 	/2. It follows that if we are close to
the unitarity limit (where 	d = 	n) changes to the individual
widths do not affect the cross section to first order, as long
as 	d + 	n stays fixed. Even though the unitarity limit is not
fully realized here, the final values of 	d and 	n put us close
enough to it that the parameters γ 2

d and γ 2
n end up significantly

correlated.

D. Implications for Bayesian R-matrix practice

In light of the correlations and redundancies induced when
EB, ad , and an are included as parameters to be estimated,
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we make two decisions that reduce the dimensionality of
the space in which we are sampling. First, we characterize
the level energy and boundary condition simultaneously by
requiring that E0 = EB ≡ Er . Since the EB parameter is redun-
dant this has no impact on our analysis. In subsequent analyses
the authors of Ref. [12] also eliminated the EB parameter and
did not sample it, see, e.g., Ref. [14].

Second, we fix the channel radii to obtain the results that
follow. This eliminates the non-linear correlations seen in
Fig. 2. We conduct our analysis at several different (ad , an)
pairs to ensure that physical observables predicted by our
analysis are indeed insensitive to the channel radius.

VI. RESULTS FOR A ONE-LEVEL R-MATRIX MODEL

Given the correlations discussed in the previous section we
will formulate our comparison with de Souza et al. [12] with
a reduced R-matrix parameter set:

θR ≡ {
Er, γ

2
d , γ 2

n ,Ue
}
, (30)

where, as in [12], we include an electron-screening potential
parameter, Ue, and use the Lane and Thomas [13] parametriza-
tion. The resulting R-matrix model is physically equivalent to
the model of de Souza et al., permitting an accurate compar-
ison between the results shown in this section and the results
reported in [12]. But our parametrization is simpler, which al-
lows us to readily explore different statistical models. Perhaps
the most significant difference between the approaches is that
we do not sample the channel radii, but instead consider a
grid of at least nine points in channel radius space: ad is fixed
at 4.25, 5.56, and 7.25 fm and an is fixed at 3.633, 5.5, and
7.5 fm.

A. The statistical model of de Souza et al.

In this section we consider two different statistical models
for the point-to-point errors. The simplest model takes the er-
rors “as they come” from the original publications. The more
sophisticated model, as implemented by [12], adds an overall
additional extrinsic error to each data set. To be precise, we
will refer to the statistical model defined by

Sexp,i ∼ N
(

fSS(Eexp,i ), δ
2
S,i,stat

)
(31)

as statistical model U f ,

Sexp ∼ N
(

fSS(Eexp,i ), δ
2
S,extr + δ2

S,i,stat

)
(32)

as statistical model Ua f , and

Sexp ∼ N
(
S(Eexp,i ), δ

2
S,extr + δ2

S,i,stat

)
(33)

as statistical model Ua. Both models include multiplicative
normalization factors, fS , applied to the theory prediction,
S(Ei ). (Note that in this subsection we treat the S factor as the
dependent variable, so as to perform as close a comparison as
possible to [12], In the sections that follow we treat the cross
section as the dependent variable, as indicated in Eq. (15).
This is an important change because the cross section—which
is, after all, what is actually measured—has strong energy
dependence at low energies.)

FIG. 3. S(40 keV) posteriors for different statistical models. The
S(40 keV) posteriors were generated from an analysis with a sin-
gle R-matrix level at fixed channel radii ad = 5.56 fm and an =
3.633 fm. Ua f (blue) is shown in the top panel in comparison to
a summary of the result of [12] (purple). The posteriors for four
different statistical models, Ua f (blue), U f (orange), Ua (green), and
Ur f (red), are presented in the bottom panel for comparison.

To demonstrate the importance of sampling extrinsic un-
certainties and normalization factors, four posteriors are
shown in bottom plot of Fig. 3. Results with Ua f are shown
in blue and those with U f are shown in orange. The drastic
difference in width and central value highlights the impor-
tance of sampling extrinsic uncertainties. Without them, the
reported S factor is significantly larger and narrower. The
lnL values for Ua f are three orders of magnitude larger than
those obtained using U f . The improvement in likelihood is
expected, as inflating the error bars necessarily improves the
quality of the fit. But the dramatic improvement seen here
suggests that the errors quoted in some of the original pa-
pers drastically underestimate the point-to-point uncertainty.
Normalization factors alone are not enough to overcome the
discrepancies between the data sets. And it is not surprising
that the point-to-point uncertainties in the early experiments
need to be inflated, as older studies tend not to include careful
quantification of this type of uncertainty. For example, the
measurement of Arnold et al. [2], which is the best docu-
mented of the early experiments, only gives information about
the point-to-point uncertainty from counting statistics. This
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FIG. 4. R-matrix-parameter posteriors for a single-level R-matrix analysis at ad = 5.56 fm and an = 3.633 fm combined with statistical
model Ua f .

uncertainty is very small (0.2%–0.3%) and other random or
pseudo-random effects likely make significant contributions.

Included in Fig. 3 is the S(40 keV) posterior obtained when
absolute extrinsic uncertainties are sampled without normal-
ization factors, model Ua. The lnL values obtained with Ua

are three orders of magnitude larger than those obtained using
U f . This makes the point that extrinsic uncertainties carry the
weight in this analysis when resolving discrepant data. But
the bottom panel of Fig. 3 also shows that if normalization
uncertainties are neglected the final posterior for evaluated
quantities is overly narrow.

The S(40 keV) posterior obtained with a single-level R-
matrix and statistical model Ua f at fixed channel radii ad =
5.56 fm and an = 3.633 fm is also shown in the top panel
of Fig. 3, where it is compared to the posterior of Ref. [12].
We obtain S(40 keV) = 25.60+0.15

−0.14 MeV b in this analysis,
where they reported 25.438+0.080

−0.089 MeV b. While the posteriors
overlap at one standard deviation, we do not reproduce the
result of de Souza et al. [12], despite having used their median

channel radii. The most significant difference is the widths
of the distributions. A detailed comparison follows, but the
most striking difference between the two analyses is that the
posteriors for the R-matrix parameters presented in Ref. [12]
do not exhibit the extended correlations described and derived
in the previous section. Such correlations should be present;
we found them using a variety of sampling strategies.

The posterior for the parameters associated with the sin-
gle R-matrix level when statistical model Ua f is employed is
shown in Fig. 4. A summary of the posterior pdf for the abso-
lute extrinsic uncertainties δ j,extr is shown in Fig. 5. While our
posterior for the R-matrix parameters has notable differences
from that of Ref. [12], we find absolute extrinsic uncertainties
that are mostly consistent with the medians given in [12],
although our result for the extrinsic uncertainty associated
with the Jarmie et al. [4] data, δ1,extr, is much smaller.

Importantly, all of our results for normalization factors,
f j , have error bars that are nearly a factor of 2 larger than
those of de Souza et al. [12], as shown in Fig. 6. This
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FIG. 5. Summary of the absolute extrinsic uncertainty posteriors
from an analysis using a single R-matrix level and channel radii of
ad = 5.56 and an = 3.633 fm. The lower and upper limits of the blue
error bars correspond to 16% and 84% quantiles, respectively. For
comparison, the same quantiles reported in [12] are shown in orange.

feeds directly into the comparison of S(40 keV), as uncer-
tainty in the normalization factors directly impacts the width
of S(40 keV) as seen in Fig. 3. Our 16% and 84% quantiles
both fall 0.14 MeV b from the median value of 25.60 MeV b.
Our S(40 keV) posterior is nearly twice as wide as that of de
Souza et al. [12] and our median lies just above the 95% bound
of their distribution. The different normalization uncertainties
we obtain compared to de Souza et al. [12] drive this different
evaluation of S(40 keV).

B. A different statistical model

Absolute extrinsic uncertainties can add unnecessarily
large error bars at both high energies—where the cross sec-
tion, and the corresponding S factor, decreases significantly—
and low energies, where Coulomb suppression renders the
cross section exponentially small. Considering that back-
grounds in the measurements are very small, it also seems
more likely that the extrinsic uncertainty should be fractional
rather than absolute. One situation where a fractional uncer-
tainty is appropriate would be if there were pseudorandom

FIG. 6. Comparison of the normalization factors obtained with
a single-level R-matrix approximation and absolute extrinsic uncer-
tainties. Our results are shown in blue. The results reported in [12]
are shown in orange. The error bars indicate 16% and 84% quantiles.

variations in the detection efficiency due to changes in the
beam-target intersection. Therefore, rather than sampling an
extrinsic uncertainty, δ j,extr , that has a fixed size for each
experiment, we now construct a new statistical model that
is more appropriate to this particular reaction in which the
extrinsic uncertainties for a particular experiment are a certain
fraction of the observable, i.e.,

σexp ∼ N
(

f j σ (θ ; Eexp), (α jσexp)2 + δ2
j,stat

)
, (34)

where α j are relative extrinsic uncertainties. We will refer to
this model as Ur f . It is defined in terms of the cross section
because from now on the cross section is sampled rather than
the S factor. In cases where we apply Ua f to cross-section
data, the model is defined by taking S → σ in Eq. (32). Simi-
larly, where we apply Ur f to S-factor data, we take σ → S in
Eq. (34). We would like to emphasize that the choice of model
for the extrinsic uncertainties needs to be considered on a
case-by-case basis, taking into consideration the experimental
methods employed, importance and nature of backgrounds,
etc. The prior adopted for all α j parameters is

α j ∼ T (0,∞)N (0, 22). (35)

This distribution is extremely wide considering the extent to
which an α j of even 1 would inflate the error bars. In practice,
the posteriors for α j indicate small extrinsic errors; these
priors have no influence on the final values of the α j’s and
are much wider than is necessary. However, we did not need
to reduce their width in order for sampling to converge.

We now compare the statistical models Ur f and Ua f , with
both relative and absolute extrinsic uncertainties applied to the
cross section. The residuals are defined by

Ri, j ≡ σi, j − f j∗σR(Ei, j ; θR∗)√
δ2

i, j + [α j∗σR(Ei, j ; θR∗)]2
, (36)

where θ∗ ≡ {θR∗, α j∗, f j∗} are the R-matrix and statistical-
model parameters that yield either the maximum posterior
probability (θ (P )

∗ ; “MAP values”) or maximum likelihood
(θ (L)

∗ ). A comparison of the residuals of the two models at
the max lnL of each reveals no statistical preference for one
model over the other. However, the models’ values of max lnL
differ by more than 2 with relative extrinsic uncertainties
producing the higher likelihood. This difference is accounted
for by the normalization factors of the normal distributions
associated with each data point [first factor in Eq. (15)]. Abso-
lute extrinsic uncertainties lead to huge relative cross-section
errors at low energies where the cross section gets small. The
likelihood is then suppressed by the normalization factors.

VII. WHAT ENERGY SAMPLING REVEALS ABOUT
THE KOBZEV DATA SET

If observables calculated with a given R-matrix approxima-
tion are channel-radius dependent, it is an indication that the
analysis is suffering from at least one of two possible defects:
(1) a lack of levels or (2) a misreporting of data and/or its
associated error. The Kobzev [3] data set was found to induce
channel radius dependence in both one- and two-level R-
matrix approximations. We now describe how we traced this
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FIG. 7. S(40 keV) (a) and S(140 keV) (b) posteriors using two
3/2+ R-matrix levels and statistical model Ur f for the analysis of all
data sets, including that of Kobzev et al.. Posteriors are shown at
ad = 4.25 (blue), 5.56 (orange), and 7.25 (green) fm. an is fixed at
3.633 fm.

back to what appears to be an energy-dependent systematic
error in the data set.

We analyzed all five data sets with both our R-matrix
“Model A” and “Model B”. These models include one and
two 3/2+ 5He levels respectively. Both include one 1/2+
(background) level. (For full details see Sec. VIII.) For both
models we performed an analysis on a grid of nine points
in channel-radius space. With the Kobzev data in the likeli-
hood the S(40 keV) results obtained at different channel radii
are consistent with one other within one standard deviation;
see Fig. 7. But there is a definite trend with ad , as well as
marked changes in the relative extrinsic uncertainty, α3, added
in quadrature to the statistical uncertainties reported in the
Kobzev set [3]. Notably, there is a dramatic ad dependence in
lnL(K )

A as well, an undesirable feature of an R-matrix analysis.
This dependence can be seen in Table II.

These details are manifested in the posteriors of the S
factor shown in Fig. 7 at 40 and 140 keV in panels (a) and
(b), respectively. The physical model should deliver consistent
results across the entire energy range being analyzed, and it
does not for S(140 keV).

TABLE II. max lnL values models with one (A) and two (B)
3/2+ levels. Analyses of all five data sets including that of Kobzev
et al. [3] are distinguished by a superscript K .

ad (fm) max lnL(K )
A max lnL(K )

B max lnLA max lnLB

4.25 343.2 341.9 285.4 285.9
5.56 346.3 341.9 281.6 286.1
7.25 342.9 346.9 269.1 285.9

In order to investigate these issues further we implemented
energy sampling (sampling in the independent variable) for
this data set. Following Ref. [12] we constructed a likelihood
for the energies of the form

Eexp,i ∼ N
(
Ei + fE , δ2

stat,i + δ2
E ,extr

)
, (37)

where Eexp,i represents the ith reported experimental energy,
Ei is the energy at which the R-matrix cross section is to
be evaluated, fE allows for a systematic shift to be sampled,
δstat,i is the statistical energy uncertainty reported with the ith
data point, and δE ,extr allows for an additional, point-to-point
uncertainty to be sampled as well.

In Fig. 8, cross section residuals are shown for two cases.
First, the blue circles represent the residuals at θ

(L)
∗ without

this additional energy sampling. The residuals when the en-
ergies are sampled according to the likelihood derived from
Eq. (37) are shown in orange.

The cross section residuals using the sampled energies
have much better statistical properties—i.e., they are much
more consistent with the hypothesis of point-to-point noise—
than are the ones without. And the need for an extrinsic
statistical error on the cross section, i.e., an inflation of the
point-to-point errors, also is greatly reduced once energy
sampling is introduced, leading to a reduction in the median
value of the cross section extrinsic error by a factor of 5.
This energy-sampling analysis was only of the Kobzev et al.
data set, which may account for part of this decrease, but the
marked drop in α j is broadly consistent with Fig. 8. Energy
sampling improves the internal statistical consistency of the
Kobzev et al. data. The resulting posteriors of the statistical

FIG. 8. Cross section residual comparison of the Kobzev data
when energies are sampled (orange squares) versus when they are
not (blue circles).
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FIG. 9. Residual comparison of the Kobzev data. The cross sec-
tion residuals are shown as blue circles, and the energy residuals are
shown as orange squares.

parameters, fE and δ2
E ,extr, indicate only a small overall energy

shift (≈1.5 keV) and no need for an inflation of the (already
sizable) energy uncertainty: the additional contribution to the
uncertainty of individual energies is less than 0.43 keV (84%
credibility interval).

But, while these parameters do not indicate large effects,
sampling the energies does reveal something peculiar in the
energy range from 150–250 keV. Figure 9 shows the sam-
pled energy residuals in orange alongside the cross section
residuals in blue. The decidedly non-random behavior above
≈150 keV indicates that there is a systematic misreporting
of the energies in the Kobzev set that is not captured by a
random error in the observed cross section or S factor. We
emphasize that when the energy sampling is implemented
each energy Ei can move independently, so it is significant that
they “choose” to arrange themselves in this fashion between
150–250 keV. The cross section residuals– - which should also
be random—show a systematic trend there too.

Furthermore, above the resonance the Kobzev data set
disagrees with the only other dt data set that extends above
70 keV, that from Conner et al.; see Fig. 10. Indeed, the ad

dependence in the S(140 keV) posterior (see bottom panel
of Fig. 7) can be traced to the presence of two solutions for

FIG. 10. Experimental cross sections above 100 keV (COM) rel-
ative to the theory prediction at max lnL for the Kobzev (blue circles)
and Conner (orange squares) data sets.

the R-matrix model, one that agrees with the Kobzev data
and one that agrees with the Conner data. Allowing the beam
energies reported in the Kobzev publication to float within
their reported error reveals that an energy-dependent system-
atic uncertainty affects the Kobzev data in the energy region
150–250 keV. While energy sampling can correct for a drift in
beam energy, doing so assumes uncorrelated energy errors,
which is clearly not consistent with the pattern of energy
residuals in Fig. 9. Without knowing further details of the
experiment it is difficult to determine the correct statistical
model for this systematic uncertainty. It is also unfortunately
the case that there are no other data sets in this energy range
that could shed additional light on this issue. Because of these
issues we do not use the Kobzev data set in the analysis that
follows.

VIII. A MORE SOPHISTICATED R-MATRIX MODEL

We constructed two other models that go beyond the model
we used when attempting to reproduce the results of de Souza
et al. [12] (see Sec. VI). The first, Model A, consists of a
single 3/2+ level and a single 1/2+ background level. Model
B is a further extension that also adds a 3/2+ background
level fixed at 10 MeV. Note that both models include the 1/2+
background level according to (11) in an incoherent sum with
the effects of the 3/2+ channel; A1/2 is the dimensionless
parameter that characterizes the contribution of this 1/2+
level. Model A and Model B are both parameterized in terms
of the “Breit-Wigner” partial widths defined in Eq. (27) and
are formulated using the Brune parametrization. The R-matrix
parameter sets for each are thus

θR ≡ {Er, 	1d , 	1n,Ue, A1/2} (38)

for Model A and

θR ≡ {Er, 	1d , 	1n, 	2d , 	2n,Ue, A1/2} (39)

for Model B. The corresponding prior distributions are

Er ∼ U (0.020, 0.100 MeV) (40)

	ic ∼
{

U (0, 	ic,WL), 	ic <= 	ic,WL,


icN
(
	ic,WL, 	2

ic,WL

)
, 	ic > 	ic,WL,

(41)

Ue ∼ T (0,∞) N (0, 0.0012 MeV2), (42)

A1/2 ∼ T (0,∞) N (0, 12), (43)

α j ∼ T (0,∞) N (0, 22), (44)

f j ∼ T (0,∞) N
(
0, δ2

j,syst

)
, (45)

where i denotes the R-matrix levels 1 and 2, j denotes the
data sets 1 (Jarmie), 2 (Brown), 4 (Arnold), and 5 (Conner),
and c denotes the channels d (deuteron) and n (neutron). 
ic

is a factor applied to the normal distribution such that the
probability density function is continuous at the boundary,
	ic,WL. This boundary is the approximate Wigner limit for the
partial width in level i and channel c given by

	ic = 2Picγ
2
ic

1 + γ 2
ic

dSc
dE (Ei )

, (46)
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FIG. 11. S(40 keV), S(140 keV), and α j dependence on ad .
Model A results are shown in the left column, panels (a), (c), and (e).
Model B results are shown in the right column, panels (b), (d), and
(f). Blue circles correspond to results obtained for the Jarmie et al.
[4] (blue circles), Brown et al. [5] (orange squares), Arnold et al.
[2] (green diamonds), and Conner et al. [1] (red stars) are shown
individually in the bottom row. Error bars reflect the 16% and 84%
quantiles.

where the reduced width amplitude in channel c′ �= c is taken
to be zero [see (27)]. Ei is 100 keV for i = 1 and 10 MeV for
i = 2.

While Model A’s implementation is independent of the
choice of standard or Brune parametrization [16], our im-
plementation of Model B does have some subtleties that,
in practice, make a dramatic difference in how quickly the
MCMC sampling converges. The parametrization in terms of
partial widths and the use of the Brune parametrization both
lead to significant improvements in sampling efficiency for
some channel radii pairs.

Turning to the results, the left column of Fig. 11 shows
that, once the Kobzev data set is excluded from the analysis,
the S-factor and extrinsic uncertainty results in Model A are
remarkably stable with respect to ad . Here, in addition to

FIG. 12. The evolution of the product 	2d	2n is given for all
ad values under consideration. Results were obtained with R-matrix
Model B and statistical model Ur f . an was fixed at 3.633 fm.

the values of ad evaluated in the previous sections, we also
include ad = 5.00 fm, which was used by Brown et al. [5].
A significant decrease in the max lnLA is observed as ad

increases, as seen in Table II. Although this difference is not
physically observable, the strong preference for smaller ad

values is a difficult feature to tolerate in an R-matrix analysis.
As the extrinsic uncertainties for the four remaining data sets
were stable with respect to channel radii, we see no indication
of hidden systematic uncertainties in the data and instead look
to the addition of a 3/2+ background level to remove this
channel-radius dependence.

The ad dependence of the Model B results is summarized
in the right column of Fig. 11, panels (b), (d), and (f). They are
consistent with Model A and stable, but Model B performs
quantitatively better by two measures. First, the max lnLB

values are nearly ad -independent (see Table II); the variation
in lnLB is more than an order of magnitude smaller than with
Model A. Second, all lnLB values are higher than the highest
lnLA values. Clearly, the additional 3/2+ level at 10 MeV
dramatically suppresses the preference for smaller deuteron
channel radius that exists in Model A.

The full posterior of the R-matrix parameters in this model
can be found in Appendix A; see Fig. 17. Here we elucidate
two key features.

First, the contribution of the 3/2+ background level can be
assessed from the magnitude of 	2d	2n. Figure 12 shows the
evolution of 	2d	2n as ad increases. There are two important
trends here. First, as ad increases, the magnitude of the peak
value of 	2d	2n increases. Second, the probability density at
	2d	2n = 0 tends to decrease with increasing ad indicating
that the contribution of the background level is more promi-
nent at larger ad . This explains Model A’s preference for
smaller ad . As ad increases, more input is required from the
background level, and Model A is simply not equipped to
provide it.

Second, we note that the electron screening potential, Ue,
and the 1/2+ background level both have very little impact
on the final results. Ue is less than 18.6 eV (84% credibility).
In comparison, de Souza et al. [12] report Ue � 14.7 eV at
the 97.5% credibility level. The 1/2+ fractional contribution
to the S factor, S(1/2+ )(E )/S(E ) is always <1.3%, attaining
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FIG. 13. Cross section data (without extrinsic uncertainties)
from the four sets in our final analysis compared to a series of curves
generated (without normalization factors) from a subset of the chains
for each of the ad values in the first column of Table II.

its maximum value at the lowest energy considered, approxi-
mately 5 keV.

As a visual indication of how well our parameter poste-
riors reproduce the data, a subset of the MCMC chain for
ad = 7.25 fm and an = 3.633 fm was used to generate several
theory curves. They are shown (without normalization factors)
together with the experimental data (without extrinsic uncer-
tainties) in Fig. 13.

The residuals, defined by Eq. (36), for each of the four
data sets used in our final analysis are shown in Fig. 14. The
residuals for the Jarmie, Arnold, and Conner data sets are very
stable with respect to ad and across each data set’s energy
range: there is no observable, systematic trend. The Brown
residuals could be perceived to have a systematic decrease
with energy, but there are only eight points in this data set
and systematic behavior is more easily perceived in smaller
data sets. Each ad value has its own color and marker in the
figure to make it easier to distinguish between them for the
few points where they do not lie directly on top of each other.
The consistency of the residuals resulting from the four data
experiments used in the final analysis indicates that these data
sets are mutually consistent and that the model provides an
excellent description of these data.

The Model B posterior for S(40 keV) is presented in Fig-
ure 15. Due to the consistency of both the lnL values and
physical observables, all ad values were binned together. In
this sense, the S(40 keV) presented here is ad and an inde-
pendent. The chains for the different ad configurations were
not of equal length, so the shortest chain set the number of
samples drawn from each. The result is S(40 keV) = 25.36 ±
0.19 MeV b. It differs from the most recent evaluation by de
Souza et al. in Ref. [12] in two ways: the peak value is lower,
and the width of the distribution is approximately twice as
wide. This widening is in no way associated with the reduced
data set. Similar widths were observed when Kobzev et al.
data were included. The S(140 keV) posterior is shown in
Fig. 16. Contributions from the different ad configurations
were combined there in the same way as in Fig. 15.

Finally, purely to ensure that our results are readily re-
produced, we give the R-matrix and statistical parameters for

FIG. 14. Residuals as defined by (36) for the four data sets in-
cluded in our final evaluation at four different values of ad : 4.25
(blue circles), 5.00 (orange squares), 5.56 (green diamonds), and
7.25 fm (red stars). Panel (a) corresponds to Jarmie et al. [4], (b) to
Brown et al. [5], (c) to Arnold et al. [2], and (d) to Conner et al.
[1]. The residuals for different channel radii are so consistent that
all four symbols often lie essentially on top of each other. As indi-
cated in the figure, panels (a)–(c) share the same x-axis scale while
panel (d) extends over a wider energy range. Results were obtained
using R-matrix Model B and statistical model Ur f . an was fixed at
3.633 fm.

ad = 7.25 fm and an = 3.633 fm at max lnLB in Tables III
and IV. We emphasize that θ

(L)
∗ is not representative of our

analysis, which yields full posteriors. We provide it here
purely as a benchmark.

IX. SOME LESSONS REGARDING THE USE OF BAYESIAN
METHODS FOR R-MATRIX ANALYSIS

Much of the discussion in the previous sections is rather
specific to the dt fusion reaction. Since this reaction is domi-
nated by a single, broad resonance it has features that are not
shared by many other reactions to which R-matrix analysis
is applied. What, then, are some general lessons that can
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FIG. 15. S(40 keV) posterior generated with R-matrix Model B
and statistical model Ur f . Results in 25.36+0.19

−0.19 MeV b. Since results
from all ad values in the first column of Table II are statistically
consistent they are combined to produce one final result.

be drawn from this study regarding Bayesian inference in
R-matrix analyses?

Most importantly, Bayesian methods provide several ad-
vantages in R-matrix modeling of nuclear reactions. They
make it straightforward to supplement the R-matrix model by
a “statistical” model that incorporates known imperfections in
the experiment in the analysis. They also provide access to the
entire parameter posterior, and not just the region around the
optimum R-matrix parameters. And the ability to specify pri-
ors on R-matrix and statistical-model parameters means that
small effects can be tested in the analysis without destabilizing
the parameter estimation.

But, our results emphasize the need to carefully explore
correlations and ensure that the sampler has fully explored
the posterior. Extended nonlinear correlations between R-
matrix parameters make canonical MCMC methods such as

FIG. 16. S(140 keV) posterior generated with R-matrix Model
B and statistical model Ur f . Results in 5.12+0.04

−0.05 MeV b. Results
from all ad values in the first column of Table II are combined, as
in Fig. 15.

TABLE III. R-matrix parameters at θ (L)
∗ where ad = 7.25 fm.

Er 	1d 	1n 	2d 	2n Ue

(MeV) (MeV) (MeV) (MeV) (MeV) (eV) A1/2

0.071 0.046 0.075 −11.964 1.598 5.923 0.008

Metropolis-Hastings slow to converge, even in an ensemble
sampler implementation. Writing down an R-matrix formula
and sampling all possible parameters may not be the best
strategy. It is preferable to employ a parametrization that does
not have (nonlinear) correlations between different levels in
the same channel, such as the Brune parametrization. And it is
certainly not useful to sample parameters that have no impact
on observables, such as the boundary condition parameter B.

Not sampling the channel radius is beneficial at a practical
level, since it eliminates one source of extended, non-linear
correlations. Channel radius sampling is also deprecated for
reasons of principle, since R-matrix results would be inde-
pendent of channel radius if enough levels were included
in each channel. For these reasons it is good to work on
a grid of channel radii and demonstrate that the results for
physical parameters and observables are similar across the
grid. To achieve that similarity background levels will likely
be necessary. Including them ensures a physics model that is
sufficiently flexible to accommodate all data, not just at the
resonance.

We also found—as did Ref. [12]—that data uncertain-
ties may need to be expanded through an “extrinsic error”
formalism like the one introduced in that work which was
incorporated and modified in our analysis. Even a cursory
examination of the point-to-point errors quoted for the Arnold
data set [2] makes it clear that an expansion of the error
bars is required. For comparison we point out that if the
Arnold, Brown, Conner, and Jarmie data sets were fed to
AZURE2 [28] with the stated point-to-point errors a χ2 of
approximately 25,700 for 166 data points would result. Such
an analysis also leads to an S(40 keV) of 28.08 ± 0.03 MeV b,
a spuriously precise value since the model is clearly incredibly
unlikely to be correct.

Lastly, we note that the Brune parametrization [16] makes
Monte Carlo sampling for the two-level model more efficient,
because this parametrization largely decouples the two levels
in the range of the experimental data. In contrast, if the Lane
and Thomas parametrization [13] is used, changes in the back-
ground level effectively alter the energy and reduced width
parameters of the low-energy resonance. These correlations
between the parameters associated with the two levels in the
Lane and Thomas parametrization can make sampling slower
to converge.

TABLE IV. Statistical parameters at θ (L)
∗ where ad = 7.25 fm.

α1 α2 α3 α5 f1 f1 f3 f5

0.00 0.01 0.02 0.03 1.02 1.00 1.03 1.01
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X. CONCLUSIONS

We have demonstrated that the combination of R-matrix
and Bayesian methods is a powerful tool for statistical infer-
ence in low-energy fusion reactions, when it is implemented
with the points discussed in the previous section in mind.
In the future we will pursue Bayesian R-matrix analyses
in other contexts, including 3He-α elastic scattering and
3He(α, γ ) 7Be.

In the particular context of the dt fusion reaction, our
detailed analysis of this process yields a final result for
S(40 keV) of 25.36 ± 0.19 MeV b. This is consistent with de
Souza et al. [12] result of 25.438+0.080

−0.089 MeV b but has an error
bar that is a factor of 2 larger. We attribute the smaller error
bar of de Souza et al. [12] to the fact that their sampler did
not explore the full posterior of their R-matrix-plus-statistical
model. It failed to converge, and so the uncertainty they ob-
tained in their analysis is too precise.

This is the main conclusion of our analysis as regards the
dt fusion reaction. Other findings of our work are

(i) Some low-energy measurements of this process have
underestimated or unreported point-to-point errors.
Adding an extrinsic point-to-point error to each data
set, as originally proposed in de Souza et al. [12],
makes it possible to obtain a statistically consistent
description that incorporates four different data sets:
Arnold, Brown, Conner, and Jarmie.

(ii) Once the point-to-point errors are increased the
common-mode errors becomes less certain, i.e., the
widths obtained when they are inferred from data are
larger. This leads to more uncertainty in the overall
evaluation of S(40 keV) than if extrinsic errors were
not included.

(iii) The available data on the dt cross section below 250
keV leaves very little room for contributions from
partial waves other than ld = 0 and Jπ = 3/2+.

(iv) If a single partial wave contributes to the reaction
then quantum-mechanical unitarity defines a maxi-
mum possible cross section at a given energy, as
discussed in Sec. V C. At energies near 80 keV, the
Conner data saturates this bound within uncertain-
ties. Our “best fit” R-matrix parameters yield a value
for the combination of partial widths that determines
the maximum one-level, two-channel cross section,

	d 	n
(	d +	n )2 , of 0.236. This is very close to the unitary
limit (	d = 	n) value of 0.25. The proximity of this
system to the unitary limit results in posteriors that ex-
hibit a strong correlation between the reduced partial
widths γ 2

d and γ 2
n .

(v) For Ec.m. between 120 and 160 keV the data set of
Kobzev et al. [3] disagrees at the 2–3 σ level with
the only other data set that extends above 100 keV,
that of Conner et al. [1]. We allowed the energies
of individual points in the Kobzev et al. data set to
float within the reported energy uncertainty and found
a systematic trend in the difference between the re-
ported and optimal energies. Given the disagreement
with the Conner et al. data, and the absence of any

discussion of this kind of systematic effect in Ref. [3],
we choose to omit the Kobzev et al. [3] data from our
analysis. This does mean that our results above the
resonance peak rely on only one data set. A modern
measurement of 3H(d, n) 4He in the energy region
above the resonance peak, that had clearly stated sys-
tematic and statistical uncertainties, would provide a
valuable check on our analysis. It could also illumi-
nate the issue of the unitarity limit discussed in the
previous paragraph.

(vi) We obtain results that are essentially the same for
channel radii ranging from ad = 4.25 to 7.25 fm and
an = 3.633 fm to 7.5 fm by including a background
level in the 3/2+ channel. This background level is
not needed for the optimal fit at ad = 4.25 fm, but
at larger deuteron-channel radii its parameters can be
chosen to cancel the effects induced in S(E ) due to
the increase in ad from 4.25 to 7.25 fm. Results do not
vary with an even if only a single channel is included.
We note that results are not as stable with ad if the
Kobzev et al. data are included in the analysis.

It is generally the case that incremental improvements in an
R-matrix analysis can be achieved by expanding the scope of
data that are fitted. In the present situation, this could mean

(1) including n + 4He total cross section data around the
3/2+ resonance, as done by Barker [27];

(2) accounting for the very small anisotropy in the differ-
ential cross section [19];

(3) extending the analysis to higher energies.

The second and third options could provide a better esti-
mate of the contribution of higher partial waves. However,
as discussed in Sec. II, the energy range and partial waves
considered here are well justified, and any improvement in
the results presented here from expanding the scope would be
incremental.
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APPENDIX A: SAMPLE DETAILS

Here we present the corner plots of the different parame-
ters sampled in Model B. We grouped parameters “like with
like.” There are not noticeable correlations between R-matrix
parameters, α j , and f j ; in this sense the correlations are block
diagonal.

Figures 17–19 display the one- and two-dimensional pos-
teriors of the R-matrix parameters, extrinsic uncertainties, and
normalization factors respectively for the choice ad = 7.25 fm
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FIG. 17. R-matrix parameter posteriors for ad = 7.25 fm and an = 3.633 fm using R-matrix Model B and statistical model Ur f . Er and the
partial widths are presented in MeV and Ue in eV.

and an = 3.633 fm. In all three figures, the blue lines represent
the θ

(L)
∗ values and the orange lines represent the θ

(P )
∗ values.

As can be seen in Fig. 19, the median values of the nor-
malization factors match up fairly well with [12]. However,
our results consistently return distributions that are approxi-
mately twice as wide. This increase in normalization factor
uncertainty, obtained exclusively when extrinsic uncertainties
are simultaneously sampled, directly increases the width of
S(40 keV).

APPENDIX B: SAMPLER DIAGNOSTICS

Chain convergence is based on integrated autocorrelation
time, τ , as provided by the EMCEE package, documented in
Ref. [29]. Once we obtained a reliable estimate of τ for each
parameter, we thinned all of the chains by the maximum τ .
Typical τmax values were 3000 to 6000 in our final analysis
using R-matrix Model B. To obtain these numbers each run
was prethinned by a factor of approximately 20. The τmax

for the prethinned chain was then computed to be 150 to
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FIG. 18. Relative extrinsic uncertainty parameter posteriors for ad = 7.25 fm and an = 3.633 fm using R-matrix Model B and statistical
model Ur f .

300, with the final estimates obtained after multiplying by the
prethinning factor.

Autocorrelation times were calculated after the burn-in
period had been discarded. In some cases, walkers in the
ensemble never found the maximum region of the posterior.
Those walkers were identified by the mean of their lnP val-
ues. This was a small percentage of the ensemble, never more
than 10%, so discarding them from the final evaluation was
not only justified by their relatively low lnP values but also
fairly insignificant. Their primary contribution was dispropor-
tionately affecting the calculation of τ .

Thinned chains were further analyzed to confirm that the
mean of each chain was stable, ensuring equilibrium had been
reached.

APPENDIX C: ALTERNATIVE SAMPLING METHODS

When the channel radii were treated as parameters, mean-
ing that they were sampled, we found parallel tempering
(via PTEMCEE [25,30]) to be useful. The technique tempers
difficult-to-sample likelihoods according to

p(D|θ, I )1/T , (C1)

where T is a so-called temperature, allowing several chains to
be run at different temperatures simultaneously. The benefit of
the algorithm comes with the exchange of proposals between
temperature chains. Higher temperature chains move through
less complex multidimensional posteriors, only exploring the
most prominent features. The chain corresponding to T = 1
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FIG. 19. Normalization factor parameter posteriors for ad = 7.25 fm and an = 3.633 fm using R-matrix Model B and statistical model
Ur f . These normalization factors were applied to the theory predictions.

is the target distribution, but by exchanging samples with
higher-temperature chains walkers gain the ability to sample
the posterior on larger distance scales than would otherwise
be possible. Consequently the T = 1 chain is able to obtain a
better, more accurate representation of posteriors that contain
complex, nonlinear structures. For our final results, where
channel radii were fixed, we did not find parallel tempering
to be necessary, but it did provide significant insight into the
nonlinear, extended correlations between the parameters.

Instead of or in addition to better sampling techniques, one
can also investigate different parametrizations. We explored
two such alternative parametrizations. For one, we gener-
ated an orthogonal transformation by performing a principal
component analysis (PCA) on a subset of our typical R-
matrix-parameter chains. This generates a linear, orthogonal

transformation which we can use to sample uncorrelated pa-
rameters. Of course, in the case where nonlinear correlations
were dominant, this linear transformation was ineffective and
offered little to no improvement in sampling efficiency.

The other alternative parametrization we attempted to sam-
ple was based on a nonlinear transformation motivated by
the R-matrix argument presented in Sec. X. This alterna-
tive parameter set can be employed to decorrelate the pairs
{γ 2

d , ad} and {γ 2
n , an}. Using (29) and the values for αc fit to

the observed correlations in Figure 2, we sampled the product
of γ 2

c ac and its orthogonal construction γ 4
c − 1

αc
a2

c . Again,
our final results are based on models where the channel radii
were fixed, so this method, while demonstrating noticeable
improvement to sampling efficiency, specifically in terms of
autocorrelation times, was ultimately not necessary.

014625-19



ODELL, BRUNE, AND PHILLIPS PHYSICAL REVIEW C 105, 014625 (2022)

[1] J. P. Conner, T. W. Bonner, and J. R. Smith, A study of the
3H(d, n)4He reaction, Phys. Rev. 88, 468 (1952).

[2] W. R. Arnold, J. A. Phillips, G. A. Sawyer, E. J. Stovall, Jr., and
J. L. Tuck, Absolute cross section for the reaction T(d, n) 4He
from 10 to 120 keV, Los Alamos Scientific Laboratory, Techni-
cal Report No. LA-1479, 1953 (unpublished).

[3] A. Kobzev, V. Salatskij, and S. Telezhnikov, Differential cross
sections for the reaction D(t, α)n at 115–1650 keV, Sov. J.
Nucl. Phys 3, 774 (1966).

[4] N. Jarmie, R. E. Brown, and R. A. Hardekopf, Fusion-energy
reaction 2H(t, α)n from Et = 12.5 to 117 keV, Phys. Rev. C 29,
2031 (1984).

[5] R. E. Brown, N. Jarmie, and G. M. Hale, Fusion-energy reaction
3H(d, α)n at low energies, Phys. Rev. C 35, 1999 (1987).

[6] K. M. Nollett and S. Burles, Estimating reaction rates and
uncertainties for primordial nucleosynthesis, Phys. Rev. D 61,
123505 (2000).

[7] G. Hupin, S. Quaglioni, and P. Navrátil, Ab initio predic-
tions for polarized deuterium-tritium thermonuclear fusion,
Nat. Commun. 10, 351 (2019).

[8] L. S. Brown and G. M. Hale, Field theory of the d + t → n + α

reaction dominated by a 5He∗ unstable particle, Phys. Rev. C 89,
014622 (2014).

[9] G. M. Hale, R. E. Brown, and N. Jarmie, Pole Structure of the
Jπ= 3/2+ Resonance in 5He, Phys. Rev. Lett. 59, 763 (1987).

[10] H.-S. Bosch and G. Hale, Improved formulas for fusion cross-
sections and thermal reactivities, Nucl. Fusion 32, 611 (1992).

[11] H.-S. Bosch and G. Hale, Improved formulas for fusion cross-
sections and thermal reactivities, Erratum, Nucl. Fusion 33,
1919 (1993).

[12] R. S. de Souza, S. R. Boston, A. Coc, and C. Iliadis, Ther-
monuclear fusion rates for tritium + deuterium using Bayesian
methods, Phys. Rev. C 99, 014619 (2019).

[13] A. M. Lane and R. G. Thomas, R-matrix theory of nuclear
reactions, Rev. Mod. Phys. 30, 257 (1958).

[14] R. S. de Souza, T. H. Kiat, A. Coc, and C. Iliadis, Hierarchical
bayesian thermonuclear rate for the 7Be(n,p)7Li big bang nucle-
osynthesis reaction, Astrophys. J. 894, 134 (2020).

[15] E. P. Wigner and L. Eisenbud, Higher angular momenta and
long range interaction in resonance reactions, Phys. Rev. 72, 29
(1947).

[16] C. R. Brune, Alternative parametrization of R-matrix theory,
Phys. Rev. C 66, 044611 (2002).

[17] G. M. Hale, L. S. Brown, and M. W. Paris, Effective field theory
as a limit of R-matrix theory for light nuclear reactions, Phys.
Rev. C 89, 014623 (2014).

[18] R. J. deBoer, J. Görres, M. Wiescher, R. E. Azuma, A. Best,
C. R. Brune, C. E. Fields, S. Jones, M. Pignatari, D. Sayre,
K. Smith, F. X. Timmes, and E. Uberseder, The 12C(α, γ ) 16O
reaction and its implications for stellar helium burning,
Rev. Mod. Phys. 89, 035007 (2017).

[19] P. Bém, V. Kroha, J. Mareš, E. Šimečková, M. Trgiňová, and
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