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Background: In recent years, we constructed a microscopic optical potential (OP) for elastic nucleon-nucleus
(NA) scattering using modern approaches based on chiral theories for the nucleon-nucleon (NN) interaction.
The OP was derived at first order of the spectator expansion in Watson multiple scattering theory and its final
expression was a folding integral between the NN ¢ matrix and the nuclear density of the target. Two- and
three-body forces are consistently included both in the target and in the projectile description.

Purpose: The purpose of this work is to apply our microscopic OP to nuclei characterized by a ground state of
spin-parity quantum numbers J™ # 0%,

Methods: We extended our formalism to include the spin of the target nucleus. The full amplitudes of the NN
reaction matrix are retained in the calculations starting from two- and three-body chiral forces.

Results: The microscopic OP can be applied in the energy range 100 < E < 350 MeV. We show a remarkable
agreement with experimental data for the available observables and, simultaneously, provide reliable estimates
for the theoretical uncertainties.

Conclusions: This work paves the way toward a full microscopic approach to inelastic NA scattering, showing

t
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that the derivation of optical potentials between states with J™ # 0" is completely under control.

DOLI: 10.1103/PhysRevC.105.014621

I. INTRODUCTION

The optical potential (OP) is a fundamental ingredient not
only in the description of elastic diffusion but also in the
analysis of more complicated reactions, where it acts as input
for theoretical calculations based on the distorted wave Born
approximation and coupled channel methods [1-3].

The study of the OP within the framework of microscopic
approaches [4,5] provides, in our opinion, multiple sources of
scientific interests. Even if it is true that a phenomenological
approach is generally preferred to achieve a more accurate
description of the available experimental data, nowadays, with
the upcoming facilities for exotic nuclei (FAIR at GSI [6],
SPIRAL2 at GANIL [7] or SPES at LNL [8], just to mention
some of the most important projects), we strongly believe
that a microscopic approach to the OP would be the preferred
way to make reliable predictions and to assess the impact of
unavoidable approximations.

Interest in OPs has been renewed in the scientific
community over the last few years and several works
have been devoted to this topic. We mention the most relevant
developments in our opinion: microscopic dispersive OPs
[9,10], OPs within a self-consistent Green’s function approach
[11,12], OPs from coupled-cluster calculations [13—15], chiral
symmetry inspired OPs [16—-19], nonlocal OPs [20-22],

2469-9985/2022/105(1)/014621(11)

014621-1

g-matrix calculations [23-27], global OPs [28,29], and OPs
based on no-core shell model (NCSM) calculations [30,31].

A microscopic OP was derived from chiral nuclear poten-
tials in a series of manuscripts we produced over the past few
years, starting from the first work [32], where a microscopic
OP was introduced following the well-known procedure of
Watson [33], and then followed by Refs. [34,35], where
the agreement with experimental data and phenomenological
approaches was successfully tested. As main achievements
of our latest work, it is worth mentioning the inclusion of
three-body (3B) forces [36], the application to translationally
invariant nonlocal densities derived within the NCSM frame-
work [37], and the extension of our OP to antiproton-nucleus
elastic scattering [38]. We note that in all these works we never
investigated nuclei with spin different from zero. This is the
case we want to study with this paper, which can be seen as a
natural follow-up of our previous work. To our knowledge,
this is the first time that a microscopic OP derived within
the Watson multiple scattering theory using NCSM nonlocal
densities is applied to nonzero spin nuclei.

In regard to our latest work, the present investigation
is connected to the importance of 3B contributions in
nuclear observables. We recently studied the effects of such
contributions in nucleon-nucleus (NA) elastic scattering
observables [36], demonstrating that 3B effects are relevant
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for quantities that depend on the spin of the nucleons. In this
context, it is important to verify whether these conclusions
also hold for nuclei whose ground state quantum numbers are
different from 0.

In recent years, experimental efforts have multiplied to de-
velop the technologies necessary to study the elastic scattering
of protons (and ions) by using inverse kinematics [39—46].
This configuration is necessary to study exotic nuclei that have
very short average lifetimes. Some recent studies have tried
to use such experiments with the purpose of determining the
density of matter of nuclear systems [39,41,44,45]. However,
these measurements are subject to some criticisms and are not
free from sizable uncertainties. It is hence important to estab-
lish a microscopic perspective for understanding the relation
of proton elastic scattering to the density of nuclear matter.
In the analysis of these experiments an essential step is the
subtraction of contributions from the inelastic channel. In this
perspective, if we wish to establish a consistent microscopic
approach for inelastic NA scattering, which is our long-term
goal, it is mandatory to test the microscopic OP on states with
spin-parity quantum numbers J” # 0%, which is the goal of
the present work.

For example, at the GSI using the IKAR chamber, the
elastic diffusion of ®He [47] and of '%!4~17C [45] were mea-
sured on a hydrogen target at energies near 700 MeV /nucleon.
Another very interesting experiment performed at the GSI
was the study of the scattering of >®Ni nuclei on hydrogen
targets at energies near 400 MeV /nucleon in inverse kine-
matics for the determination of the distribution of nuclear
matter [48]. The only theoretical approach used to analyze the
experimental data is the Glauber model which contains some
phenomenological input, limiting its predictive power.

In the near future many interesting experiments will be
carried out at the GSI which will allow for the exploration
of unknown areas of the nuclide table, of great interest to the
nuclear and astrophysics communities. Among the many ex-
periments it is worth mentioning the EXL experiment, which
will investigate direct reactions of light ions in inverse kine-
matics [40,46].

Other facilities are in operation, for example, the CSRe
storage ring of HIRFL-CSR [49] and also the RI Beam
Factory at RIKEN [50], which has recently proposed in-
verse kinematics measurements at high momentum transfer
[42]. This is a very interesting aspect because in general
the diffusion at low momentum is sensitive to the surface
density while the internal region requires high momentum
transfer. Such processes are characterized by many-body ef-
fects that make their theoretical description an extremely hard
task.

In this work we extend our previous analyses of elastic
proton scattering off finite nuclei, focusing our efforts toward
nonzero spin targets. In particular, we are interested in the
following set of nuclei: *C (with quantum numbers J™ =
1/27), °Li (J™ = 11), 'Li (J™ =3/27), and '°B (J* = 37),
for which experimental data in the energy range 100 MeV <
E < 300 MeV are available. In addition, we also performed
calculations on °C (J™ = 3/27) which has been measured in
inverse kinematics configuration. This set of nuclei allows us
to test the validity of our microscopic OP [32,34,35,38] when

extended to spin-unsaturated nuclei with different values of
the spin.

The main difference with respect to previous calculations
on spin-zero nuclei [32,34,35,38] is that the polarization of
the target nucleus has to be taken into account. In fact, for a
fixed value of the target spin, the nonlocal density obtained
from the NCSM method displays a dependence on the initial
and final third component of the target spin. This difference
requires some changes in the formalism and in the derivation
of the OP, making the calculations, in particular for targets
with high values of the spin, more involved.

The paper is organized as follows: In Sec. II we derive
our microscopic OP for nonzero spin nuclei. In Sec. III we
discuss relevant details about the nucleon-nucleon (NN) chiral
potentials employed in the calculations. In Sec. IV we present
the results obtained for the differential cross section and the
analyzing power of elastic proton-nucleus scattering obtained
with our OP and compare them with the available experimen-
tal data. Finally, in Sec. V we summarize our results and draw
our conclusions.

II. OPTICAL POTENTIAL FOR NON-ZERO SPIN NUCLEI

As we showed in Ref. [32], the explicit expression of the
optical potential in the impulse approximation can be derived
from the following relation for the elastic (A + 1)-body tran-
sition operator [51-53]

Ty = PUP + PUPGy(E)Ty, S

where P is conventionally taken as the elastic channel pro-
jector, U is the optical potential operator, and Gy(E) is the
free propagator for the projectile plus target nucleus system.
The elastic OP operator is defined as U, = PUP and in the
impulse approximation it becomes

z N
UR = "tpi+ > tpi. 2
i=1 i=1

where we explicitly introduced the label p to denote the
projectile and we used #p; to represent the free two-body scat-
tering matrix of the projectile and the ith nucleon in the target
nucleus. It was shown in our previous works that Eq. (2) is
valid for either protons (p) or neutrons (n) or even antiprotons
(p). Even if in this work we will only show results for proton
scattering, it is our purpose to extend the formalism to targets
with spin different form zero and we will keep this label in
our formalism with the meaning of p = (p, n, p). We denote
with k and k' the initial and final momenta of the projectile
in the NA frame and we introduce the additional variables
q = k' — k (the momentum transfer located along the 2 di-
rection), K = %(k/ + k) (the average momentum), P as the
remainder integration variable [54], and 72 = (K x q)/|K X q|
(the normal unit vector to the scattering plane). Working in
the momentum representation is a natural choice since the
off-shell NN (or pN) t matrix is conveniently defined as a
function of the relevant momenta. We also denote with s the
spin of the target (here we only treat the elastic scattering so s
does not change during the scattering process) and with o and
o' the initial and final third component of s. To shorten the
notation we also define the multi-index @ = (s, 0’, o) which
contains the target spin quantum numbers.
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Using these new variables we can evaluate the operator of Eq. (2) in a convenient basis and, after some manipulations, we

obtain for the general matrix element of the OP [32]

U ( K;o E) = E /dP 7]( K P)tc —1 —1K+ —IP E O(N) P—i——l‘/—l P——l‘/—l
, Koo, s Ay ) ; )
+.O'l’l’\ E dPN q,K,P Z‘l‘Y q, - K~|— P ;E
l( ) / ( )]pN 2( A A ) ]

N=p,n

N
x,o;)

where the first term of the right-hand side is the central part of
the OP and the second term is the spin-orbit part, with i(o - #1)
representing the spin-orbit operator in momentum space. Here
tpy and t]fﬁv are the central and the spin-orbit part of the scatter-
ing matrix fpy and 7(q, K, P) is the Moeller operator included
to maintain Lorentz invariance in the transformation from the
NA to the NN systems. The OP is also energy dependent and
the energy E is fixed at half the kinetic energy of the projectile
in the laboratory frame.

An important ingredient of the calculation is the nonlocal
density p) in momentum space, for which we employ the
NCSM approach [55,56]. The NCSM approach is based on
the expansion of the nuclear wave functions in a harmonic
oscillator basis and it is thus characterized by the harmonic
oscillator frequency 7w and the parameter Ny,.x, which speci-
fies the number of nucleon excitations above the lowest energy
configuration allowed by the Pauli principle. For all the nu-
clei considered in this work we used /iw = 20 MeV and a
AsrGg = 2.0 fm~! cutoff for the Similarity Renormalization
Group (SRG) [57-60] procedure, including the SRG induced
three-nucleon (3N) force in all the calculations. For the Nyax
parameter we performed calculations with 8 excitations for
913C and '°B, 10 for "Li, and 12 for SLi.

The NCSM method is fully self-consistent since center-
of-mass contributions have been consistently removed. In the
NCSM approach the one-body nonlocal density is computed
in coordinate space and thus it must be transformed to mo-
mentum space: This is done through the Fourier transform
and we refer the reader to the Appendix A for more details.
In momentum space, the general form of the nonlocal density
is given in terms of the Jacobi momenta ¢ and ¢’ (see Ap-
pendix A for the definition)

(N)
ps’a’sc

1 ,
&, = ¥ Z(S oK,o' —olso’)i'!

Kl'l

(N,K)
X Pry

’ x5y 2K
& O (OY (Ol D

with the coupled angular functions defined as

@@L = Y Umim KoY, @) v @),

m'm

&)

and with ,ol(llv ’K)(§ ’,¢) being the radial part of the density.

Since in this work we only consider elastic scattering, the spin

p L [AST 1 AT
2V a PPy T4 1

3)

[
of the target does not change during the interaction with the
projectile and thus we can set s = s’ in Eq. (4) and drop the
dependence on s'. In this way we recover the expression for
o) used in Eq. (3).

To compute the OP of Eq. (3) we need to interpolate the

density and this is done using the relations that connect the
Jacobi variables to the momentum transfer,

A /
a1~

-1 (6)

q= 198

and the integration variable,

P =3+ ()
We refer the reader to the Appendix B for more details. After
the calculation of Eq. (3), the OP is then interpolated and
stored in terms of the variables k and k' (for example, see
Sec. II C of Ref. [32]). Under very general assumptions (i.e.,
conservation of total angular momentum and parity), the OP
is expanded in partial waves as

’ 2 LY / % 7
USW lee E) = =3 VS RWEK ko, BV ),
ljm

®)

13 . .
where )V, are the usual spin-angular functions defined as

Vidy =3 (Lmysmgljm) Y R) xy,.

ny mg

(€))

We immediately see from Eq. (8) that, for a given value of s,
the partial wave components of our OP depend on the initial
and final third component of s. This is a direct consequence of
Eq. (4), which enters Eq. (3) and thus introduces the depen-
dence on o and ¢’ in the OP. We also notice that the OP of
Eq. (3) is an operator in the spin space of the projectile only,
explaining the partial wave expansion of Eq. (8).

Using the same decomposition for the elastic transition
operator T

2 1L~ , PN
LW Jeo B) = = 3 Vi (OT] (K ks, BNV, (B,
Ljm

(10)
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the partial wave components of the resulting transition opera-
tor are given by

TE (K ke E)
= U,“j(k’, k;a,E)

2 [oo UPWK, p;a, EYTE (p, k; o, E)
v ), avr ; an
0

E — E(p)+ie

The scattering amplitude for the elastic scattering of spin 1/2
projectiles from a target with arbitrary spin s is given by

fV/O'/UU(Q)
= 8\)’\} 60/0 fC(G)

2
+ — 10Lv|jv) (jvsal|J,v + o)
DL

x(Lv+o—v =o', W|jv+o—0a)

x (j,v+o —o',s0'|J,v+0)

21+1 i
x| T e M, BN 0,0, (12)
T

where the partial wave components of the scattering ampli-
tudes are obtained from the on-shell values of the 7" matrix as

Mfi (o, E) = =4 W TF (ko kos e, E), (13)

with ky the on-shell momentum in the NA frame and u the
reduced mass. In Eq. (12) v and v’ represent the initial and
final third component of the spin for the spin-1/2 projectile,
fc(8) is the Coulomb scattering amplitude, n is the Sommer-
feld parameter, and o; are the Coulomb phase shifts.

Despite its familiar form, we notice that Eq. (12) differs
from the expression that can be found in standard textbooks
for two aspects: First, the partial wave components M}p} (o, E)
do not depend on the total angular momentum J (where
|j—s] <J < j+s) and, second, they depend on the initial
and final third component of the target spin. The first differ-
ence derives from how the optical potential is expanded in
partial waves (for example, see Sec. II C of Ref. [32]), while
the second one, as explained above, is the direct consequence
of the dependence of the target density on o and o’ and
makes the calculations for targets with high values of spin
more involved. For example, for a spin-3 target we have to
calculate Eq. (3) 49 times, one for each combination of o
and o', obtaining 49 different OPs that are then expanded
in partial waves and used to solve Eq. (11) to obtain all the
Tllf.’ (ko, ko; ¢, E') matrix elements entering Eq. (13).

To reduce the computational effort, we also mention that
we investigated the dependence of our results on the target
polarizations. In particular, since our OP does not contain any
spin-orbit term for the target, we can argue that the initial
polarization o of the target spin does not change during the
scattering process and, thus, it will be equal to the final one o’.
We explicitly tested this idea performing the calculations for
all the nuclei using only the density components with o = o’
and setting all the other ones to zero. The results obtained in
this way were all matching the full calculations presented in

Sec. IV. This result is very helpful to reduce the computational
cost for high values of the target spin: For example, for a
spin-3 target we mentioned that we need 49 different OPs to
perform the full calculation, while, if we only consider the
components of the density with o = o', we only need 7 OPs.

From the scattering amplitude we can calculate the differ-
ential cross section for an unpolarized beam summing over
the final polarizations and averaging over the initial ones (for
example see Ref. [61])

do

_ 1 2
29= 355D Z |frorws ©)2. (14)

Vo'vo

In a similar way the analyzing power is obtained as

Z(f’(r 21m[f+%a’+%g(9) fj%0,+%a(9)]
A (0)=—
’ % Z\)’(T’\)U |fv’o’va(9)|2
The last thing to address is how to include the Coulomb
interaction when the projectile is a charged particle. This
is done following the path outlined in Refs. [62,63], which
consists in defining a short-range potential,

UR (K k;a, E) =VE(q) + US (K ks, E),  (16)

s)

obtained from the sum of the Fourier transform of the short-
range part of the Coulomb potential in coordinate space V. (q)
and the nuclear OP. The resulting Ue]‘f (K, k;a, E) is then ex-
panded in partial waves and it is transformed to coordinate
space through

_ 4 [ o
O, ria, E) = F/ dk/k’Z/ dk k2 j(k'r")
0 0

x UE(K ks, E) ji(kr), (17)

using the spherical Bessel functions j;, and then it is trans-
formed back to momentum space through

. 1 [ o0
UK ko, E) = ﬁ/ dr' r// drrFi(n, k'r')
0 0

x UE(r', rya, E) Fy(n, kr), (18)

using the regular Coulomb functions F;. The partial wave
components U}‘f (K, k;a, E) are then used to solve Eq. (11)

to obtain the Tlls) (K', k; o, E') matrix elements.

Finally, we briefly discuss the energy range of applicability
of our OP and we try to identify its low- and high-energy
limits.

The low-energy limit of the model is dictated by the
impulse approximation, introduced to derive Eq. (3). This
approximation consists in neglecting the interaction between
the struck target nucleon in the target and the residual nucleus.
These effects are very small at 200 MeV and they are neg-
ligible at higher energies; however, they become important
at energies below 100 MeV, which can be assumed as the
low-energy limit of our model.

The high-energy limit of the model is instead dictated by
the applicability of the NN interaction. The chiral poten-
tials that we are applying (see next section for more details)
have a cutoff of 500 MeV/c in terms of the relative momen-
tum. The equivalent laboratory energy, Ti., = 2p>/M, is about
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500 MeV. Since the cutoff function in the NN interaction is a
Gaussian, it starts acting earlier than 500 MeV /c, at an energy
of ~400 MeV /¢, which is equivalent to Tj,, of about 340 MeV.
In fact, the phase shifts of NN scattering are perfectly repro-
duced up to 350 MeV, that can be taken as the high-energy
limit of the model. Concerning the SRG, we notice that our
choice, Asgg = 2.0 fm™!, is equivalent to about 400 MeV /c,
which then comes down to the same as discussed above.

III. CHIRAL NUCLEAR POTENTIALS

Before presenting our theoretical predictions we will
shortly discuss the relevant details about the NN potentials
employed for our calculations. In this paper we make exclu-
sive use of the most recent generation of NN chiral potentials
derived within the formalism of chiral perturbation theory
(ChPT). Within this framework, the NN interaction is gov-
erned by the (approximate) chiral symmetry of the low-energy
realization of QCD. As Weinberg suggested a long time ago
[64], chiral symmetry greatly constrains construction of the
NN Lagrangian. In practice, ChPT provides a description of
nuclear systems in terms of single and multiple pion ex-
changes (long- and medium-range components) and contact
interactions between the nucleons in order to parametrize the
short-range behavior. For all the details we refer the reader to
Refs. [65,66] and to Refs. [67—70] for more recent develop-
ments and interpretations. The free parameters of the theory
are determined by reproducing data in the NN and 3N sector.

In our previous works [32,34,35,37,38] we applied chi-
ral NN potentials at next-to-next-to-next-to-leading order
(N3LO) [71] and next-to-next-to-next-to-next-to-leading or-
der (N*LO) [72] and for the 3N sector at next-to-next-to-
leading order (N’LO). At the moment, because of the highly
computational resources needed, it is impossible to achieve a
full consistency between the NN potentials employed for the
target description and the elastic reaction process, in particular
concerning the inclusion of 3N forces. For our calculations we
decided to employ the NN potentials at N*LO order [71] for
two reasons. On the one hand, we have shown in our previous
work [34,35] that including NN potentials at N*LO order does
not substantially improve the agreement since the additional
contributions are very small. On the other hand, as shown
in Ref. [73], nuclear structure calculations for light nuclei
show that the best agreement with the experimental data is
obtained using the NN potential at N3LO along with 3N forces
with simultaneous local and nonlocal (3NInl) regularization
[74,75].

For all the calculations presented in the next section we
used NN potentials at N°LO [71] with a 500 MeV energy cut-
off plus chiral 3N forces with low-energy constants cp = 0.7,
cg = —0.06, and ¢;, taken from Ref. [71]. With the purpose
of checking the convergence of our predictions, we also per-
formed a single calculation with NN potentials at N*LO order
[72], including 3N forces with cp = —1.8, cg = —0.31, and
¢; taken from Table 9 of Ref. [72]. Since 3N forces included
in the scattering process must contain medium corrections,
i.e., the presence of a filled Fermi sea [23-27], we follow
here the same procedure outlined in Refs. [38,76], where we
varied the density parameter between 0.08 and 0.13 fm 3. As

B 0.08 fm " <p<0.13 fm”

200 MeV
13 13
C@.p C

voud vl ool v vl vvued vl o 1

do/dQ [mb/sr]
3
L R RAL RLL R R R R R

0.5

0 I 20 I 40 60 80 I 100 I 120
0, ldeg]

FIG. 1. Differential cross section (upper panel) and analyzing
power (lower panel), as functions of the center-of-mass scattering
angle, for 200 MeV protons elastically scattered from 3C (J™ =
1/27). The results were obtained using Eq. (3), where the NN ¢
matrix is computed with the NN chiral interaction at N°LO order
of Ref. [71], supplemented by a density-dependent NN interaction
(where the baryon density is varied in the range between 0.08 and
0.13 fm~>) and the one-body nonlocal density matrices computed
with the NCSM method using NN [71] and 3NInl [74,75] chiral
interactions. Experimental data from Ref. [79].

a consequence, our results will be drawn as bands and not as
single lines, in order to show how much the 3N contributions
affect the scattering observables varying the matter density.

IV. RESULTS

In this section we show the theoretical predictions of our
OP for the scattering observables of elastic proton scattering
off a set of nonzero spin nuclei, with different values of the
spin, and compare them to the available experimental data.
We have chosen for our investigation a proton energy of about
200 MeV, a value for which the results of our previous work
on spin-zero nuclei clearly demonstrated the validity of our
microscopic OP. The experimental data were taken from the
experimental nuclear reaction data [77,78] web utility.

As a first case we consider elastic proton scattering on *C
target. The ground state of '3C has spin and parity quantum
number J* = 1/27 and it is therefore well suited to test our
theoretical approach.

Measurements were carried out using the polarized proton
beam from the Indiana University Cyclotron Facility with
200 MeV of mean energy (the mean scattering energy was
varied between 199.8 and 200.1 MeV) [79]. Differential cross
sections and analyzing powers were measured for two iso-
topes of carbon: '>C and '*C. The comparison of our previous
results with '>C (J™ = 07) data can be found in Figs. 5 and
6 of Ref. [36]. The comparison with the empirical data for
13 [79] is shown in Fig. 1, where the calculated differential
cross section do /d$2 and analyzing power A, are displayed
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3
107 T 3
>F ]
10°F S 3
d B N'LO + 3NIn E
10'F N'LO + 3NInl .

200 MeV

E o6 . 6 . = . :
© Lipp)'Li \
loig_ — I R N R

do/dQ [mb/sr]

0.08 fm” < p <0.13 fm”

} . I . I . 1 . ! . L .
10 10 20 30 40 50 60

ecm. [deg]

FIG. 2. The red band is the same as in Fig. 1 but for °Li (J7 =
1*) at 200 MeV. The green band is the corresponding result at N*LO
order [72] of the chiral expansion. Experimental data from Ref. [80].

as functions of the center-of-mass scattering angle 6., . As
previously mentioned, in order to check the effects of 3N
contributions, we let the density parameter of the effective
3N forces vary in a reasonable range for the matter density:
0.08 fm™3 < p < 0.13 fm~3. The effects of genuine 3N
forces turn out to be rather small for the differential cross
section, where the thin thickness of the band indicates that the
results obtained with different values of the density parameter
are basically on top of each other, and just a little bit larger
for the polarization observable A,. The fact that the effects
are not larger than those obtained in our previous work on
spin-zero nuclei [38] could be due to the fact that the two-body
approximation of the 3N forces at N>LO order is performed in
the approximation of symmetric spin-saturated nuclear matter.

Generally speaking, the agreement with the empirical data
shown in Fig. 1 is quite satisfactory, especially if we consider
that no adjustments of the OP have been made, since our OP
derivation is fully microscopic. We see reasonable agreement
with the data for scattering angles up to ~70° for the cross
section and ~55° for the analyzing power, after which, with
increasing scattering angle, the agreement worsens. The over-
all agreement between the results of our microscopic OP and
the empirical data is of about the same quality as that obtained
in Ref. [38] for '2C.

The calculated differential cross section and the analyzing
power for elastic proton scattering on °Li target (J7 = 11)
are displayed in Fig. 2 as functions of the center-of-mass
scattering angle 6., . The experimental data were measured
at the Indiana University Cyclotron Facility using a polarized
proton beam at a laboratory bombarding energy of 200.4 MeV
[80]. With the purpose of checking the convergence of the
theoretical predictions we compare in the figure the results
obtained with NN potentials at N*LO (red bands) and N*LO
order (green bands). We can see from the figure that the differ-
ences between the two results are small, practically negligible

B 008 fm” <p<0.13fm"

1°F 200 MeV

do/dQ [mb/sr]

10°E "Li (pp) Li

11—+

0.5
<0
05 o -
1 . l . | . | . I . ! .
0 10 20 30 40 50 60
0, , [deg]

FIG. 3. The same as in Fig. 1 but for 'Li(J™ =3/27) at
200 MeV. Experimental data from Ref. [81].

for the cross section and somewhat larger for A,, where, as
expected, the results at N°LO give a better agreement with
the experimental data. Also in the case of °Li the agreement
of the results with the empirical data is satisfactory and the
effects of genuine 3N forces turn out to be rather small for the
differential cross section and a little bit larger for the analyzing
power.

The results for 'Li (3/27) are presented in Fig. 3. The
differential cross section and analyzing power were measured
at the Indiana University Cyclotron Facility using a polarized
proton beam at a laboratory bombarding energy of 200.4 MeV
[81]. Also in this case the agreement between the theoretical
prediction and the empirical data is good for the differential
cross section, over all the angular distribution shown in the
figure, and satisfactory for the analyzing power for values of
the scattering angle up to ~45°. The effects of genuine 3N
forces turn out to be generally rather small.

In Fig. 4 we show our results for '°B, a nucleus with a
high value of the ground-state spin J” = 3*. With increas-
ing spin value, our calculations become more involved. The
differential cross section and analyzing power were measured
for 197 MeV proton scattering at the Indiana University Cy-
clotron Facility [82]. Considering the high value of the spin,
the agreement between our theoretical predictions and the
empirical data is satisfactory. This is in contradiction to what
is often stated in the literature, for instance, in Ref. [82], that
addressing the elastic scattering data with only optical model
techniques would lead to significant problems with the quality
of the agreement to any particular portion of the data. In
Fig. 4 the experimental cross section is overall well described,
although somewhat underpredicted for the highest values of
the scattering angle. The agreement is worse for the analyzing
power, where our results are able to describe the data only for
the lowest values of the scattering angle, up to ~20°—30°.

The agreement of our results with the experimental data
is always worse for the analyzing power than for the cross
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FIG. 4. The same as in Fig. 1 but for '°B (J* = 3%) at 197 MeV.
Empirical data from Ref. [82].

section. This is in general true also for the spin-zero targets
treated in our previous works, and it is not surprising, since the
analyzing power is more sensitive and thus more difficult to
reproduce. In general, from our previous works, all performed
for targets with spin equal to zero, we saw that the model is
able to provide a result for the A, that describes the general
shape of the data but the minima are never deep enough to
provide a good description of the data. The cases treated in this
work are even more complicated, because the final result for
the A, is an average between the analyzing powers obtained
for all the specific combinations of o and o’, as shown in
Eq. (15). At the current stage, it is not clear how to improve
the results for this observable. One possibility is to include in
the model the second-order term of the spectator expansion,
which is feasible in principle, but it is complicated and repre-
sents a future challenge. Another possibility is to change the
NN interaction, following for example Refs. [30,31], where
the N2L00pt potential [83] was used to construct an OP for
spin-zero targets which provided a very good agreement be-
tween the theoretical calculations and the experimental data
of the A,.

A last example is presented in Fig. 5, where the results of
calculations performed for elastic proton scattering from °C
(J™ =3/27) with a 290 MeV /nucleon °C, in inverse kine-
matics configuration, are displayed and compared with the
available empirical data. The experiment was performed at a
secondary beam course in the Heavy Ion Medical Accelerator
in Chiba of the National Institute of Radiological Science,
where the angular distribution of the differential cross sec-
tion of the H(°C, p) reaction at 277-300 MeV /nucleon was
measured with a newly designed recoil proton spectrometer
[84]. In this case empirical data are available only for the cross
section, which is reasonably well described by our theoretical
predictions. The effects of genuine 3N forces are small for the
differential cross section and just a little bit larger for A,.

do/dQ [mb/sr]
)
1

02 [ . l . l . l

20 30 ' 40
O . [deg]

FIG. 5. Differential cross section (upper panel) and analyzing
power (lower panel) for the H®C, p) reaction at 290 MeV /nucleon,
as functions of the center-of-mass scattering angle. The ground state
of °C has spin and parity quantum number J* = 3/2~. The results
were obtained using the same conditions reported in Fig. 1. Empirical
data from Ref. [84].

V. SUMMARY AND CONCLUSIONS

In a series of papers, over the last few years, we constructed
a microscopic optical potential for elastic (anti)nucleon-
nucleus scattering from chiral potentials. The OP was derived
at first order of the spectator expansion in Watson multiple
scattering theory and its final expression is a folding integral
between the NN ¢ matrix and the nuclear density of the target.
In the calculations, NN and 3N chiral interactions are used for
the target density, while for the r matrix the effect of the 3N
interaction is approximated with a density-dependent NN in-
teraction obtained from averaging over the Fermi sphere. Our
OP was successfully tested in comparison with experimental
data, where it is able to provide a reasonably good description
of the experimental cross section and polarization observables
of different nuclei. However, till now, it was applied only to
spin-zero nuclei.

In the present work we have extended our microscopic OP
to nonzero spin target nuclei. The extension requires some
changes in the derivation of the OP and in the formalism.
The main difference with respect to the zero-spin case is
that now the target density displays an additional dependence
on the initial and final third component of the target spin,
which is then propagated to the OP. This difference makes
the calculations more and more involved and time consuming
with the increasing value of the target spin.

Theoretical predictions for the cross section and the ana-
lyzing power of elastic proton scattering off a set of nuclei
with different values of the spin in their ground state (between
J =1/2 and 3) have been presented and discussed in com-
parison with the available data, for a proton energy of about
200 MeV.
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We checked the convergence of the theoretical predictions
with a single example for elastic proton scattering off °Li,
comparing the results obtained with NN potentials at N*LO
and N*LO order. The differences between the two results are
small, practically negligible for the cross section and some-
what larger for the analyzing power, where the results at N*LO
give a better agreement with the experimental data. A better
agreement of the result with the potential at N*LO could be
expected, since from nuclear structure calculations for light
nuclei [73] it was shown that the best agreement with the
experimental data is obtained using the NN potential at N*LO.
Therefore we decided to use the NN potential at N3LO as a
basis for our calculations.

In order to test the validity of our microscopic OP when
extended to nonzero spin nuclei, we have compared results
obtained for a set of targets with different values of the spin.
As the target’s spin value increases, the calculations become
more and more involved, but our results generally give re-
markably equivalent agreement for all considered values of
the spin. The quality of the agreement is comparable to the
one obtained in our previous work for spin-zero nuclei at the
same energy around 200 MeV. The experimental differential
cross sections are in general well described by our theoretical
predictions, while the description of the analyzing power is
less satisfactory. The agreement between the results of the
calculations and the empirical data gets worse as the scattering
angle increases, as it was also found in our previous work for
spin-zero nuclei.

The effects of genuine 3N forces turn out to be rather small
for the differential cross section and just a little bit larger
for the analyzing power. The fact that these effects are not
larger than those obtained for spin-zero nuclei could be due
to the fact that the two-body approximation of the 3N forces
at N’LO is performed in the approximation of symmetric
spin-saturated nuclear matter.

We also performed calculations of elastic proton scatter-
ing off 9C, which was measured in an inverse kinematics
configuration. Our theoretical predictions are able to give an
overall good description of the experimental differential cross
section of the H(°C, p) reaction at 290 MeV /nucleon. The
inverse kinematics configuration is necessary to study exotic
nuclei that have very short average lifetimes. We note that just
for the study of exotic nuclei a microscopic approach to the
OP should be preferable to a phenomenological one, since in
situations for which empirical data are not yet available or
are still scarce an OP better founded on theoretical grounds
should be able to give more reliable predictions and to assess
the impact of the adopted approximations.

Our results show that our microscopic OP is able to give
a remarkable agreement with the experimental data also on
nuclear targets with spin different from zero: the extension of
the OP to nuclei with J* # 0% is well under control. This is
an important achievement in itself, which allows us to apply
our OP to a wider range of cases. This is, however, also an
important step forward toward the extension of the OP to
inelastic NA scattering, which will be our next goal. Recent
studies have tried to use experiments in inverse Kinematics
with the purpose to determine the density of matter of nuclear
systems. Howeyver, these measurements are not free from siz-

able uncertainties and it becomes important to establish how
effectively the elastic scattering of protons is related to the
density of nuclear matter. In the data analysis of these exper-
iments an essential step of the procedure is the subtraction of
the inelastic contributions. In this perspective, if we want to
establish a consistent microscopic approach for inelastic NA
scattering, it is mandatory to test the microscopic OP potential
even on states with spin-parity quantum numbers J* # 0.
With the present work, showing that the derivation of optical
potentials between states with J™ # 0% is completely under
control, we paved the way toward a full microscopic approach
to inelastic NA scattering.
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APPENDIX A: NONLOCAL DENSITY
IN MOMENTUM SPACE

In our approach, the one-body nonlocal density is com-
puted in coordinate space using the Jacobi coordinates & and
&, and its general form is given by (N = n, p)

ilc\;)sa(g E) A/ Z(SUK,U’ —O'|S0' )IO](NK)(%_/’S)

KI'l

A a (K)
< [V EW @), (A1)
where
AN () x5 * (%
@@ =) Um'imlKk) Y, E) Y E).  (A2)
and ,o(N K )(é/, &) is the radial part of the non local density. In

our convention, the Jacobi variables & and & are both defined

5\/7[ Zrl_m},

where r; is the coordinate of the ith nucleon in the target
nucleus. The double Fourier transform to momentum space
is given by the following relation:

(A3)

p(&, 8 = /d3§//d3$ (18 pE. &) &L, (AD
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where

Y 2 N PP PN Iy PN
(¢g) = \/;sz (=) 1 ENY @ WimE),  (AS)

(A6)

2 P .
(&1¢) = /; gi’mzemm(sm;(o.

In the previous expressions we introduced the Jacobi momenta
¢ and ¢’, that in our convention are both defined as

¢ = F[ _12" kA},

where k; is the momentum of the ith nucleon in the target nu-
cleus. Inserting Eqgs. (AS) and (A6) into Eq. (A4), the nonlocal
density in momentum space is expressed as

(AT)

1
= Z(s oK, o' —olsa’)il™!

KUl

N
10_5(/(7)/30(;/5 C) =

X o O O EW @1y, (A8)
with the angular part given by
v &y ({) Z(l/m’llek) @)Y, (A9
and the radial component defined as
2 oo oo
& o)==~ / deg's”? | dsg? ji'E)
T Jo 0
x oM E L £) i¢8). (A10)

APPENDIX B: INTERPOLATION OF THE NONLOCAL
DENSITY IN MOMENTUM SPACE

We see from Eq. (A8) that the nonlocal density is expressed
in momentum space using the variables ¢’ and ¢, but the
calculation of Eq. (3) requires the knowledge of the density
in terms of the variables ¢ and P. In general, the density is
first computed in momentum space using the variables ¢/,
¢, and cos y, and then it is interpolated and stored in terms
of g, P, and cosfp. Here we use y to represent the angle
between ¢’ and ¢, and 6p to represent the angle between ¢
and P. This procedure was used in all our previous works on
zero-spin nuclei, where K can only assume the value zero.
However, when the nucleus spin is different from zero, we
have that 0 < K < 2s (s is the target spin) and this procedure
does not work anymore. In fact, from Eq. (A9) we see that,
except for K = 0, it is not possible to use the addition theorem
of the spherical harmonics and thus reduce the angular part

evaluation to a function of / and cosy. Thus, we need to
develop a different method to perform the interpolation.

Our goal is to express the density as a function of the
variables ¢ and P, more precisely, as p(q, P, cos 0p). Keeping
in mind that ¢ is located along the Z axis, we can start writing
the Cartesian components of g and P as

q=10,0,9),

= (P sin@p cos ¢p, P sin Op sin ¢p, P cos Op)’,

(B1)
(B2)

and from Egs. (6) and (7), which relate the set of variables
(g, P) to (¢, &), we can calculate the Cartesian components
of the last set of variables, obtaining

P sin 0p cos ¢p
P sin Op sin ¢p

¢ = (B3)
PcosOp + % ”%q
and
P sin6p cos ¢pp
; — P sin QP sin ¢p (B4)

Pcostp — 1./45 ¢

(¢',0',¢") are then ob-

' W+A_12+JA_1P 0p, (B5)
= COS ,
¢ 1A q " q p
Pcostp + %,/Aflq
¢’ ’

¢ = ¢dp,
(¢, 0, ¢) we have

=,/P? 16]2—‘} 1qP 6 (B8)
= + COS
§ 1A P>

A-1

PCOSGP—% 4
cosf = ,

¢

The spherical components of ¢ =
tained as

cosf =

(B6)

B7)
while for ¢ =

(B9)

¢ = op.

From these results we see that the interpolation does not
depend on ¢p, thus, the desired density can be obtained eval-
uating Eq. (A8) using the set of variables (¢, ¢, cos8’, cos )
with ¢’ = ¢ = 0. Then, we use Egs. (BS), (B6), (B8), and
(B9) to interpolate and store the density in terms of ¢, P, and
cos Op.

(B10)
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