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Real space density-constrained time-dependent Hartree-Fock-Bogoliubov method and pairing
effects in the fusion of calcium isotopes

Liang Tong

and Shiwei Yan

Department of Physics, Beijing Normal University, Beijing 100875, China

® (Received 16 August 2021; accepted 10 January 2022; published 18 January 2022)

To describe the fusion cross sections with a method that includes the superfluidity and to understand
the impact of pairing on both the fusion barrier and cross sections, we propose a real-space particle- and
pairing-density-constrained scheme of the time-dependent Hartree-Fock-Bogoliubov (TDHFB) method and a
definition of TDHFB particle current. Using the GOGNY-TDHFB code, this scheme is applied to investigate
the fusion reactions of **Ca +%Ca, **Ca +*Ca, and **Ca +*Ca by comparison. The results show that this
density-constrained TDHFB scheme is reliable for analysis of the collision processes involved with superfluid

nuclei.
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I. INTRODUCTION

Heavy-ion fusion reactions provide important information
about the essential structure and dynamic evolution of nuclear
many-body systems. Microscopic quantum theories are in-
dispensable for understanding fusion reactions at near-barrier
energies because the dynamics of the fusion process and the
influence of shell and pairing effects are considered to be
essential assets.

Since the decisive paper by Hill and Wheeler [1], the
large-amplitude collective motions of a nucleus are mainly
discussed within the adiabatic approximation, where the nu-
cleons follow the time-dependent (self-consistent) potential
along the single-particle eigenstates. As functions of the
collective variable, the single-particle energies vary and qua-
sicrossing of the energy levels occurs when the repulsion of
a pair of energy levels takes place. Close to such quasicross-
ing of adjacent levels, the adiabatic wave functions change
rapidly, which introduces large dynamical coupling among
the wave functions in the time-dependent treatment of nuclear
collective motion. The dynamical couplings give rise to large
difficulties both conceptually and numerically, in particular at
finite excitation energies.

When two colliding nuclei approach each other and the
shape of system undergoes sudden changes, the adiabatic
approximation is expected to break down and the evolution
occurs along diabatic single-particle levels rather than along
adiabatic single-particle levels, which can be attributed to the
residual interactions [2]. The friction coefficient of dissipative
dynamics can be extracted by the time-dependent microscopic
mean field theory [3]. A study with the quantum molecular
dynamics model [4] has shown that the mean field may play
a dominant role in energy dissipation in the approach stage of
the two colliding nuclei. After the system passes the Coulomb
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barrier, the pure mean-field theory gives an unphysical behav-
ior of the friction coefficient [4], which gives evidence that
two-body collisions are important in fusion reactions.

Pairing correlations are believed to play a crucial role in
causing the two-body dissipation and/or the Landau-Zener
effect [5-8]. From a dynamical point of view, time-dependent
density functional theory is an ideal tool to study the fusion
dynamics as it is a fully microscopic and nonadiabatic ap-
proach. In order to consider pairing correlations, a theoretical
scheme combining the time-dependent Hartree-Fock (TDHF)
theory with BCS approximation (TDHF-BCS) [5,9] has been
proposed to study the fusion dynamics of neutron-rich light
nuclei in the near-barrier domain [10]. It is very successful
in reproducing the fusion cross section without any adjusted
parameter. However, the TDHF-BCS approach does not re-
spect the continuity equation, which may lead to nonphysical
results in specific cases such as particle emission [11]. In order
to avoid this drawback, the frozen occupation approximation
has to be adopted, i.e., the occupation numbers are frozen at
their initial values and do not change as the reaction dynamics
proceed [10,11].

For more realistic treatment of the impact of pairing on
the fusion dynamics, it is desirable to carry out microscopic
calculations in which the pairing effects are allowed to vary
in response to the shape changes of the nuclear system as
the fusion proceeds. A reasonable candidate of the theoretical
framework is the time-dependent Hartree-Fock-Bogoliubov
(TDHFB) theory which self-consistently includes dynamic
pairing correlations [12—-14]. In TDHFB calculations, the pair-
ing correlations account partly for the Landau-Zener effect, so
the two-body dissipation is partially considered [5—8].

A density-constrained method of TDHFB theory was
proposed in [15] following the density-constrained TDHF
method (DC-TDHF) developed in [16,17]. In those methods,
the interaction potential between the colliding nuclei as well
as a coordinate dependent mass are extracted from the density-
constrained calculations. The resultant potentials and masses
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can then be applied to calculate the fusion cross section in a
one-dimensional barrier penetration model. In this sense, such
methods combined with the one-dimensional barrier penetra-
tion model can describe the barrier penetration of the full
many-body system.

In realistic implementation of the density-constrained
calculation proposed in [15], the iteration process is rather un-
stable and difficult to get convergent solutions of constrained-
HFB equations (Eq. (13) in [15]) when the constraints on
pairing tensor are taken into account. The reason might be
that all the matrix elements of pairing tensor are considered in
configuration space. The constraint terms related to the pairing
tensors change frequently, specially after the fusing system
passes the barrier top region.

Based on this consideration, in this paper we introduce
the constraints on both density matrix and pairing tensor in
real space, abbreviated rDC-TDHFB in the following, so that
the one-body particle and pairing densities are treated in a
parallel way, as shown in Sec. II. With this real-space density-
constrained scheme of the rDC-TDHFB method, we analyzed
the low energy head-on collision reactions of *°Ca 4+ “’Ca,
“0Ca +*Ca, and **Ca+ *3Ca systems and we show impact
of pairing dynamics on fusion in Sec. IIl. Finally, a short
summary is given in Sec. IV.

II. RDC-TDHFB METHOD IN REAL SPACE

We use the GOGNY-TDHFB code [14,15] to simulate the
dynamic evolutions of the fusion process and follow the main
procedures proposed in [15—17] to implement the density con-
straints on the TDHFB trajectories. The density-constrained
many-body states of a system are obtained through minimiz-

ing
a<q>
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with H the HFB Hamiltonian of the system, o =1, | the
z projection of the nucleon spin, p@(r, t) and Kﬁ) (r,t) the
instantaneous TDHFB farticle and pairing densities in real
space, and A(r) and )‘(T f (r) the Lagrange multipliers of the
one-body particle and pairing densities, respectively. Conse-
quently, the system goes down to the minimum-energy state

J

described by the HFB state |®) by keeping all the TDHFB
dynamical features, such as the one-body particle and pairing
density distributions, collective deformation, etc.

The hybrid bases ¢, (r) are used for calculating the one-
body particle and pairing densities, p(r) and x,, (r), in which
two-dimensional harmonic oscillator eigenfunctions are used
in the xy plane while a Lagrange mesh [18] is used in the z
direction [14]. The notation « is for a set of numbers o =
{ny, ny, z, 0}. The local particle and pairing densities in real
space at certain times ¢ are obtained as follows:

p(r) =Y $5)Pa()Pupds,o- (2a)
apf

kpL () =Y dpr, Lu(r. D kap. (2b)
af

and k4 (r) = —k4, (r) due to ke = —kop [19].
To minimize HFB energy with Eq. (1), the Lagrange mul-
tipliers, A(r) and A4 (r), are updated by

Ay = A0 () 4+ o) — p @ )], (3a)
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where
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After examining the iteration processes, we suggest the pa-
rameters a;, ap, and d; in the regions —30 < a; < —5 MeV,
10]a;| < a; < 30|a|,and d; = 0.5fm=3, respectively.

Here we would like to mention that, after nuclei pass over
the barrier top in the fusion process, pairing excitations will
become massive and cause single-particle level-crossings and
thus induce Landau-Zener transitions [7,8]. In this case, to set
up the constraint on the particle densities with the conserved
total number of particles only might not be enough to ensure
complete squeeze-out of the collective kinetic and excitation
energies from the total energy of TDHFB trajectory. The
constraint on the pairing densities might be indispensable to
obtain a reasonable dynamical potential when the two collid-
ing nuclei are largely overlapped. We will explain this point
further in the following.

Under the definitions of the constrained scheme in Egs. (3)
and (4), the constrained HFB equation (1) can be explicitly
expressed as

HF (2)
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where k labels the quasiparticle states. The single-particle )»g(f and )»,(3203 satisfy
Hamiltonian A, and the pairing field A are functionals of U
and V matrices, € is the energy spectrum of a quasiparticle,
and X is the chemical potential adjusted to conserve the total JHF _ SEpc @ _ 9Epc )
number of neutrons and protons. The constraint parameters P ™ 5, s P Sk
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where
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with the density-constrained many-body wave function |®)
obtained through Eq. (1). Note that in the realistic imple-
mentation of the iteration, the instantaneous TDHFB wave
functions are used as the initial iteration wave functions and
the iteration process is accelerated using the modified Broy-
den method [20,21].

III. RESULTS AND DISCUSSIONS

In the studies of fusion dynamics, the pairing correlation is
mainly considered in the ground states of projectile and target,
because it is well known that the static pairing force is crucial
for the description of the atomic nuclei, both in the ground
state as well as in excited states. This viewpoint has been
realized by the TDHF theory plus BCS model [10], where the
frozen occupation approximation has been adopted, i.e., it is
assumed that the main effects of the pairing correlations come
from the initial correlations and the occupation numbers are
frozen to their initial values as the reaction process goes on.

However, a recent study has shown that significant changes
occur in the fusion dynamics when the dynamical effects
of the pairing correlations are taken into account during the
nuclear reactions in the time-dependent density functional
theory [22]. The dynamic pairing correlations may affect
inelastic excitations and multinucleon transfer probabilities
[23].

In this paper, we studied the fusion reactions of three spher-
ical Ca-based nuclei, **Ca+ ****8Ca, using the TDHFB
theory based on GOGNY D1S parametrization. The experimen-
tal study of near- and sub-barrier fusion of calcium isotopes
has a long background [24-28]. Meanwhile, the theoretical
study has been implemented with the coupled-channels tech-
nique [29-33] and the microscopic TDHF theory coupled
with a density-constrained approach [34]. Note that both the
experimental and theoretical studies are mainly devoted to
the investigations of reactions between normal nuclei, such
as *0Ca +*0Ca, “°Ca + 48Ca, and *8Ca + *3Ca. The reactions
in which the superfluid nucleus **Ca is involved have rarely
been investigated to date.

We use the harmonic oscillator basis in the xy plane and
the Lagrange mesh in the z direction. The reaction axis (z
axis) is described by spatial grid points (mesh) with the mesh
parameter Az = 0.91 fm with N, =25 grid points for the
HFB initialization of the fragments.

A wide lattice space with N, =50 grid points is used
for the dynamics of the two nuclei in head-on collision re-
actions. The quantum numbers of the harmonic oscillator
eigenfunctions in the xy plane are restricted to n, + n, < 5.
The harmonic oscillator parameters are fiw, = hiw, = 11.6
MeV. The distance between the initial center-of-mass coor-
dinates of the two nuclei is 22.75 fm. The unit time step
of dynamics is At = 0.3 fm/c, and we performed density-
constrained calculations every 20 time steps.

T T T T T T
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FIG. 1. Nucleus-nucleus interaction potential V(R) for the
40Ca 4 *Ca system obtained from rDC-TDHFB calculations using
Eq. (8) at E. . = 55 MeV (red solid line) compared with the result of
the DC-TDHF method at E. ,,, = 55 MeV (blue dot-dashed line). The
pink dashed line stands for the Akyuz-Winther phenomenological
potential.

A. Nucleus-nucleus interaction potential

The nucleus-nucleus (N-N) interaction potential can be
obtained as

V(R) = Epc(R) — E| — E;, (8)

where Epc(R) is the total energy of the density-constrained
state in Eq. (7) while E; and E, are the binding energies of the
two colliding nuclei obtained from the static HFB calculations
with the same GOGNY effective nucleon-nucleon interaction.
R is the relative distance between the two centers of mass in
the left and right regions of the fusing systems, obtained in the
same way as in [34].

With the aid of the real-space density-constrained scheme
of the rDC-TDHFB method proposed in Sec. II, we have
calculated the N-N interaction potentials of the head-on colli-
sions of *°Ca +*°Ca, “°Ca +**Ca, and *°Ca + **Ca systems
at the initial energy E.n,. = 55 MeV. The results are shown
in Figs. 1-3, and are compared with the results obtained
from the DC-TDHF method [35] and the Akyiiz-Winther phe-
nomenological model [36,37]. Here the TDHF trajectories are
simulated by the SKY3D TDHF Code [38] with full Skyme
SV-bas parametrization. This code has been used to study the
various fusion reaction systems.

For the “°Ca +%°Ca system, Fig. 1 shows that the barrier
height of the rDC-TDHFB potential V(R) in Eq. (8) at the
center-of-mass energy E.,, = 55 MeV is 53.23 MeV, with a
corresponding R value of 10.44 fm. The barrier height calcu-
lated with DC-TDHF is 53.51 MeV at R = 10.37 fm. Both
are significantly lower than the macroscopic Akyiiz-Winther
phenomenological potential. It is noteworthy that there is a
general consensus that the effects of pairing play an impor-
tant role for obtaining good initial states of projectile and
target nuclei, as well as obtaining realistic density-constrained
solutions when a single composite is formed. During a colli-
sion the effects of pairing are washed away due to the high
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FIG. 2. The same as Fig. 1 but for “*Ca + *Ca.

excitations. In this sense, the pairing effects are minimal for
the reaction “°Ca +%°Ca because of the double closed-shell
structure of *°Ca. This conclusion is consistent with the results
obtained in [15] where the authors have claimed that the
superfluidity does not bring an additional energy dependence
of the potential.

As shown in Figs. 2 and 3, the asymmetrical 40Ca +*Ca
and “°Ca 4+ *Ca head-on collisions present relatively lower
fusion barriers. The height of the potential barrier of
N0Ca4*Ca (*Ca+*Ca) at the center-of-mass energy
Ecm. =55 MeV is 52.51 MeV (51.48 MeV) at R = 10.54
fm (10.76 fm), respectively. The barrier heights calculated
by DC-TDHF are 53.01 and 50.74 MeV at R = 10.40 and
10.82 fm. Here it should be mentioned that the effects of
the pairing correlation should be important for obtaining the
ground state of the superfluidity nucleus **Ca, but this point
is not obviously shown in Fig. 3, because the property of
ground state, described by the binding energies E| and/or E;,
has been extracted from Epc(R) according to the definition of
V(R) in Eq. (8).

In general, there is a large uncertainty in predicting the
form of the potential in macroscopic phenomenological ap-
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50 tDC-TDHFB ——
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FIG. 3. The same as Fig. 1 but for “°Ca +*Ca.
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FIG. 4. Pairing energy of the (a) **Ca 4+ *Ca (b) *°Ca + **Ca (c)
“0Ca +*Ca systems with the energy E., =55 MeV are plotted
with respect to collective coordinate R.

proaches when the two nuclei strongly overlap [39,40]. In
the microscopic rDC-TDHFB method, the dynamical changes
of the pairing effects as well as density profiles are properly
taken into account in Eq. (1). The pairing energy begins to
change significantly around the barrier, and plays an important
role in the fusion across the barrier of two nuclei to form a
complex nucleus.

In order to clarify the effects of pairing, we calculate the
pairing energy,

1 _
Epair = 1 Z Vapyskoyphys, 9
afys

where Uqp, 5 represents the Gaussian part of the two-body ma-
trix elements, for “°Ca + *°Ca, “°Ca + **Ca, and *°Ca + *Ca
systems at E.,, = 55 MeV. The results are shown in Fig. 4.
It is clear that the pairing energy is very small in the reac-
tions of *°Ca +*°Ca and *°Ca + *8Ca. On the other hand, in
the reaction “°Ca + *'Ca, the pairing energy is kept nearly
constant in the approach stage of the reaction, which can be
attributed to the superfluidity of “*Ca. After the two nuclei
get together, there is an obvious change in the pairing energy
and the pairing correlation becomes weaker and weaker. This
change of the pairing effects is related to the excitation of the
fused system, which could be accounted for in the constraints
within the -DC-TDHFB equation (1). The occurrence of inter-
nal excitation will reduce the pairing correlation in the fused
system.

To conclude this subsection, let us show the convergence
properties of rDC-TDHFB. In order to assess the quality of
convergence of Eq. (5), we define the quantities §” and 5"
for the nth iteration as

5, = f drp™ ) — p V)], (10)
5" = / dr|li§) ()] = @), (1)
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FIG. 5. The quality of iterative convergence of DCTDHFB (blue
dashed line) and rDC-TDHFB (red solid line) methods for the
Ca 4+ *“Ca system at R = 10.54 fm.

where p©@(r) and Kﬁ) () are the instantaneous TDHFB parti-

cle and pairing densities, and p™(r) and K;’i) (r) are the cases

of the nth iteration. As the number of iterations n increases,
when 8 and 8 stably tend to a required small value si-
multaneously, the iteration will be stopped. In the DCTDHFB
case [15], 8 is defined as

o = X I~ )
ij

is the instantaneous TDHFB pairing tensor, and

; 12)

where Ki(j(-))
Ki(;l) is the case of the nth iteration. As an example, Fig. 5
shows the quality of iterative convergence of the “°Ca + **Ca
fusion reaction at the barrier (R = 10.54 fm) calculated by
rDC-TDHFB and DCTDHFB methods. For the rDC-TDHFB
method, both 80 and 8" smoothly and stably tend to their
convergent values after several hundred iterations, much bet-
ter than the case of the DCTDHFB method.

B. Collective kinetic energy

In principle, the solutions of both TDHF and TDHFB
equations satisfy the equation of continuity if the two-body
interactions are local [41,42]; i.e., the coordinate-space den-
sity p(r, t) should satisfy,

dpr,t) o .
= V. jr, 1), (13)

where j(r, t) is the particle current. In TDHF theory, p(r, t)
and j(r, t) are defined by using single-particle states,

p(r) =Y v2da(r)gs(r),

jr) = 211 Z V2(PE Ve (1) — pu (VPL(P)),

where v, equals 1 for occupied states or O for unoccupied
states. This definition has been used in various realistic cal-
culation, as in [34,35].

In the framework of the TDHFB theory, we begin with
the TDHFB equations and get the equation of continuity in
Eq. (13). Paying attention to the conservation property of the
density and current, we adopt the expression of the particle
current as

1 . o
i = Zﬁ PaplPaOVGET) — G5V ()0, (14)

where the density matrix pqp is the same as in Eq. (2a) con-
structed from V matrix in the TDHFB theory.

Note that this particle current, defined by matrix V, con-
tains the effects of all the dynamical effects and the pairing
correlations in the sense of the TDHFB theory. With the help
of the particle current j(r) defined in Eq. (14), the collective
kinetic energy of the system can be expressed in the same
form as in the TDHF theory [34,35]:

E — h_zf_jz(’)d% (15)
kin 2m p(r) °

The particle current j(r) is a key quantity to calculate the exci-
tation energy in microscopic many-body theories, as discussed
in the next subsection.

C. Effective mass parameter

In the dynamic calculation of TDHFB theory, the total
energy of the system can be interpreted as the sum of static en-
ergy without collective motion, Epc(R), the collective kinetic
energy EXN(R), and the internal excitation energy E*(R).
Therefore, the internal excitation energy can be obtained as

E* = Erpurs — Epc(R) — E&! (16)

kin

Following the procedures of [35], one can easily obtain the

effective mass parameter of the relative motion by energy

conservation, as

2[Ecm. —V(R) — E*(R)]
R? ’

where the internal excitation energy is subtracted, because it

is not part of the collective kinetic energy [35].

Figure 6 shows the effective mass parameters for the
0Ca 4+4Ca, *°Ca+*Ca, and *°Ca+*Ca head-on colli-
sions at E.,, = 55 MeV. The mass parameter describes the
inertia of the total system against changes of its internal struc-
ture due to the relative motion of its fragments [43]. In many
studies, the effective mass parameter is treated as the static
reduced mass. However, due to density rearrangement and
nucleon transfer, effective mass parameters have a very impor-
tant effect on the fusion reaction by affecting the penetration
probability. From the results of Fig. 6, the effective mass
parameters obtained by rDC-TDHFB are similar to those ob-
tained by DC-TDHF [35]. When the two nuclei of the fusion
reaction are far apart, the effective mass parameters are the
same as the reduced mass values. As the two nuclei approach
closer to each other, the effective mass parameter increases
and shows an obvious hump when the incident center-of-mass
energy E. .. approaches the barrier height [34,35].

M(R) =

a7
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FIG. 6. Effective mass parameter M (R) scaled by the constant
reduced mass p for head-on collisions of “°Ca +***Ca at E, ,, =
55 MeV.

D. Fusion cross section

Let us now calculate the fusion cross section, which is
treated as the main objective of this paper. As stated in Sec. I,
the fusion process with sub-barrier energies can be described
as the barrier penetration of the full many-body system. In the
quantum perspective, the fusion cross sections at a specific
E. . can be obtained though

ThH?

2uEem,

Otus(Eem.) = > Q@+ DT(Eem),  (18)
=0

where w is the constant reduced mass that changes with dif-
ferent reactions, 7; is the barrier penetration probability of the
Ith angular momentum channel.

Following the great detailed procedures given in [35,44],
the fusion barrier penetration probability 7;(E. . ) is obtained
through numerical integration of the Schrodinger equation

B o d? VR +l(l—|—1)h2
2M(R) dR? ®) 2M(R)R?

where ; is the radial function for the /th partial wave, and
the N-N potential V(R) and effective mass parameter M(R)
are given in Eqgs. (8) and (17), which included all of the
dynamical features of TDHFB trajectory. Here the transfer
matrix method [35,44] is adopted to calculate the penetration
probabilities. By this method, we can accurately calculate the
penetration probabilities across arbitrary potential barriers in
both sub- and over-barrier regions.

Paying attention to the fact that the dependence of the
potential barrier and the effective mass parameter on the exci-
tation energy is moderate, the calculations were carried out at
E.m. = 55 MeV, which is a little higher than the barrier.

Figures 7 and 8 show the fusion cross sections for the sym-
metrical “°Ca +%°Ca and asymmetrical *°Ca 4+ **Ca head-on
collisions calculated using the N-N potentials of -rDC-TDHFB
and DC-TDHF methods in Figs. 1 and 2. It is clear that the
results of both rDC-TDHFB and DC-TDHF methods finely
reproduce the experimental data [24,25,27,28], much better

- Ec.m.:|1ﬁl =0, (19)

1000
40 40
Ca+ " Ca _
100 ¢
o
E 10}
=] rDC-TDHFB
© DC-TDHF = ===~
1L CC second-order excitations —:—:= |
CC no-coupling «-===+++=+
Montagnoli (2012) +—®&—
Aljuwair (1984) —@—
0.1 Il Il Il Il Il Il

48 50 52 54 56 58 60 62 64 66
E, n[MeV]

FIG. 7. Fusion cross sections for “°Ca + *°Ca obtained from the
rDC-TDHFB potential and DC-TDHF potential at the same E. , =
55 MeV. Results of the coupled channel calculations with no cou-
pling (pink dotted line) and with second-order excitation (black
dot-dashed line) are taken from Fig. 1 in Ref. [30]. The experimental
data are taken from Aljuwair [24] and Montagnoli [28].

than the results of the coupled-channel approaches with the no
coupling and/or with second-order excitation approximations
in Ref. [30]. Note that our results with DC-TDHF by the
SKY3D TDHF code [38] with full Skyme SV-bas parametriza-
tion are consistent with the ones reported in [34].

Here we would like to mention that, because of the the-
oretical limitation of TDHF theory, to date, the systematic
investigation of the collision processes in which the superfluid
nuclei are involved has been difficult from the standpoint of
the microscopic quantum many-body theory. From Figs. 7
and 8, we gained confidence that our new scheme of the
rDC-TDHFB method in Eq. (1) could be a reliable and useful
starting point to study the collision of normal and superfluid
nuclei.

Now, let us apply our proposed rDC-TDHFB method to the
case of the reaction *°Ca + *Ca, where **Ca is a superfluid
nucleus on the neutron side and the pairing energy of the

1000 ‘ ‘ ‘ ‘

100

10

G ,[mb]

rDC-TDHFB
DC-TDHF ===---
CC second-order excitations —:—-=
CC no-coupling ««+===+=s+
C. L. Jiang (2010) —&—
Trotta (2001)
Alj‘uwair (}984) f.ﬁ

54 56 58 60 62 64
E.m[MeV]

FIG. 8. The same as Fig. 7 but for “*Ca 4 **Ca. The experimental
data are taken from Aljuwair [24], Trotta [25], and Jiang [27].
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FIG. 9. The same as in Fig. 7 but for *°Ca 4+ *Ca. The experi-
mental data are taken from Aljuwair [24].

entrance channel is Ep;r = —6.69 MeV. The results of the
fusion cross section are presented in Fig. 9. It is remark-
able that the cross sections calculated by our rDC-TDHFB
scheme are much larger than those of DC-TDHE, thus rDC-
TDHFB greatly enhances the fusion probability, especially in
the sub-barrier energy region. The rDC-TDHFB results rather
satisfactorily reproduce the experimental data, and again the
rDC-TDHFB results are better than the coupled-channel ap-
proaches in near- and sub-barrier energy regions.

Finally, we consider the collisions between the two super-
fluid nuclei, where the pairing correlations are fully active.
Figure 10 shows the fusion potential of **Ca+*!Ca reac-
tions at E., = 53 MeV, and compares with the results of
zero gauge angle in [15]. It seems that the N-N potential
with rDC-TDHFB is lower than the results taken from [15].
Because the main GOGNY-TDHFB code and the parameters
used in this paper are the same as in [15], as discussed in
Sec. II, the possible reason for this difference may be that
the rDC-TDHFB method proposed in this paper can squeeze

55 F Akyuz-Winther -=---- 1
,/“;\_ Scamps(2019) —-—--
50 . rDC-TDHFB ——
%
S 45+
3
~ 40t
35 F
30
8 9 10 11 12 13 14 15

R[fm]

FIG. 10. The same as Fig. 1 but for **Ca + *“*Ca fusion reactions
at E..,. = 53 MeV. The data of Scamp’s method are taken from the
results with zero gauge angle of [15].

2k J

4 ~3so {DC-TDHFB —— ]|

6 S J

Epyir [MeV]
/7
7/

10 | N 1

12 F J

-14
R[fm]

FIG. 11. Pairing energy of the *Ca+*Ca system by rDC-
TDHFB method at E.,, =53 MeV is plotted with respect to
collective coordinate R, and compared with the pairing energy of
TDHEFB trajectory. The black arrow on the x axis indicates the barrier
position corresponding to the fusion reaction.

out the collective kinetic and/or excitation energies from the
total energy of TDHFB trajectory more efficiently. The DCT-
DHFB method constrains the norm of all the matrix elements
kij, which are intrinsic variables, thus the pairing energy is
conserved after the density-constrained calculation (Fig. 8 of
Ref. [15]). In this paper, the rDC-TDHFB method constrains
the pairing densities x4 (r), which are collective variables. In
this scheme, the pairing energy is different between TDHFB
and rDC-TDHFB. We show the comparison of pairing energy
from rDC-TDHFB and TDHFB calculations in Fig. 11, for the
#Ca + *Ca system. The difference of pairing energy between
TDHFB and rDC-TDHFB is consistent with the result shown
in Fig. 10.

The potential in Fig. 10 has been used to calcu-
late the fusion cross section of **Ca+*Ca, as shown
in Fig. 12. To highlight the differences among all four
systems, we also plot the theoretical fusion cross sec-
tions of *°Ca+%Ca, *°Ca+*'Ca, and “°Ca+*Ca. The

1000 F

100 ¢

10 |

Ggy[mb]

0.1F

0.01 ¢

0.001

FIG. 12. Fusion cross sections obtained from the rDC-TDHFB
approach.
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TABLEI. Ground state Q values (in MeV) for two-neutron trans-
ferring channels.

System Oan

NCa+*Ca -9.13
NCa+*Ca 0.77
4Ca +*Ca 2.61
“Ca+*Ca —1.25

cross sections for *°Ca +*°Ca, *°Ca 4+ **Ca, and *°Ca + *8Ca
are typical. For the reaction *“°Ca+“Ca, the cross sec-
tion falls much faster with decreasing energy and becomes
approximately an order of magnitude smaller than those
for “°Ca+*Ca and *°Ca + **Ca. With the increasing neu-
tron richness, the fusion cross section from “°Ca+*°Ca
through *“’Ca 4 *Ca to *°Ca +*8Ca increases in the whole
energy region. Consider the ground state Q values for
two-neutron transfer channels of every system as given in
Table. I; this can been attributed to the strong coupling to
the two-neutron transfer channels with positive Q values
[24,29,30].

Another interesting feature in Fig. 12 is that the fusion
cross sections of *°Ca +*¥Ca and **Ca + **Ca, which corre-
spond to the same composite systems, intersect one another
around the barrier energy. The cross sections of **Ca 4+ *Ca
are larger than the one of *°Ca + “*Ca when the energy E .
is above the barrier, while they are smaller when the en-
ergy E.n. is below the barrier. One possible mechanism of
this result could also be the effect of particle transfer. How-
ever, because the superfluid nuclei **Ca is softer with respect
to the collective modes than the two doubly magic nuclei
40Ca and *Ca, the influence of the excitations of collec-
tive motions and some other excitations of collective modes
should be studied further. We leave this subject to our further
investigation.

IV. SUMMARY

The theoretical understanding of sub-barrier heavy ion fu-
sion reactions remains a significant challenge even to this day.
Time-dependent density functional theory provides a self-
consistent and elaborate microscopic framework to study the
heavy-ion reactions.

In this paper, we proposed a real-space particle- and
pairing-density-constrained scheme of the microscopic TD-
HFB theory. The proposed rDC-TDHFB scheme was applied
to analyze the reactions of nuclei with and without pairing
correlations, such as *°Ca +*Ca, *°Ca +**Ca, *°Ca +*3Ca,
and **Ca +*Ca. The results satisfactorily reproduce the ex-
perimental data of the sub-barrier cross sections, illustrating
the feasibility of the rDC-TDHFB scheme.

Because the constrained densities in the rDC-TDHFB
scheme are the corresponding instantaneous TDHFB densities
at every specific time, both the nucleus-nucleus interaction
potential and the mass parameter in collective space include
the dynamical effects and various excitations described by the
particle and pairing densities. Therefore this method could
provide a reliable description of nuclear reactions where
the pairing effects play one of the central roles in the nuclear
properties.

In near future, it will be very interesting to use this scheme
to investigate the dynamical roles of the pairing correlations in
the reactions of exotic nuclei, as well as in the fission process
of heavy nuclei.
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