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Systematic application of the M3Y NN forces for describing the capture process in heavy-ion
collisions involving deformed target nuclei
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We present results of a systematic study of the capture process through the barrier penetration model. The
nucleus-nucleus interaction potential is calculated using the double-folding model (DFM) with the M3Y Paris
NN forces. The nucleon densities entering the model are generated from the experimental three-parameter Fermi
charge densities. The DFM has been extended to the case of deformed target nuclei. It is shown that the density-
dependent M3Y NN forces with the finite range exchange part can be mimicked successfully by the zero-range
density-independent forces. The latter option significantly reduces the required computer time. For the nucleon
densities and target nuclei deformations, we employ the values from the commonly used data bases. Thus, we do
not vary any parameters to reach a better agreement with the data. The resulting cross sections are compared with
data for 20 reactions with the product of the charge numbers ZPZT ranging from 216 up to 2576. We discuss the
opinion met in the literature that the M3Y NN forces provide a poorer description of the capture cross sections
in heavy-ion collisions in comparison to the NN forces coming from the relativistic mean-field approach. Our
calculations show that the M3Y NN forces give an agreement with the data which is not perfect yet is not worse
than the one resulting from the relativistic mean-field approach NN forces.
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I. INTRODUCTION

The optical model is known to be one of the best tools
for describing collisions of heavy ions including the coupled
channels. The nucleus-nucleus potential entering the optical
model is often based on the effective NN forces [1]. For this
aim, the single folding approach was first developed for the
case of proton impinging on a nucleus [2]. Later, this approach
was generalized for the case of two complex colliding nu-
clei becoming the double-folding model (DFM) [3,4]. Since
then, the DFM has been used widely for finding the real part
of the optical potential and the Coulomb barriers (see, e.g.,
Refs. [5–8]).

For the NN forces, in the nonrelativistic approximation,
three versions are typically used. These are the zero-range
Migdal forces [3,9] and two kinds of the Yukawa-type M3Y
forces: the Reid forces [6,10], and the Paris forces [11]. For
calculating the capture cross sections, the use of the Reid
forces in comparison with the Paris forces was studied in
Ref. [12], whereas the comparison between the Migdal and
the M3Y Paris forces in the same context was performed in
Refs. [13,14].

Recently, the Yukawa-type NN forces coming from the rel-
ativistic mean-field approach [(RMF) NN forces] were applied
for calculating the fusion cross sections of heavy ions [15–17].
In Refs. [15,16], it was claimed that the RMF NN forces pro-
vide “ … a better choice than the M3Y interaction for fusion
reaction considered in the entire range of barrier energies in
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predicting the cross sections … .” The purpose of the present
paper is to confirm or disprove this statement. For this goal,
using the DFM, we calculated the capture cross sections for
20 reactions involving the deformed target nuclei. This model
is described in Sec. II for the M3Y and RMF NN forces. The
logic of our calculations with the M3Y NN forces is presented
in Sec. III. In Sec. IV, the choice of reactions is explained. The
nucleon densities entering the DFM are discussed in Sec. V.
In Sec. VI, the cross sections resulting from the M3Y Paris NN
forces are compared with the experimental data and with the
cross sections of Ref. [15] resulting from the RMF NN forces.
The conclusions are formulated in Sec. VII. The Appendix
contains the details of the DFM calculations for the case of
the deformed target nucleus.

II. THE DOUBLE-FOLDING MODEL

Within the framework of the DFM, the strong nucleus-
nucleus potential (SnnP) Un( �R) comprises two parts, the direct
UnD( �R) and the exchange UnE ( �R) ones,

Un( �R) = UnD( �R) + UnE ( �R). (1)

The vector �R connects the centers of mass of the colliding
nuclei. The direct part is evaluated as follows:

UnD( �R) =
∫

d�rP

∫
d�rT ρAP(�rP )F (ρFA)vD(s)ρAT (�rT ). (2)

Here �rP and �rT are the radius vectors of the interacting points
of the projectile (P) and target (T) nuclei. The distance be-
tween these points is defined by the vector �s = �rT − �R − �rP.
The geometry of the collision and all these vectors are shown
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FIG. 1. Coordinate system used in the double-folding model.

in Fig. 1. In Eq. (2), ρAP and ρAT represent the nucleon
densities (diagonal components of the density matrices) for
the projectile and target nuclei, respectively. The multiplier
F (ρFA) represents the density dependence of the NN forces
and is the same for both direct and exchange parts. For the
case of two spherical colliding nuclei, it reads [18]

F (ρFA) = 0.3429{1 + 3.0232 exp(−βρFA) − γ ρFA}, (3)

β = 3.5512 fm3, γ = 0.5 fm3. This parameter set results in
the lowest barrier (see Ref. [12] for details). The nucleon
density ρFA in Eq. (2) reads [19]

ρFA = ρAP(rP ) + ρAT (rT ). (4)

This choice is dictated more by numerical convenience than
by physical arguments.

The direct part of the NN forces comprises two Yukawa
terms,

vD(s) =
2∑

i=1

GDi
exp(−s/rvi)

s/rvi
. (5)

Parameters of the NN forces are presented in Table I. In the
present paper, we discuss only M3Y Paris forces calling them
the NN forces.

The exchange part of the SnnP reads

UnE ( �R) =
∫

d�rP

∫
d�rT ρ̂AP(�rP; �rP + �s) F (ρFA) vE (s)

× ρ̂AT (�rT ; �rT − �s)exp(i�krel�s mn/mR). (6)

TABLE I. Parameter set for the effective M3Y Paris NN forces.
The coefficients GDi and GE f i were obtained by fitting the G-matrix
elements at three selected distances rvi.

Parameter Value

GD1 (MeV) 11062
GD2 (MeV) −2537.5
GE f 1 (MeV) −1524.25
GE f 2 (MeV) −518.75
GE f 3 (MeV) −7.847
GEδ0 (MeV fm3) −592
rv1 (fm) 0.25
rv2 (fm) 0.40
rv3 (fm) 1.414

Here mR is the reduced mass; ρ̂AP (ρ̂AT ) is the nondiagonal ma-
trix element for the projectile (target) nucleus. These elements
are evaluated using the density-matrix expansion method of
Refs. [20,21],

ρ̂AT (�rT ; �rT − �s) ≈ ρAT (�rT − �s/2) j̃1[keff (�rT − �s/2) s], (7)

ρ̂AP(�rP; �rP + �s) ≈ ρAP(�rP + �s/2) j̃1[keff (�rP + �s/2) s], (8)

j̃1(x) = 3[sin(x) − x cos(x)]/x3. (9)

For the effective Fermi momentum keff , we apply the simplest
Slater approximation,

keff (�r) =
[

3π2ρA(�r)

2

]2/3

. (10)

The nucleon density ρFA in Eq. (6) reads [6,18,22]

ρFA = ρAP

(∣∣∣∣�rP + �s
2

∣∣∣∣
)

+ ρAT

(∣∣∣∣�rT − �s
2

∣∣∣∣
)

. (11)

This corresponds to the middle point between the interacting
points of the projectile and the target nuclei and is physically
justified (see Fig. 1).

The wave number corresponding to the relative motion of
the colliding nuclei krel, reads

krel( �R) =
√

2mR [Ec.m. − Un( �R) − UC ( �R)]/h̄. (12)

Here Ec.m. is the collision energy and UC ( �R) is the Coulomb
interaction energy. The total effective interaction energy of
the colliding nuclei U ( �R) including in addition the centrifugal
(rotational) energy Urot ( �R) reads

U ( �R) = Un( �R) + UC ( �R) + Urot ( �R). (13)

The exchange part of the NN forces vE (s) is met in the
literature in two versions: with zero range and with finite
(nonzero) range. Let us denote the former one as δNN forces
and the latter one as f NN forces. The simpler δNN forces read

vEδ (s) = GEδ δ(�s). (14)

In this case, the nondiagonal matrix elements in Eq. (6) are
reduced to the diagonal elements and the integrals take the
form of Eq. (2). Such integrals are evaluated rather fast by
means of the Fourier transform (see details in Refs. [22–24]).
Since in the present paper we will modify GEδ , we denote the
original value corresponding to Ref. [11] as GEδ0.

The much more sophisticated f NN forces involve three
Yukawa terms,

vE f (s) =
3∑

i=1

GE f i
exp(−s/rvi )

s/rvi
. (15)

In this case, evaluating the integrals in Eq. (6) is significantly
more computer time consuming. The required computer time
dramatically increases even more when one deals with the
deformed target nucleus because one needs to evaluate the
integrals (6) many times for many values of R and θ (see
Fig. 1). On the other hand, only the f NN density-dependent
forces ( f DDNN forces) provide the correct saturated nucleon
density for cold nuclear matter [18]. Moreover, the f DDNN
forces have been applied only to the case of spherical colliding
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nuclei [4,12,19,25–29] whereas, in the present paper, we aim
to study the reactions with deformed target nuclei.

In addition, we would like to compare our results with
the calculations obtained in Ref. [15] within the DFM with
the RMF NN forces. It has the same structure as in the case
of M3Y NN forces. Most of the differences come from the
way the NN forces are obtained. Starting from the standard
Lagrangian density [15,30], the effective RMF NN interac-
tion is constructed in the form of the Yukawa-type terms
[15,17,31–33],

vRMF(r) = g2
ω

4π

exp (−mωrc/h̄)

r
+ g2

ρ

4π

exp (−mρrc/h̄)

r

− g2
σ

4π

exp (−mσ rc/h̄)

r
+ g2

2

4π
r exp (−2mσ rc/h̄)

+ g2
3

4π

exp (−3mσ rc/h̄)

r
− J00δ(�r). (16)

The free parameters of this theory, the meson masses mρ , mσ ,
mω, and the interaction strengths gρ , gσ , gω, g2, g3 are fitted
to reproduce the static properties of the nuclei.

Thus, although formally similar, the M3Y and RMF
NN forces come from different considerations. Moreover,
the strength of the zero-range potential in the M3Y forces
[Eqs. (14), (A12)] was scaled to reproduce the exchange in-
tegral of the potential obtained with the finite-range exchange
term of the M3Y interaction. This has nothing to do with
the effective interaction derived from RMF. Therefore, adding
the last δ-function term in Eq. (16) as it was performed in
Refs. [15,16,33] seems to be questionable.

Moreover, the coupling strengths of different mesons in
the RMF were carefully chosen to describe the saturation of
nuclear matter as well as the ground-state structure of some
nuclei. Therefore, the single nucleon exchange effects are
already accounted for implicitly. It looks like adding by hand a
zero-range potential to the in-medium NN interaction derived
from the RMF meson fields is a sort of double counting. Note
that in Refs. [31,32] the zero-range pseudopotential is absent.

These effective forces are folded with the densities analo-
gously to Eq. (2). It should be noted that the RMF NN forces
were applied in the literature only for the case of spherical
target and projectile nuclei. Therefore, the SnnP reads

Un(R) =
∫

d�rP

∫
d�rT ρAP(rP )vRMF(s)ρAT (rT ). (17)

III. COMPUTATIONAL ROUTINE

In our investigation, we use two computer codes: DFMSPH

[24,34] and DFMDEF [35,36] (see details of the DFMDEF code
in the Appendix). The first one is designed for calculating
the interaction energy of two spherical colliding nuclei and
allows accounting for the density dependence of NN forces. It
was shown in Refs. [18,25] that only density-dependent M3Y
NN forces with the finite range exchange term allow repro-
ducing the saturation density of cold nuclear matter. Within
the framework of DFMDEF, one can calculate the interaction
energy of a spherical projectile nucleus and a deformed target
nucleus.

Note that in both DFMSPH and DFMDEF there is an option for
treating the single-nucleon exchange in a local approximation
using the finite-range exchange part of the M3Y interaction
which was proven to be a much more accurate procedure
compared to the zero-range pseudopotential.

However, the density dependence of the NN forces is
absent in the DFMDEF code. To account for this density de-
pendence in an approximate manner for the reactions with
deformed target nuclei and simultaneously to reduce the com-
puter time needed for the systematic calculations, we have
developed the following algorithm.

We start from finding the barrier energies through DFM-
SPH (i.e., ignoring the target nucleus deformation) using
the f DDNN forces. The corresponding barrier energies are
denoted B f DDs (the last “s” in the subscript stands for “spheri-
cal”). Next, we apply the δNN density-independent forces and,
varying GEδ , fit the Coulomb barrier energies B f DDs. Let us
denote this fitting barrier energy as Bδs and the corresponding
value of GEδ as GEδs. Then, we evaluate the θ -dependent SnnP
and the barrier energy Bδ (θ ) with this optimal value GEδs,
accounting for the deformation of the target nucleus using the
code DFMDEF. These are the SnnP and barrier energy we plan
to apply for calculating the cross sections.

To verify that the resulting barrier energies Bδ (θ ) answer
our purpose, we compare them with the barrier energies
calculated with f NN forces. For this aim, we evaluate the in-
cident angle-dependent barrier energies B f (θ ) using the code
DFMDEF accounting for the deformations of the target nucleus.
Since the density dependence is absent in DFMDEF, we need
to find a correcting factor responsible for the contribution of
the density dependence. This factor comes from the compar-
ison of B f DDs and B f s calculated for spherical nuclei within
DFMSPH using the f NN forces with density dependence and
without it, respectively. Thus, we obtain the corrected barrier
energies B f c(θ ). We expect good agreement between the sim-
plified barrier energy Bδ (θ ) and the more rigorous B f c(θ ).

Note that a similar contrivance, proposed in Ref. [37], was
successful but did not receive further development. In the
present paper, we work out that idea.

IV. SELECTING THE REACTIONS

The nuclei and reactions for the present paper have been
selected according to the following considerations. First, we
tried selecting the reactions in which a smaller spherical pro-
jectile nucleus collides with a significantly bigger deformed
target nucleus. Second, we used only those nuclei for which in
Ref. [38] the three-parameter Fermi functions (3pF formulas)
are available for the experimental charge density. Third, the
reactions have been chosen to cover a wide range of the
approximate Coulomb barrier,

BZ = ZPZT

A1/3
P + A1/3

T

MeV. (18)

Fourth, we selected the target nuclei possessing significant
quadrupole and hexadecapole deformations of both signs.
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Finally, we prefer the reactions for which experimental data on
the barrier energy and/or capture cross sections are available.
Many data are taken from the database [39].

Information on the projectile and target nuclei is composed
in Tables II and III, respectively; the reactions selected for
consideration in the present paper are composed in Table IV.
Even when the projectile nucleus is known to be deformed, we
consider it as spherical one. This does not wrench our results
due to the smaller size of the projectile nucleus.

The present paper has a lot in common with Ref. [37].
Here comes the list of the differences: (i) in the present paper,
we significantly widen the range of reactions considered (20
against 7); (ii) reactions with 168Er and 12C are excluded be-
cause the parameters of the 3pF formulas for the experimental
charge densities of these nuclei are absent; (iii) the approx-
imation for the finite-range calculations are performed here
for all 20 reactions. In addition, in Ref. [37], contrary to the
present paper, the calculated capture cross sections were not
presented. On the other hand, the details of the calculations
omitted here can be found in Refs. [36,37].

V. NUCLEON DENSITIES

Basing on the experimental charge densities from
Ref. [38], we approximate the nucleon densities for spherical
nuclei by the 3pF formula,

ρF (r) = ρCF
1 − wF r2/R2

F

1 + exp[(r − RF )/aF ]
. (19)

Here aF denotes the diffuseness of the density, RF approx-
imately corresponds to the half-density radius. The quantity
wF seems not to have a specific name in the literature. The
value of ρCF is defined by the normalization condition. In
Ref. [38], Eq. (19) is applied for the nuclear charge density
of both spherical and deformed nuclei. In the latter case, the
average over the polar angle ζ (see Fig. 1) is meant. Note that
the two-parameter Fermi function formula used in Ref. [38] is
just the same 3pF formula with wF = 0.

The SnnP of the colliding nuclei significantly depends
upon the incident angle θ . Therefore, when dealing with the
deformed nucleus, we use the following dependence upon ζ :

ρF (r, ζ ) = ρCF (1 + exp{[r − RF f (ζ )]/aF })−1, (20)

f (ζ ) = λ−1[1 + β2Y20(ζ ) + β4Y40(ζ )]. (21)

Here β2 and β4 are the parameters of the quadrupole and
hexadecapole deformations, respectively, whose values for
the target nuclei were taken from Ref. [40], λ guarantees the
nucleon number conservation; Y20(ζ ) and Y40(ζ ) denote the
spherical functions.

The same formulas (19) and (20) are used for the charge,
neutron, and proton densities. The half-density radii are the
same for a given nucleus whereas the diffusenesses of proton
aF p and neutron aFn densities are extracted from the experi-
mental diffuseness aFq of the charge density [1,37],

aF p = aFn =
√

a2
Fq − 5

7π2

(
0.76 − 0.11

N

Z

)
. (22)

In the present paper, the densities are considered to be
frozen. This frozen density approximation (FDA) has been
inspected carefully and compared with the adiabatic density
approximation (ADA) in Ref. [41]. The ADA has been shown
to be more appropriate at smaller center-to-center distances,
in other words, at larger densities overlap. We will come back
to this point in Sec. VI A below.

VI. RESULTS

A. Barrier energies ignoring target deformations

All calculations in this subsection are performed through
the code DFMSPH. According to the formulated algorithm, we
present in this subsection the barrier energies B f DDs calculated
using the f DDNN forces but ignoring the deformations of the
target nuclei. The values of B f DDs are shown in Table IV.

Next, we have calculated the barrier energies Bδs using
the δNN forces with several values of GEδ also ignoring the
deformations of the target nuclei. It is convenient representing
the results using the fractional difference,

ξ s
δD(BZ ) = Bδs

B f DDs
− 1. (23)

These differences calculated at three values of GEδ = −940,
−1040, and −1140 MeV fm3 are plotted in Fig. 2(a). This
figure shows that the value GEδs = −1040 MeV fm3 can be
taken as an optimal one for all the reactions considered. We
apply this value below calling this version of calculations
“modified δNN forces.”

Let us now compare the barrier energies evaluated ac-
counting for the density dependence B f DDs and without this
dependence B f s. This comparison is presented in Fig. 2(b) as
the fractional difference,

ξ s
f D(BZ ) = B f s

B f DDs
− 1. (24)

On average, this fractional difference is about 1% (thin hori-
zontal line), however, it reveals a tendency to increase at small
values of BZ and to flatten at larger values of BZ . Below we
use ξ s

f D for finding a proper correcting factor for the deformed
barriers. Therefore, we prefer to approximate the ξ s

f D(BZ )
dependence by the following analytical expression:

ξa(BZ ) = ξ1 exp
(B0 − BZ

B

)
+ ξ0. (25)

In Fig. 2(b), ξa calculated with ξ0 = 0.80, ξ1 = 0.50, B0 =
40 MeV, and B = 15 MeV is shown by the curved line.

Probably, it is worthwhile to inspect whether the FDA
makes sense for the presented calculations. For this aim, we
display in Fig. 3 the fractional difference,

μR(BZ ) = RB f s

RFP + RFT
− 1 (26)

showing to what extent the spherical barrier radius calculated
using the f DDNN forces RB f s is larger than the sum of half-
density radii of the projectile RFP and target RFT nuclei. This
fractional difference typically exceeds 20%, thus, the FDA
seems to be justified.
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FIG. 2. Comparison of barrier energies evaluated ignoring the
deformations of the target nuclei versus the approximate barrier
energy BZ . In panel (a) fractional difference ξ s

δD [see Eq. (23)] cor-
responds to three values of GEδ indicated in the panel. In panel (b)
squares correspond to fractional difference ξ s

f D [see Eq. (24)]; thin
horizontal line is the average of ξ s

f D(BZ ); thick black curve is the
analytical approximation ξa(BZ ) [see Eq. (25)].

B. Barrier energies accounting for target deformations

All calculations in this subsection are performed within
the framework of the code DFMDEF. We now evaluate the
barrier energies Bδ (θ ) accounting for the deformations of

FIG. 3. Excess of the spherical barrier radius calculated using
the f DDNN forces RB f s over the sum of half-density radii of the
projectile RFP and target RFT nuclei versus BZ [see Eq. (26)].

FIG. 4. Fractional difference ξ θ
δ f (θ ) [see Eq. (28)] versus acci-

dent angle θ . For convenience, we use the ordering numbers of
reactions from Table IV.

the target nuclei as indicated in Table III. These energies
are calculated using the modified δNN forces, i.e., with the
optimal value GEδs chosen in the previous subsection. Since
the value of GEδs was found by basing on the calculations
with density-dependent forces, it implicitly includes this de-
pendence. These are the calculations we intend to apply for the
capture cross-sectional calculations. However, first we would
like to test if the values of Bδ (θ ) indeed correspond to the
barriers with finite-range NN forces. Therefore, we calculate
B f (θ ) and correct them using the correcting factor ξa(BZ ) of
Eq. (25) as follows:

B f c(θ, BZ ) = B f (θ, BZ )

1 + ξa(BZ )
. (27)

This procedure is extremely computer time consuming; there-
fore, it is performed for several values of θ only. These
barrier energies B f c are compared with Bδ (θ ) via the fractional

FIG. 5. Fractional difference ξ θs
δD(θ ) [see Eq. (29)] as a function

of accident angle θ .
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TABLE II. Projectile nuclei: parameters of the experimental charge density [3pF formula, Eq. (19)] [38].

16O 19F 20Ne 26Mg 27Al 40Ar 48Ti 56Fe 58Ni 64Ni

RF (fm) 2.608 2.590 2.805 3.050 3.070 3.530 3.843 4.106 4.309 4.212
aF (fm) 0.513 0.564 0.571 0.523 0.519 0.542 0.588 0.519 0.517 0.578
wF −0.051 0.000 0.000 0.000 0.000 0.000 0.000 0.000 −0.131 0.000

difference,

ξ θ
δ f (θ ) = Bδ (θ )

B f c(θ )
− 1. (28)

Results for all 20 reactions from Table IV are presented in
Fig. 4. The deviation of the simplified barrier energies Bδ (θ )
from the more rigorous B f c(θ ) is within 0.5% for all values
of the incident angle and BZ . Thus, we believe it is justified
to utilize the SnnP Un(R, θ ) with δNN forces corresponding
to the optimal value GEδs for calculating the total effective
interaction energy of the colliding nuclei U (R, θ ) and for
evaluating the capture cross sections.

Before doing that, we wish to discuss shortly a side result
of our paper, namely, the scaling properties of the barrier
energies Bδ (θ ). For this aim, we present in Fig. 5 one more
fractional difference,

ξ θs
δD(θ ) = Bδ (θ )

B f DDs
− 1. (29)

In this figure, all reactions are split into four groups according
to the deformations of the target nuclei: Figure 5(a) comprises
the cases of significant and positive β2 and β4; in Fig. 5(b),
both β2 and β4 are positive, but β4 is small; in Fig. 5(c)
the cases of significant negative β2 are collected; finally, the
remaining reactions are shown in Fig. 5(d). For convenience,
we use the ordering numbers of reactions from Table IV.
The first group is formed by the reactions with samarium,
thorium, and uranium as the target nuclei whose quadrupole
and hexadecapole deformations are close according to Ta-
ble III. As the consequence, the curves in Fig. 5(a) are hardly
distinguishable. Note that the absolute values of the spherical
barrier energies for these reactions are quite different: from
60.6 MeV for reaction R6 up to 205.0 MeV for R20. Here
the shape of ξ θs

δD(θ ) is defined by the prolate shape of the
nucleus. Note that the barrier at the pole is 8% lower than the
spherical barrier. This must dramatically influence the capture
excitation function at the barrier region. Therefore, results
of Ref. [16] where 238U and 246Cm were considered to be
spherical seem to be unreliable.

Figure 5(b) comprises the fractional differences ξ θs
δD(θ ) for

reactions involving holmium, cobalt, and chromium target nu-
clei whose hexadecapole deformations are much smaller than
for the first group. Accordingly, the range of ξ θs

δD(θ ) is here
much narrower than in Fig. 5(a). This range is especially nar-
row for reactions R1 and R4 involving 59Co in agreement with
its comparatively small quadrupole deformation. Yet anyway
the pole barrier energies are smaller than the equator ones.

The situation changes strikingly in Fig. 5(c) due to the
opposite sign of both β2 and β4. Due to the oblate shape of
copper, germanium, and gold nuclei, the polar barrier energies
are now higher than the equatorial ones.

After the above analysis, Fig. 5(d) seems to be self-
explanatory. A general conclusion from Fig. 5 is that the
fractional difference ξ θs

δD(θ ) depends solely upon the deforma-
tions of the target nucleus. This circumstance can probably
help in extracting the values of β2 and β4 from the experimen-
tal data.

C. Capture cross sections: qualitative comparison with the data

Following Refs. [37,49,71], we evaluate the capture cross
section as:

σth = π h̄2

2mREc.m.

∑
i

∑
J

(2J + 1)TJ (θi ) sin (θi )θ. (30)

Here, J is the angular momentum in units of h̄. This semi-
classical approach provides results that are close to the exact
quantum-mechanical calculations [71,72]. The transmission
coefficient is calculated using the Wentzel-Kramers-Brillouin
approximation below the barrier,

TJ (θ ) =
{

1 + exp

[
2S

h̄

]}−1

, (31)

and in the parabolic barrier approximation above the barrier,

TJ (θ ) = {1 + exp[2π (Bδ − Ec.m.)/(h̄ωB)]}−1. (32)

TABLE III. Target nuclei: deformations [39,40] and parameters of the experimental charge density [3pF formula, Eqs. (20) and (21)] [38].

50Cr 59Co 65Cu 74Ge 154Sm 165Ho 181Ta 186W 197Au 232Th 238U

β2 +0.194 +0.118 −0.125 −0.237 +0.270 +0.284 +0.255 +0.221 −0.125 +0.205 +0.236
β4 +0.038 +0.005 −0.005 −0.036 +0.105 +0.020 −0.076 −0.095 −0.017 +0.103 +0.098
RF (fm) 3.979 4.080 4.158 4.450 5.939 6.180 6.380 6.580 5.380 6.792 6.805
aF (fm) 0.520 0.569 0.632 0.580 0.522 0.570 0.640 0.480 0.535 0.571 0.605
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TABLE IV. The ordering numbers of reactions, the corresponding reactions, and the barrier energies: the approximate ones BZ [Eq. (18)];
Bδs calculated using the δNN forces with GEδ = −1040 MeV fm3; Bf DDs evaluated using the f DDNN forces; the experimental ones Bf exp with
the corresponding references. In the last column, the references for the experimental capture cross sections, and the number of experimental
points are presented.

Number of points,
Reaction BZ (MeV) Bδs (MeV) Bf DDs (MeV) Bf exp (MeV), Reference capture data

R1 16O + 59Co 33.68 29.56 29.51 30.5 [42] 4 [42], 2 [43]
R2 16O + 65Cu 35.47 30.66 30.63 9 [44], 7 [45]
R3 20Ne + 50Cr 37.51 32.51 32.46 3 [46]
R4 20Ne + 59Co 40.86 35.55 35.49 10 [47]
R5 27Al + 74Ge 57.79 53.14 53.10 55.2 [48] 18 [48]
R6 16O + 154Sm 62.94 60.61 60.56 59.4 [49] 39 [49], 22 [50]
R7 16O + 186W 71.95 69.54 69.47 59.35 [51] 38 [52]
R8 40Ar + 74Ge 75.61 70.82 70.79 3 [53]
R9 19F + 181Ta 78.92 72.94 72.86 10 [54], 9 [55], 8 [56]
R10 19F + 197Au 83.77 81.42 81.40 81.61 [51] 8 [57]
R11 16O + 238U 84.43 81.91 81.85 85 [58] 4 [59], 2 [60]
R12 19F + 232Th 91.91 89.23 89.17 89.30 [51] 15 [61], 6 [62]
R13 26Mg + 197Au 107.96 107.46 107.46 1 [63]
R14 26Mg + 238U 120.53 119.09 119.08 123 [58] 3 [63]
R15 40Ar + 181Ta 144.77 140.29 140.35 6 [64]
R16 40Ar + 197Au 153.92 156.28 156.43 3 [65], 3 [66], 5 [67]
R17 40Ar + 238U 172.19 173.61 173.74 3 [66], 2 [68]
R18 56Fe + 165Ho 187.10 188.20 188.40 4 [69]
R19 58Ni + 165Ho 200.52 202.47 202.69 2 [70]
R20 48Ti + 238U 205.87 206.90 207.02 1 [60]

In Eq. (31), S denotes the action calculated from the outer
down to the inner turning points. In Eq. (32), both the barrier
energy Bδ and the frequency ωB are J and θ dependent. The
incident angle changes with step θ = 2.5◦ from 0 ° up to
90 ° due to the mirror symmetry of the target nuclei. The
summation over J is terminated when the partial cross section
becomes 10−5 of its maximum value.

The capture excitation functions have been calculated and
compared with the data for all 20 reactions. The problem is
that for many reactions only several experimental points of
the excitation functions are available (see the last column
of Table IV). Therefore, we have selected for the detailed
presentation six reactions for which the experimental capture
cross-sections σexp obey three conditions: (i) they should cover
a rather wide range of BZ , (ii) a reasonable number of experi-
mental points should be available, (iii) for a given reaction the
data should cover the barrier energy region. These data and
calculated cross-sections σth are presented in Fig. 6 [panels
(a) and (b) provide the cross sections in linear and logarithmic
scales, respectively]. In all cases but one, the calculated cross
sections lay below the data in the sub-barrier region and above
the data at Ec.m. > Bδs. For the reactions not shown in Fig. 6,
the mutual layout of σexp and σth do not contradict this with
very few exceptions.

We interpret this observation in the following way. At
Ec.m. > Bδs, the collisions become strongly dissipative and
require including friction to be modelled correctly. This had
been performed before in many works [17,27–29,73–76]. In-
cluding dissipation within dynamical calculations can help to
bring the theoretical above-barrier cross sections in agreement

with the data. Below the barrier, dissipation probably plays a
minor role in comparison with the SnnP.

However, there is one more uncertainty: the deformation of
the target nucleus. Here, we utilize the theoretical deformation
parameters from Ref. [40] which are not always in agreement
with the experimental values. For instance, for spherical 16O,
Ref. [40] predicts β3 = −0.258 and β4 = −0.122. An alter-
native would be to use the experimental deformations in our
calculations. Unfortunately, these data are not available for all
target nuclei.

D. Capture cross sections: quantitative comparison
with the data

To compare the calculated cross-sections σth(M3Y) with
the experimental ones more quantitatively, we collect their
ratios for all analyzed reactions in Fig. 7 [in linear and log-
arithmic scales in panels (a) and (c), respectively] as the
functions of Ec.m./BZ . Since the present research is motivated
by the statement of Ref. [15] that the RMF NN forces pro-
vide “ … a better choice than the M3Y interaction for fusion
reaction considered in the entire range of barrier energies in
predicting the cross sections …,” in parallel, the same ratios
extracted from that paper are presented in Figs. 7(b) and 7(d).
Note that in Ref. [15], only two narrow ranges of BZ were
considered: 98–101 and 154–158 MeV whereas in our anal-
ysis 34 < BZ/MeV < 206 (see Table IV). This circumstance
explains the more scattered behavior of the points in Figs. 7(a)
and 7(c). In contrast to the conclusions of the authors of
Ref. [15], we do not see any superiority of the calculations
performed with the RMF NN forces.

014612-7



GONTCHAR, CHUSHNYAKOVA, AND SUKHAREVA PHYSICAL REVIEW C 105, 014612 (2022)

FIG. 6. Calculated and experimental cross sections as the functions of collision energy for six reactions. The values of Bδs are displayed
by vertical lines. For convenience, we use the ordering numbers of reactions from Table IV.

VII. CONCLUSIONS

For calculating the heavy-ion capture cross sections, in
our previous works [8,29], we successfully employed the
double-folding model with the M3Y NN forces. Recently,
there appeared articles [15,16] in which the RMF NN forces
were used for the same purpose. In Ref. [15], it is stated that
the RMF forces provide better results in comparison with the
M3Y ones. In the present paper, we intended to verify this
statement.

For this aim, we have performed the systematic calcula-
tions of the capture cross sections for 20 asymmetric reactions

with deformed target nuclei in a wide range of the barrier en-
ergies (34–206 MeV). To account for the density dependence
of the M3Y NN forces, we have developed an algorithm for
modifying the strength of the zero-range density-independent
exchange forces. The nucleus-nucleus interaction energy has
been calculated by means of the double-folding model with
the nucleon densities based on the experimental charge den-
sities. This algorithm has been validated in Sec. VI B and
applied for finding the SnnP, barrier energies, and curvatures.
Then, we have evaluated the transmission coefficients within
the framework of the single barrier penetration model for
different incident angles.
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(a) (b)

(d)(c)

FIG. 7. Ratios of calculated cross-sections σth and experimental σexp as the functions of Ec.m./BZ . Panels (a) and (c) correspond to our M3Y
calculations; panels (b) and (d) are based on the RMF calculations from [15] (the data are read from the figures of Ref. [15]). For convenience,
we use the ordering numbers of reactions from Table IV.

The calculated cross sections have been compared quan-
titatively (i.e., point by point) with the experimental ones in
Figs. 7(a) and 7(c). The same has been made in Figs. 7(b)
and 7(d) using the results of Ref. [15] (the data are read from
the figures of Ref. [15]). It has turned out that the amount of
agreement, i.e., the ratios σth(M3Y)/σexp and σth(RMF)/σexp,
is approximately the same. Moreover, our present analysis
demonstrates that the level of agreement between σth and σexp

might be improved by accounting for the dissipative character
of the collision process above the barrier.

APPENDIX

Here we present details of the calculations using the code
DFMDEF. For the geometry of Fig. 1, Eq. (1) becomes

Un(R, θ ) = UnD(R, θ ) + UnE (R, θ ). (A1)

The direct part is evaluated using the Fourier transform and
expanding in spherical harmonics (remember, that the density
dependence absents here, i.e., F (ρFA) = 1 in Eqs. (2) and (6)),

UnD(R, θ ) =
10∑

l=0,2,...

UnDl (R)Yl0(θ ), (A2)

UnDl (R) = 4√
π

∫ kmax

0
dk k2 jl (kR)ṽD(k)ÃPA0(k)ÃTAl (k),

(A3)

ÃP(T )Al (k) =
∫ rmax

0
dr r2ρP(T )Al (r) jl (kr), (A4)

ρP(T )Al (r) = 2π

∫ π

0
dζ sin (ζ )ρP(T )A(r, ζ )Yl0(ζ ), (A5)

ṽD(k) = 4π

2∑
i=1

GDirvi

k2 + r−2
vi

. (A6)

For evaluating the exchange part, we apply Eqs. (6)–(10).
Finally, in the code the following equations are used:

UnE f (R, θ ) = 4π

∫ smax

0
ds s2 j0(krels)vE f (s)G(R, s, θ ),

(A7)

G(R, s, θ ) =
∫ qmax

0
dq q2

∫ π

0
dζhP(R, s, q, ζ , θ )

× hT (R, s, q, ζ , θ ) sin (ζ ), (A8)

hP(R, s, q, ζ , θ ) =
∫ 2π

0
dϕ ρPA(p) j̃1[kPeff (p) s], (A9)

hT (R, s, q, ζ , θ ) = ρTA(q, ζ ) j̃1[kT eff (q, ζ ) s]. (A10)

The values of krel, j̃1, and kP(T )eff are determined by Eqs. (12),
(9), and (10), respectively. Here we denoted �q = �rT − �s/2 and
�p = �rP + �s/2 (see Fig. 1). The absolute value of the last vector
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is equal to

p(R, q, ζ , ϕ, θ ) = |�q − �R|
= [q2 + R2 + 2Rq(sin θ sin ζ cos ϕ − cos θ cos ζ )]1/2.

(A11)

The upper limits of integration are rmax = smax = qmax =
3RFT , kmax = 5 fm−1.

In the case of the zero-range exchange part of the NN
interaction, Eq. (6) due to the Fourier transform reduces to
the form similar to Eq. (A2) with

UnEδl (R) = 4√
π

∫ kmax

0
dk k2 j0(kR)GEδÃPA0ÃTAl . (A12)

Note that for the deformed case the density dependence is not
applicable.
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