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α-nucleus optical potentials from chiral effective field theory NN interactions
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We present a determination of optical potentials for 4He-target collisions using the double-folding method.
We use chiral effective field theory nucleon-nucleon interactions at next-to-next-to-leading order combined with
state-of-the-art nucleonic densities. The imaginary part of the optical potential is obtained from the real double-
folding interaction either through a proportionality constant or applying Kramers-Kronig dispersion relations.
With these potentials, we compute the elastic scattering of 4He off various targets, from 4He to 120Sn. We study
the sensitivity of our predicted cross sections to the choice of nucleon-nucleon interactions and nuclear densities.
Very good agreement is obtained with existing elastic-scattering data for 4He energies between 100 and 400 MeV.
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I. INTRODUCTION

The interaction between colliding nuclei constitutes a sig-
nificant input in the modeling of nuclear reactions [1]. Given
its complicated nature, the nuclear part of that interaction has
typically been described by fitting parameters of phenomeno-
logical potentials, which rely on the existence of experimental
data. Thus, they are accurate but lack predictive power. Re-
cently, with the development of precise nucleon-nucleon (NN)
interactions, efforts have been made to derive such reaction
potentials from first principles. For example, in Refs. [2–5],
nucleon-nucleus optical potentials have been derived using
chiral effective field theory (EFT) interactions as input.

For modern nuclear forces, chiral EFT has become
the standard method for developing interactions rooted in
the symmetries of quantum chromodynamics (see, e.g.,
Refs. [6–8] for reviews). Based on a power counting scheme,
NN interactions can be expressed as an expansion that starts
at leading order (LO), followed by contributions at next-
to-leading order (NLO) and next-to-next-to leading order
(N2LO), etc., which provides a systematic improvement of the
description of observables.

In this work, we concentrate on the derivation of
nucleus-nucleus potentials through the application of the
double-folding model. This technique constitutes a first-order
approximation to optical potentials derived from Feshbach’s
reaction theory [1]. In this formalism, it is possible to de-
termine nucleus-nucleus interactions using more fundamental
inputs: realistic nuclear densities and microscopic NN inter-
actions. Interesting results have been obtained in such a way
to determine the real part of the optical potentials [9,10],
or the real and imaginary parts using a G-matrix approach
[11–13]. In our previous studies [14,15], we have explored the
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possibility to describe the interaction between two colliding
nuclei through the double folding of a NN interaction devel-
oped within a chiral EFT framework.

In Refs. [14,15], we have studied the elastic scattering
and low-energy fusion reactions of three systems: 12C - 12C,
16O - 16O, and 12C - 16O. To this end, we have computed op-
tical potentials using the double-folding method with local
chiral EFT potentials derived as in Refs. [16,17]. We have
used these NN interactions regulated in coordinate space with
cutoffs R0 = 1.2, 1.4, and 1.6 fm [14]. We have adopted
two-parameter Fermi parametrizations [9] or realistic density
profiles from electron scattering [18] in the folding procedure.
The choice of realistic densities gives significant improve-
ment, leading to good agreement with existing data for a
variety of collision observables.

Elastic-scattering calculations are strongly sensitive to the
choice of the imaginary part of the potential. To simulate
this absorptive part, we have explored two possibilities: the
first one is a zeroth-order approximation setting the imag-
inary part proportional to the real double-folding potential,
as suggested in Refs. [10,19]. The second possibility is us-
ing Kramers-Kronig relations, better known in our field as
dispersion relations, which link the real and imaginary parts
of the interaction [20,21]. Although the former way provides
acceptable results, it relies on a free parameter. On the con-
trary, the latter approach provides an efficient constraint on the
imaginary term of the nucleus-nucleus interactions, leading to
much better agreement with the data without involving any
free parameter. It leads to very good agreement with elastic-
scattering data at several energies for the collision of closed
and nonclosed shell nuclei [15].

To further test the validity of our approach, in this work
we analyze elastic scattering involving the light nucleus 4He,
which, due to its zero spin-isospin nature and large binding
energy, plays a key role in nuclear reactions as well as in
nuclear astrophysics [22–24]. To this end, we start this study
by analyzing the symmetric 4He - 4He collision, which is a
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relatively simple system from which we can draw conclusions
on the interaction. We then extend our study towards much
heavier targets, up to 4He - 120Sn. We have selected exper-
imental data at intermediate energies to explore collisions
involving nuclei for which we have reliable density profiles.
Accordingly, we show results for the elastic-scattering of six
different systems: 4He - 4He, 4He - 12C, 4He - 16O, 4He - 40Ca,
4He - 48Ca, and 4He - 120Sn and compare our results with ex-
perimental data [25–34]. In all cases, we test the sensitivity
of elastic-scattering cross sections to the R0 cutoff of the NN
interaction, the nuclear density, as well as the impact of the
description of the imaginary part.

This paper is organized as follows. In Sec. II we give a brief
overview of the formalism of the double-folding technique
and the ways of building the imaginary part of the optical po-
tential. In Sec. III we present results for the 4He - 4He elastic
scattering. We follow in Sec. IV with an analysis of results for
heavier targets: 4He - 12C, 4He - 16O, 4He - 40Ca, 4He - 48Ca,
and 4He - 120Sn. Finally, we summarize and give an outlook
in Sec. V.

II. OPTICAL POTENTIALS

A. Real part: Double-folding formalism

The real part of the potential simulating the interaction
between two nuclei can be obtained through a double-folding
procedure [1,35]. In this formalism, the nuclear part of the
potential between nucleus 1—of atomic and mass numbers Z1

and A1—and nucleus 2—of atomic and mass numbers Z2 and
A2—can be constructed from a NN interaction v by folding
it over the nucleonic densities (ρ1 and ρ2, respectively). For
this, we follow the formalism of Refs. [11,14]. The resulting
antisymmetrized potential VF is the sum of a direct (D) and
an exchange (Ex) contributions: VF = VD + VEx. The direct
part is the average of the NN interaction over both nucleonic
densities and reads

VD(r) =
∑

i, j=n,p

∫∫
ρ i

1(r1) vi j (s) ρ
j
2 (r2) d3r1d3r2, (1)

where r is the relative coordinate between the centers of mass
of the nuclei, r1 and r2 are the inner coordinates of nucleus 1
and 2, respectively; s = r − r1 + r2 is the relative coordinate
between any given pair of points in the projectile and target,
and ρ i

1,2 (with i = n, p) are the neutron and proton density
distributions.

The exchange part of the potential accounts for the fact
that, being identical, the nucleons of the projectile and the
target cannot be distinguished from one another:

VEx(r, Ec.m.) =
∑

i, j=n,p

∫∫
ρ i

1(r1, r1 + s) v
i j
Ex(s)

× ρ
j
2 (r2, r2 − s) exp

[
ik(r) · s
μ/mN

]
d3r1d3r2, (2)

where μ is the reduced mass of the colliding system, vEx =
−P12v is the exchange contribution from the NN potential,
and the integral runs over the density matrices ρ i

1,2(r, r ± s)
of the nuclei.

This expression leads to nonlocal terms in VEx. Nev-
ertheless, the final potential can be written in local form
approximating the density matrices entering in Eq. (2) with
the density matrix expansion (DME) restricted to its lead-
ing term [36,37]. As a consequence of this localization, in
this channel we obtain the additional phase that renders the
double-folding potential dependent on the energy Ec.m. in
the center-of-mass reference frame. The momentum for the
nucleus-nucleus relative motion k is related to Ec.m., the
nuclear part of the double-folding potential, and the double-
folding Coulomb potential VCoul through

k2(r) = 2μ

h̄2 [Ec.m. − VF(r, Ec.m.) − VCoul(r)]. (3)

Due to the dependence of k on VF, VEx has to be determined
self-consistently.

To describe the nuclear density profiles, we use densities
inferred from precise electron-scattering measurements [18],
and from state-of-the-art nuclear-structure calculations, such
as quantum Monte Carlo (QMC) for 4He [38] or relativistic
mean field (RMF) for heavier nuclei [39].

For the NN interaction v, we consider the potentials de-
veloped within chiral EFT in Ref. [14], since they give the
advantage to work in coordinate space. These potentials are
regulated with cutoffs R0 = 1.2 and 1.6 fm, and are based
on the formalism developed in Refs. [16,17]. We will show
only results at N2LO, which is the highest order in the chiral
expansion in which these potentials are available. We include
only two-body forces, leaving the analysis of the impact of
three-body interactions for a later study.

B. Imaginary part

Between composite projectiles, a simple way to account for
excitation and other inelastic processes is to consider complex
interactions, known as optical potentials [40]. A general opti-
cal potential can be written as a sum of a real term independent
of the energy, and a real and an imaginary terms dependent on
the energy:

UF (r, Ec.m.) = VD(r) + VEx(r, Ec.m.) + iW (r, Ec.m.). (4)

The resulting double-folding potential sum of Eqs. (1) and
(2) is purely real. A simple way to determine the imaginary
part W is to assume it proportional to the real double-folding
potential [10,19],

W = NW VF , (5)

where NW is a constant, which we take in the range 0.6–0.8
[10,14]. Alternatively, we find a much better agreement with
data when the Kramers-Kronig relations [20,41,42] are used
to construct W from VF [15]. Writing the local complex optical
potential U between two nuclei as Eq. (4), its imaginary part
can be calculated through

W (r, Ec.m.) = − 1

π
P

∫ +∞

−∞

VEx(r, E )

E − Ec.m.
dE , (6)

where P represents the principal value integral.
These relations are the application of the Sokhotski-

Plemelj theorem assuming that the function U is analytical,
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holomorphic, and square integrable in the upper half of the
complex plane. The application of the link between real and
imaginary parts of a function was born in the field of op-
tics [41,42], and the idea was adapted to several physical
problems, including nuclear reactions [43–45]. The initial
derivation of the Kramers-Kronig relations was obtained for
time-dependent functions. Interactions that include levels be-
yond Hartree-Fock give energy contributions that correspond
to a time-dependence of the wave function. However, it has
been proven to hold also for spatial variables [46]. In our
case, the energy-dependence of our optical potential arises
from spatial nonlocality, since it is a consequence of the
antisymmetrization of particles. In this sense, our applica-
tion of the Kramers-Kronig relations is not fully equivalent
to the dispersion relations derived by Feshbach [43], but it
is mathematically valid and presents a first parameter-free
derivation of the optical potential. Furthermore, at energies
above the Coulomb barrier, the imaginary part has important
contributions from the energy dependence that arises from the
exchange term [45], and we expect this approach to give a
good first-order contribution to the imaginary part.

III. 4He - 4He ELASTIC SCATTERING

A. 4He - 4He potential

To start this study, we analyze the elastic scattering of
the symmetric system 4He - 4He at two laboratory energies:
198.8 and 280 MeV, which correspond to the experimental
conditions of Refs. [25–27].

Since 4He is a light and stable nucleus with an equal
number of protons and neutrons, we make the approximation
ρ p = ρn. To describe the proton density, we consider three
possibilities: a charge density obtained through electron scat-
tering and parametrized as a sum of Gaussians in Ref. [18]
(denoted as SGch); the corresponding nucleonic density, ob-
tained through the numerical inverse Fourier transform of
the Fourier transformed SGch divided by the nucleonic form
factor [47,48] (named SGp); and finally, we also use a proton
density profile computed within the quantum Monte Carlo
framework (QMC) with two- and three-body local chiral in-
teractions at N2LO with cutoff R0 = 1.2 fm [17,38]. The
two-body part of this interaction is the same as the one we use
for the calculation of the nucleus-nucleus potentials. These
density profiles can be seen in Fig. 1: SGch in red, SGp in blue,
and QMC in green. The SGp and QMC density profiles have
a similar shape up to r ≈ 3 fm, while SGch has a more diffuse
behavior: a density lower inside the nucleus, and higher at
its surface (in the region 2 fm � r � 5 fm). The unrealistic
behavior of SGch at large distance is due to the nature of its
parametrization with Gaussian functions.

Using the Kramers-Kronig relations to obtain the imag-
inary part of the 4He - 4He potential, we have observed, as
in Ref. [15], that the exchange term (2) shows the same r
dependence at all energies for all the different NN interactions
and densities considered. Accordingly, we can write in this
case

VEx(r, E ) = fEx(r)V 0
Ex(E ), (7)

QMC
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FIG. 1. Proton density profiles for 4He: the sum-of-Gaussians
charge density derived from electron scattering [18] (SGch), the cor-
responding proton particle density (SGp), and the density calculated
using QMC with local N2LO potentials [38].

and the imaginary part can be calculated as

W (r, Ec.m.) = − fEx(r)

π
P

∫
dE

V 0
Ex(E )

E − Ec.m.
. (8)

The advantage of this expression compared to Eq. (6) is that
it suffices to compute the value of the potentials at different
energies at one given r, that we can choose arbitrarily, to
obtain the energy dependence and perform the integration (6).
This integral requires the depth of VEx at negative energies,
that we set as V 0

Ex(E < 0) = 0. Note that we have tested that
setting it to the value of V 0

Ex(E = 0) instead does not change
the results at the energy range of interest in this study.

B. Elastic-scattering cross sections

Figure 2 shows the results for elastic-scattering cross sec-
tions at Eα = 198.8 and 280 MeV [25–27]. The color code
matches that of Fig. 1 for the different density profiles: SGch

in red, SGp in blue, and QMC in green. To illustrate the impact
of the NN cutoff, we show the blue bands, which reflect the
R0 variation between 1.2 and 1.6 fm for the SGp density.
For all densities, the solid lines depict the results obtained
with Kramers-Kronig relations. The blue and green curves are
close to each other, indicating that the double-folding process
probes the densities up to r � 3 fm, since the SGp and QMC
profiles in Fig. 2 have different tails but lead to similar cross
sections. The cross sections obtained with SGch, which is the
most diffuse density, drop faster with the angle and do not
reproduce data as well as the other two, even though this is
also a sensible density choice.

To compare these results with the cruder approxima-
tion [Eq. (5)], we show with dashed lines the results
obtained with NW = 0.6, which is the value recommended in
Ref. [10]. These results confirm our previous observations that
Kramers-Kronig relations give better reproduction of the data,
especially at larger angles [15].

For both energies, the blue band gives very good agreement
with experiment and also with the phenomenological opti-
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FIG. 2. Elastic scattering cross sections for 4He - 4He at Eα =
198.8 and 280 MeV. The imaginary part is obtained through
Kramers-Kronig relations, Eq. (6), (solid lines) or considered to be
W = 0.6VF , Eq. (5), (dashed lines). For R0 = 1.2 fm, results with
SGch, SGp, and QMC are shown in red (lower lines), blue (upper
lines/bands), and green (middle lines), respectively. For the SGp, the
blue band corresponds to a change in R0 from 1.2 fm to 1.6 fm. POP
from Refs. [25,27] are shown for comparison as black dotted lines.
Data from Refs. [25–27].

cal potentials (POP) from Refs. [25,27] (black dotted lines).
These potentials consist of two Woods-Saxon parametriza-
tions with a total of 6 fitted parameters. The increase in the
width of the bands reflects the fact that at large angles the
short-range NN physics becomes more relevant. Let us stress
that our results using Kramers-Kronig relations to determine
the imaginary potentials are obtained without any fitting pa-
rameter.

IV. 4He ELASTIC SCATTERING OFF HEAVIER TARGETS

A. Kramers-Kronig relations in asymmetric cases

We consider now the elastic scattering of 4He with five
different targets: 12C, 16O, 40Ca, 48Ca, and 120Sn for which we
have access to precise nucleonic densities [18,39] and experi-
mental data sets to which to compare [28–34]. Interestingly,
this time the r dependence of VEx varies with the collision
energy. This is different from what has been seen in Sec. III
and in our previous study [15], probably due to the significant
asymmetry between the projectile and the target. Therefore,
the energy dependence affects both the depth of the potential
and its radial shape. To apply the Kramers-Kronig relations,
we need to use Eq. (6) and perform the energy integration of
the exchange potential at each radial point for all energies.
The resulting imaginary part thus exhibits a radial dependence
different from that of VEx.

B. Scattering on 40Ca

Let us first present and detail the results for 4He - 40Ca
because it best illustrates the issues at hand in these calcu-
lations. In this section, we extract conclusions that are valid
also for the other systems we will discuss in Sec. IV C. As in
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FIG. 3. 40Ca density profiles: charge density obtained from elec-
tron scattering [18] (SGch, dashed line); the corresponding proton
density (SGp, dashed-dotted line), and RMF calculation for protons
(solid line) and neutrons (dotted line) [39].

Sec. III, we consider SGch, SGp, and QMC as density profiles
for 4He. For 40Ca, we take the sum-of-Gaussians parametriza-
tion of the charge density inferred from the elastic scattering
of electrons from Ref. [18] (SGch), and the corresponding
nucleonic density obtained through the Fourier transform of
SGch divided by the nucleonic form factor (SGp). In these two
cases, we assume the approximation ρ p = ρn. We consider
also a density profile obtained with RMF calculations [39],
which provides estimates for ρ p and ρn.

Figure 3 shows the density profiles for 40Ca. As it was the
case for 4He, SGch (dashed line) gives the most diffuse density
profile up to r � 7 fm where the Gaussian parametrization
leads to an unrealistic drop. Once again, the SGp and RMF
profiles (dashed-dotted and solid lines, respectively) show
similar behavior between r ≈ 1 fm and r ≈ 6 fm for the
proton distribution. We show the RMF neutron density as the
dotted line. It can be seen that these proton and neutron densi-
ties (solid and dotted lines) are close to each other, justifying
the approximation assumed for SGch and SGp.

Figure 4 shows elastic-scattering cross sections normalized
to Rutherford for 4He - 40Ca at Eα = 240 MeV. These results
illustrate the sensitivity of our calculations to the choice of the
density of both the projectile and the target. In this figure and
in the following ones, the labels design the density profiles
chosen for 4He and the target, in that order. For example,
“SGch + RMF” means ρ4He = ρSGch and ρ40Ca = ρRMF. All
these results are calculated with the NN cutoff R0 = 1.2 fm,
and the imaginary part is obtained through Kramers-Kronig
relations. Cross sections obtained with ρ4He described as SGch,
SGp or QMC are shown as red, blue, and green lines, respec-
tively (following the color code of Fig. 1). Results obtained
with ρ40Ca SGch, SGp, or RMF are shown, respectively, with
dashed, dashed-dotted, and solid lines (following the line
types in Fig. 3). From this figure, we can conclude that the
density of 4He has the most significant impact on the results,
since the curves are grouped by colors. As it was seen in
the case of 4He - 4He, the results obtained with SGch (most
diffuse density) are the most forward focused, even in the
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FIG. 4. Elastic-scattering cross sections (normalized to Ruther-
ford) for 4He - 40Ca at Eα = 240 MeV. The potentials are calculated
with R0 = 1.2 fm, and the imaginary part is obtained through
Kramers-Kronig relations. Results obtained with ρ40Ca SGch, SGp or
RMF are shown, respectively, with dashed, dashed-dotted, and solid
lines. For each case, results obtained with ρ4He described as SGch,
SGp, or QMC are shown as red (lower lines), blue (upper lines),
and green (middle lines), respectively. Experimental data taken from
Ref. [32].

first minimum, while results with QMC are shifted towards
larger angles, starting from the second minimum. SGp gives
cross sections that are in phase and show the best agreement
with experimental data [32]. Nevertheless, it is important to
note that using this NN interaction no density choice enables
us to correctly reproduce the second minimum in the data.
In our calculations, we found that using NW to describe the
imaginary part also leads to results that are dominated by ρ4He
and show the same kind of behavior seen in Fig. 4.

As it was the case in 4He - 4He scattering, we find that
Kramers-Kronig relations reproduce data at large angles. We
want to remind the reader that in the calculation of these cross
sections there is no parameter fitting. Using Kramers-Kronig
relations with SGp for 4He overestimates the magnitude of
the data between 8 ◦ and 16 ◦, but gives the right magnitude
at large angles and lead to the right oscillatory pattern when
compared to data.

Note that we have explored a fourth density profile for 40Ca
obtained through Coupled Cluster calculations using N2LOsat

potentials [49]. These calculations give a similar density pro-
file to the RMF density around the surface area, and lead to
practically indistinguishable elastic-scattering cross sections.
This shows that such an observable is not sensitive enough to
distinguish the differences between precise nuclear-structure
calculations of the density.
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FIG. 5. Elastic scattering cross sections (normalized to Rutherford) as a function of the momentum transfer q for 4He - 12C, 4He - 16O,
4He - 40Ca, and 4He - 48Ca at (a) Eα = 104 and (b) 240 MeV. The bands show the R0 dependence. The imaginary part was obtained through
Kramers-Kronig relations (solid lines) or considered to be W = 0.6 VF (dashed lines). The chosen densities correspond to the combination that
best reproduces experimental data taken from [28,29], and [30–33]. For comparison, results with POP [28,32] are shown as black dotted lines.
Cross sections obtained with the GOP of Ref. [50] are shown as red dash-dotted lines.
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C. Results for heavier targets

1. Medium-mass nuclei

We have observed that the behavior seen in Fig. 4 is general
for elastic scattering of the form 4He(X, X ) 4He, where X
denotes a target heavier than 4He. Figure 5 shows results for
the cross section as a function of the momentum transfer q, for
4He impinging on 12C, 16O, 40Ca, and 48Ca at (a) Eα = 104
and (b) 240 MeV. All the shown cross sections are calculated
choosing SGp to describe the 4He density, because, as illus-
trated in Figs. 2 and 4, it gives better results in general. In the
case of the Z = N targets, we also chose SGp [18], while for
48Ca the density is taken to be that from RMF calculations
[39]. The shaded bands show the R0 1.2–1.6 fm dependence
of the cross sections obtained using Kramers-Kronig relations
to constrain the imaginary part of the potentials. To further
illustrate the validity of our approach, the dashed lines show
the cross sections calculated with NW = 0.6. We also show re-
sults obtained with α-nucleus global optical potentials (GOP)
from Ref. [50] (red dash-dotted lines), which have not been
fitted to the data sets that are analyzed in this work. Finally,
for 12C and 16O at 104 MeV, the black dotted lines depict the
cross sections calculated with POPs from Ref. [28], which are
modeled as “wine-bottle” potentials. These phenomenological
potentials use six parameters and are fitted to the correspond-
ing data sets.

The agreement with the data is generally good for all
targets. At small angles, Kramers-Kronig relations and the
choice NW = 0.6 give comparably good results. However,
Kramers-Kronig relations are necessary to reproduce the
large-angle behavior of the data, since the results obtained
with W = 0.6VF deviate from experiment for large q. The
sensitivity to R0 is large for light targets and decreases with
the target mass, and, in general, experimental data lies within
that uncertainty band. At 104 MeV, our results for 12C and
16O suffer in comparison to those obtained with POP, which
were fitted for each system and energy. Compared to the
GOP of Ref. [50], our agreement with data is as good or
even better in some cases at both energies and for all tar-
gets. We want to point out that for 4He - 40Ca at 240 MeV,
the cross section corresponding to R0 = 1.6 fm (lower line)
reproduces the second minimum without increasing the un-
certainty of our results in the first minimum, which is an
indication of the sensitivity of our problem to short-range
physics. It is important to note that we show the results for
SGp + RMF for 48Ca at both energies for consistency, how-
ever the best results at Eα = 104 MeV are obtained with
SGch + RMF. Since this is an exception to what we have
observed in the other cases, we take this to be an accidental
result.

2. 120Sn

Another application of optical potentials generated by
double folding can be found in Fig. 6, that displays cross
sections for 4He - 120Sn elastic scattering at Eα = 386 MeV
[34]. The imaginary part is obtained through Kramers-Kronig
relations (solid lines) with NW = 0.6 (dashed lines). As for
the other targets, we observe a significant sensitivity of our
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FIG. 6. Elastic-scattering cross sections (normalized to Ruther-
ford) as a function of the center-of-mass angle for 4He - 120Sn at
Eα = 386 MeV using different 4He densities for R0 = 1.2 fm. The
imaginary part is obtained through Kramers-Kronig relations (solid
lines) or considered to be W = 0.6VF (dashed lines). For each case,
results obtained with ρ4He described as SGch, SGp, or QMC are
shown as red (middle lines), blue (upper lines), and green (lower
lines), respectively. Experimental data from Ref. [34].

calculations to the choice of the 4He density, mostly at large
angles. Once again, SGch (red lines) leads to cross sections
that are shifted towards forward angle, SGp (blue lines) pro-
duces a cross section mostly in phase with the experimental
data [34], and QMC (green lines) is slightly shifted towards
larger angles starting at around 10◦. However, the magni-
tude of the cross section is closer to experimental data using
the QMC density, and this choice provides the best over-
all description of the experimental cross section. For this
system, we have also tested two more 120Sn densities: a
two-parameter Fermi expression [9], and a three-parameter
Gaussian [18] profile obtained from electron scattering. We
only depict results with RMF densities [39] for 120Sn, since
our observations using the other profiles have shown that
the choice of this density has little influence on the cross
sections.

Figure 7 explores the R0 dependence of the cross sections
using the density combination QMC + RMF. The green band
gives the R0 = 1.2-1.6 fm sensitivity when using Kramers-
Kronig relations to calculate the imaginary part (dashed lines
show this sensitivity using NW = 0.6). At large angles, the os-
cillatory pattern is better reproduced by the Kramers-Kronig
relations, even though the results are similar in magnitude.
Note that, in this case, setting NW = 0.8 (as explored in
our previous works [14,15]) would give a better descrip-
tion of the data. This need for more absorption is probably
due to the lower excitation energy of 120Sn, as well as
its higher density of possible excited states compared to
the other targets considered here. In order to better de-
scribe this reaction, one should account for the spectrum
of 120Sn, that would lead to a new source of energy de-
pendence which describes channels that our model does not
contemplate.
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FIG. 7. Same as Fig. 6 exploring the R0 dependence for QMC +
RMF.

V. CONCLUSIONS AND OUTLOOK

We have presented the derivation of α-target optical po-
tentials through the double folding of local chiral EFT NN
potentials [16,17] over realistic nucleonic densities. To calcu-
late their imaginary part, a zeroth-order solution is to assume
it to be proportional to the real double-folding potential [19],
which gives an interaction that depends on the proportionality
parameter NW . The approach we have mostly explored in this
work is to use the Kramers-Kronig relations, which gives us
a first derivation of potentials generated from first principles
without any fitting parameter. Even though we do not include
energy contributions from coupling to excited states, at suffi-
ciently high energy this approximation is justified, and leads
to cross sections that are in fair agreement with experimen-
tal data. Within this framework, we were able to reproduce
elastic-scattering data for the collision on 4He, 12C, 16O, 40Ca,
48Ca, and 120Sn between 100 and 400 MeV.

Kramers-Kronig relations lead to a good prediction of data
at large angles. This is true for all targets, but especially
clear for 12C, and less good for 120Sn, target for which our
simplified approach might not be sufficient. Contrary to what
we have observed in Ref. [15], for asymmetric scattering,
the radial shape of the imaginary part is no longer iden-
tical to that of the exchange part of the real potential. In
these cases, to apply the Kramers-Kronig relations, the in-
tegration over the energy must be performed for each radial
point.

We have seen that there are two major inputs for these
calculations: the α density and the NN interaction. Both of
them affect significantly the angular dependence of the cross

section. We have also observed that the impact of the target
density is less significant for heavier nuclei.

As in our previous work, we find that the use of realis-
tic density profiles combined with Kramers-Kronig relations
is a necessary first step towards a better description of the
imaginary part of nucleus-nucleus potentials, this stays valid
for nonsymmetric systems and heavy nuclei. There remain
several paths for improvement, at the level of both the many-
body folding method and the input interactions. First, it would
be interesting to study the impact of going beyond leading
order in the DME used in Eq. (2). It is also necessary to
determine the impact of a calculation beyond Hartree-Fock
and the nonlocal contributions that would arise (see, e.g.,
Refs. [40,43]). Accounting for the excited spectrum of the
colliding nuclei would also refine the description of the imag-
inary part of the optical potential through the application of
dispersion relations to these energy-dependent terms. This
would further improve our potentials and their description of
the scattering processes, especially at low collision energies
[45]. Finally, the role of three-nucleon interactions needs to
be investigated in this approach, as they also enter at N2LO.
We have observed in preliminary calculations that the contri-
bution to the nucleus-nucleus potential 16O - 16O arising from
three-nucleon interaction is very small compared to the two-
body contributions discussed here [51], but the role of these
interactions should be investigated in different systems.

Knowing that there is no fitting or scaling parameter in our
framework, we can conclude that there is excellent agreement
between our calculations of elastic-scattering cross sections
and experimental data. These results hint strongly towards
the interest of studying the impact of using density profiles
based also on chiral EFT interactions to analyze the results
within a fully consistent model that would bridge reactions
and structure.
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