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The present paper proposes an improved version of the α-nucleus optical model potential (α-OMP), in
which the real part of the potential is determined by the double-folding calculation using the density-dependent
CDM3Y1 interaction plus a repulsive potential. The imaginary part of the α-OMP is treated by a Woods-Saxon
form with energy-dependent depth, while its real part is corrected by including the contribution of the dispersion
relation derived from the strong variation of the potential at energies in the vicinity of the Coulomb barrier. The
proposed potential is validated by calculating the (α, n) and (α, γ ) cross sections on different target nuclei and
the obtained results are compared with those predicted by the recent α-OMP suggested by Avrigeanu, as well
as the available experimental data. The impacts of the energy-dependent imaginary part and the real dispersive
term on the α-induced cross sections are also investigated. The results obtained show that the proposed α-OMP
together with that of Avrigeanu describe reasonably well the experimental cross sections of all (α, n) reactions
being considered. In addition, the imaginary part of the proposed potential has a strong energy-dependent effect
on the α-induced cross section in the energy region below the Coulomb barrier, in particular for radiative
α-capture reactions. Two potentials also describe well the cross sections of (α, γ ) reactions after rescaling the
radiative γ width. This leads to our conclusion that the present α-OMP can provide precise α widths for the study
of reactions relevant to the production of p nuclei, and therefore more intensive theoretical research on the
radiative strength functions is required.
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I. INTRODUCTION

The origin of nuclei in the solar system has been exten-
sively discussed over several decades since the foundations
of “Synthesis of the Elements in Stars” were first presented
in Ref. [1]. Isotopes located beyond the iron peak can be
produced, in principle, by the slow (s) and rapid (r) neutron-
capture processes [2]. The s process was found to take place
in asymptotic giant branch (AGB) stars [3], whereas binary
neutron star mergers [4] and magnetorotationally driven su-
pernova would be considered as candidates for the r process
[5]. However, a small number of proton-rich nuclei (p nuclei)
observed in nature cannot be formed in neutron-capture nu-
cleosynthesis. Their abundances are supposed to be created
during core-collapse and thermonuclear supernovae [6] via
photodisintegrations in the γ process, i.e., by (γ , n), (γ , p),
and (γ , α) reactions on existing heavy s and r seeds. Despite
the tiny amount of p nuclei, their underproduced scenario has
not being fully interpreted [7–9].

In fact, explicit explanations of the observed underpro-
ductions have yet to be suggested due to the underlying
supernova dynamics and the nuclear input parameters, i.e., the
astrophysical reaction rates. Narrowing uncertainties in nu-
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clear data is thereby particularly important for a better
understanding of the origin of p-nuclei nucleosynthesis. In
addition, the experimental measurements of nuclear reaction
rates, which are important inputs in modeling thermonu-
clear burning, have been extensively performed using inverse
kinematics [10,11]. In the case of α-induced reactions, the
results obtained using different evaluated nuclear libraries
such as TALYS [12], NON-SMOKER [13], and SMARAGD [14]
have generally exhibited large deviations [15–31]. In partic-
ular, the experimental cross sections of (α, γ ) reactions were
found to be significantly lower than the theoretical predictions
[17,19,21,24,29–31]. This disagreement appears more drasti-
cally at energies below the Coulomb barrier, where the strong
energy dependence of the cross sections is poorly described
by the theoretical models. Obviously, the model calculations
need to be intensively investigated and their predictive power
must be tested using all the available measured data in the
relevant mass and energy ranges. Moreover, it is worth not-
ing that one of the key ingredients of the Hauser-Feshbach
(HF) statistical model employed in the nuclear libraries is
the averaged transmission factors for a light particle to be
absorbed or emitted by a compound nucleus (CN). These
coefficients are often obtained by solving the Schrödinger
equation based on the corresponding particle-nucleus opti-
cal potential using the R-matrix [32] or Numerov method
[33]. Therefore, both theoretical and experimental studies
of the α-nucleus optical model potential (α-OMP) have be-
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come some of the topical issues in nuclear astrophysics
[13,24,25,34–40].

Several global and regional α-OMPs have been pro-
posed so far. In the pioneering work by McFadden and
Satchler [36], the α-OMP was constructed by using a four-
parameter Woods-Saxon (WS) potential, whose parameters
were obtained by fitting to the elastic scattering data from a
large number of target nuclei at the bombarding energy of
24.7 MeV. This WS type potential with mass- and energy-
independent parameters was later used as the default potential
in the NON-SMOKER code [13]. Likewise, Demetriou et al. [37]
introduced a semimicroscopic α-OMP, which consisted of a
real part generated from a double-folding model (DFM) [41]
together with an imaginary part represented by the WS form
[42]. In a later work, Kumar et al. [43] proposed a so-called
global α-OMP, which was derived from a combination of
spherical proton and neutron OMPs in Ref. [44]. Recently,
the α-OMP has been significantly improved based on an in-
tensive analysis of high-precision α-particle-induced-reaction
data for a large number of target nuclei 45 � A � 209 below
the Coulomb barrier [38,39]. This α-OMP, which consists of
nine energy-dependent parameters for both real and imaginary
parts, has been implemented in the TALYS-1.9 reaction code as
one of the default inputs [12]. Although both the aforemen-
tioned α-OMPs have described rather well the data in a certain
region of target masses and incident energies, many extrap-
olated parameters have been used, which may lead to some
inappropriate descriptions of astrophysical reaction rates, in
particular for those in the experimentally inaccessible region.
For instance, it has been reported in the recent evaluation of
the aforementioned α-OMPs, through reactions involving the
α particle on the 115In nucleus at low energies, that further
studies of α-OMPs are required to provide a better description
for both the elastic scattering and reaction data [16].

The goal of the present work is to develop an α-OMP
similar to that proposed in Ref. [37], namely using a real
part derived from by the DFM and an imaginary part given in
the form of a phenomenological WS potential, but with some
additional improvements. First, the real part of the potential is
treated based on the density-dependent CDM3Y1 interaction
plus the repulsive potential (CDM3Y1+Repulsion) given in
our earlier work [45]. This inclusion of the repulsive part
is expected to be important for the interaction between the
α particle and the targets at the short distances, i.e., close
to the center [46]. Second, the imaginary part contains the
energy-dependent depth taken from Ref. [47]. In addition,
due to the rapid variations in both real and imaginary parts
for energies in the vicinity of the Coulomb barrier reported
in Refs. [48,49], an energy-dependent and real dispersive
contribution such as that proposed in Refs. [50,51] has been
added to the present α-OMP. The numerical tests of our
α-OMP are carried out for two (α, γ ) and (α, n) reactions
on many target nuclei, including 74Ge, 90,92Zr, 107Ag, 112Sn,
113,115In, 121,123Sb, 127I, 130,132Ba, 151Eu, 162,166Er, 168Yb,
169Tm, 187Re, and 191,193Ir. Furthermore, although the (α, n)
reactions are not directly relevant to the astrophysical produc-
tion of p nuclei, they will be discussed in the present work as
they may provide supplementary evaluations for the proposed
α-OMP.

II. THE α-OMP BASED ON THE DOUBLE-FOLDING
CDM3Y1+REPULSION

A local and complex OMP U (r, E ) between two colliding
nuclei can be written via the Feshbach formalism [52]

U (r, E ) = VDF(r, E ) + �V (r, E ) + iW (r, E ), (1)

where the real part of VDF(r, E ) is obtained from the double-
folding (DF) method. This VDF(r, E ) consists of the attractive
nuclear potential VN(r), the repulsive Coulomb potential
VC(r), and the additional repulsive potential Vrep.(r) [45],
namely

VDF(r, E ) = VN(r) + VC(r) + Vrep.(r, E ). (2)

The quantity �V (r, E ) in Eq. (1) denotes the dispersive
contribution to the α-OMP, which can be calculated via
the following dispersive integral using the imaginary term
W (r, E ) [50]:

�V (r, E ) = P
π

∫ ∞

0

W (r, E ′)
E ′ − E

dE ′, (3)

where P stands for the principle value. The imaginary term
W (r, E ) is written, as usual, in terms of the phenomenological
WS form,

W (r, E ) = − W (E )

1 + exp
( r−RW

aW

) , (4)

where RW = rW (A1/3
p + A1/3

t ) with rW = 1 and Ap and At be-
ing the mass numbers of the projectile (p) and target (t) nuclei,
respectively. As reported by the measured elastic α-scattering
data [24,53], the energy-dependent depth W (E ) was found to
decrease with increasing energy and it can be approximated
by the empirical Fermi-type formula, similar to that presented
in Ref. [47]:

W (E ) = 17 MeV

1 + exp
( 0.9EB−E

aE

) , (5)

where the relevance of 0.9EB at energies below which the
potential parameters must be significantly modified was dis-
cussed in Ref. [39]. Moreover, a smaller depth of 17 MeV is
employed in the present work instead of 25 MeV as in Eq. (9)
of Ref. [47]. The use of this smaller depth is understandable
since the real part of the present α-OMP, which is no longer
a WS-type function, is modified by using the double-folding
CDM3Y1 plus repulsive interaction. In Eq. (5), E and EB

stand for the center-of-mass energy of the projectile and the
Coulomb barrier height taken from the shape of the DF poten-
tial, respectively, whereas the value of parameter aE is chosen
to be 3 for the α-induced reactions within the mass range
considered in the present paper. The diffuseness parameter aW

in Eq. (4) is estimated based on the following relation [54]:

EB ≈ ZpZt e2

rB

(
1 − aW

rB

)
, (6)

where

aW = rB − r2
BEB

ZpZt e2
. (7)
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Here, Zp and Zt denote, respectively, the charge numbers of
the projectile and target, whereas rB stands for the barrier
position. Since rB and EB are determined through the real part
of the α-OMP, the diffuseness parameter aW is also calculated
from the DF calculation instead of being a fitting parameter as
in Ref. [38].

The attractive nuclear (repulsive Coulomb) potential,
VN(C)(r) can be calculated using its general form as [45,55]

VN(r) =
∫

d�r1d�r2ρ
p
A(�r1)F (ρA)vn(s)ρt

A(�r2), (8)

VC(r) =
∫

d�r1d�r2ρ
p
ch.(�r1)vc(s)ρt

ch.(�r2), (9)

where s = |�r1 − �r2 + �r| is the relative distance between
the interacting nucleon pair, whereas ρ

p(t )
A (�r) and ρ

p(t )
ch. (�r)

are the nucleon and charge densities of the projectile (target),
respectively. In the present calculation, we adopt the nuclear
matter (charge) densities of the target and compound nuclei
obtained within the Skyrme Hartree-Fock plus BCS (HFBCS)
method [56], while the corresponding densities of α particle
is given by [57]

ρ
p
A = 0.4229 × exp(−0.7024r2), ρ

p
ch. = ρ

p
A

2
. (10)

The effective nucleon-nucleon potential vn(s) in Eq. (8) is
calculated using the Reid parametrization of the Yukawa in-
teraction (M3Y) [55], while the Coulomb term vc(s) in Eq. (9)
is given by a pointlike proton-proton potential [57], namely

vn(s) = 7999
e−4s

4s
− 2134

e−2.5s

2.5s
− 276δ(s), (11)

vc(s) = e2

4πε0s
, (12)

where δ(s) is the zero-range exchange nuclear interaction.
The function F (ρA) entering in Eq. (8) is a density-dependent
nucleon-nucleon interaction, which has the form [55]

F (ρA) = C{1 + α exp(−βρA) − γ ρA}, (13)

with C, α, β, and γ parameters being taken from Table 2 of
Ref. [55].

The repulsive potential Vrep.(r, E ) in Eq. (2) is computed
based on the zero-range repulsive nucleon-nucleon potential
[45,58],

Vrep.(r, E ) = vrep.(E )
∫

d�r1d�r2ρ
p
rep.(�r1)δ(s)ρt

rep.(�r2), (14)

where ρ
p
rep.(�r1) and ρt

rep.(�r2) are, respectively, the densities
of the projectile and target nuclei written in the Fermi-Dirac
distribution form with the corresponding repulsive diffuseness
parameter arep., namely

ρ p(t )
rep. (r) = ρ

p(t )
0

1 + exp
[ r−Rp(t )

0
arep.

] , (15)

with Rp(t )
0 = 1.07A1/3

p(t ) (fm) and ρ
p(t )
0 being obtained from

the normalization condition for the nuclear matter distri-
butions. The repulsive strength vrep.(E ) in Eq. (14) is the
energy-dependent coefficient, which explicitly depends on the

excitation energy of a compound nucleus determined from
the nuclear temperature or the center-of-mass energy of the
interacting system. This strength is often determined from the
equation of state (EOS) method by assuming that when two
nuclei are completely overlapped, the energy of the system
will gain an amount of �V equal to the total nuclear potential
at the origin (r = 0) [46,58,59], namely

�V = VN (0) + Vrep.(0), (16)

�V ≈ 2Ap[εH (2ρ0, δ) − εC (ρ0, δ)], (17)

where εH (C) denotes the hot (cold) nuclear matter EOS given
by the Thomas-Fermi formula [60], whereas ρ0 = 0.161 fm−3

and δ = (ρn − ρp)/ρ [ρn(p) is the neutron (proton) density and
ρ = ρn + ρp] stand for the saturation density and relative neu-
tron excess, respectively. Numerically, �V can be obtained
by solving a set of two equations εH = εC + E∗ (E∗ is the
excitation energy per nucleon of the compound nucleus) [61]
and K = 18[εC (2ρ0) − εC (ρ0)] (K is the incompressibility of
nuclear matter) [58]. Its final form reads

�V = Ap

9
K + 2ApE∗. (18)

By using Eqs. (17) and (18) and the relation E∗ = E + Q (Q is
the reaction Q value), the energy-dependent repulsive strength
vrep.(E ) is given as

vrep.(E ) = 2Ap(K/18 + E + Q) − VN (0)

Vrep.(0)
. (19)

III. NUMERICAL RESULTS

The numerical tests of the proposed α-OMP are carried
out for the (α, n) and (α, γ ) reactions on several target
nuclei, 74Ge, 90,92Zr, 107Ag, 112Sn, 113,115In, 121,123Sb,
127I, 130,132Ba, 151Eu, 162,166Er, 168Yb, 169Tm, 187Re, and
191,193Ir. The parameters of the α-OMPs used in the present
work for all studied reactions are listed in Table I. As for
the diffuseness parameter of the repulsive potential arep. in
Eq. (15), based on our earlier investigation in Ref. [45], a
fixed value of arep. = 0.35 fm is chosen for all reactions. The
α-OMP in this case consists of six parameters, namely four
parameters of the CDM3Y1 interaction, arep = 0.35 fm, and
the 17 MeV depth of the imaginary potential. These param-
eters are fixed for all investigated reactions, which ensures
the predictive power of the present α-OMP. The obtained α-
OMPs are then used to calculate the transmission coefficients
based on the R-matrix method [32]. The (α, n) and (α, γ )
cross sections on the aforementioned targets are calculated
by implementing the KEWPIE2 code [62]. In the numerical
calculations, we adopt the nuclear level density (NLD) model
proposed by Reisdorf [63] and the γ -ray strength function
(γ -SF) calculated using a simplified version of the modified
Lorentzian model (SMLO) [64]. In addition, the global neu-
tron OMPs proposed by Varner et al. [65] are used to calculate
the neutron widths.

To test the effect of the dispersive term on the proposed
α-OMP, we drop this term, and the potential, in this case,
is denoted by α-OMP-NoDis. Similarly, to test the energy
dependence of the depth of the imaginary part in Eq. (5),
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TABLE I. The parameters of α-OMPs used in the present work
for all studied reactions. r0

B, EB, and K are the Coulomb bar-
rier radius, barrier height, and nuclear matter incompressibility,
respectively.

Reaction r0
B (fm) EB (MeV) K (MeV)

α + 74Ge 8.85 9.70 234.09
α + 90Zr 9.05 11.91 232.42
α + 92Zr 9.12 11.80 232.42
α + 107Ag 8.21 15.10 231.35
α + 112Sn 9.37 14.35 231.86
α + 113In 9.35 14.06 203.12
α + 115In 9.52 13.87 202.55
α + 121Sb 9.60 14.28 205.42
α + 123Sb 9.67 14.18 203.14
α + 127I 9.62 14.80 202.79
α + 130Ba 9.75 15.49 205.29
α + 132Ba 9.77 15.45 203.12
α + 151Eu 10.02 16.96 207.01
α + 162Er 10.17 18.06 214.60
α + 166Er 10.26 17.93 210.04
α + 168Yb 10.26 18.48 213.22
α + 169Tm 10.26 18.17 208.10
α + 187Re 10.41 19.54 196.45
α + 191Ir 10.44 20.03 216.41
α + 192Ir 10.47 19.94 220.12

we set W (E ) = W = 17 MeV and denote the corresponding
potential by α-OMP-Wconst. The validity of the proposed
α-OMP is also tested by making a systematic comparison with
the results obtained within the recent α-OMP proposed by
Avrigeanu (denoted by α-OMP-Avrigeanu) [38] as well as the
experimental data.

Figures 1–4 show the (α, n) cross sections as functions of
either center-of-mass energy Ecm or energy in the laboratory
frame Elab calculated within the α-OMP (solid lines) versus
those obtained within the α-OMP-NoDis (dotted lines), α-
OMP-Wconst (dash-dotted lines), α-OMP-Avrigeanu (dashed
lines), and experimental data (filled squares with error
bars) for different target nuclei 107Ag, 113,115In, 121,123Sb,
127I, 130,132Ba, 151Eu, 162,166Er, 168Yb, 169Tm, 187Re, and
191,193Ir. Overall, the α-OMP describes rather well all the
considered cross-section data. Meanwhile, the cross sections
obtained using the α-OMP-NoDis in the energy region be-
low (above) the Coulomb barrier EB are slightly higher
(lower) than those obtained using the α-OMP, except for the
113In(α, n) 116Sb reaction. For the α-OMP-Wconst, its cross
sections at Ecm(Elab) < EB strongly deviate from the α-OMP
predictions, while they are close to the α-OMP results at
Ecm(Elab) > EB. These results indicate that the imaginary part
of the α-OMP strongly influences the (α, n) cross sections
only in the low-energy region below the Coulomb barrier
where the surface absorption has a significant effect, whereas
the dispersive factor of the potential has a little contribution to
the cross sections at high energies.

To have more intuitive understanding on the influence of
the dispersive correction, we plot in Fig. 5 the real parts of
the α-OMP at several energies below and above the Coulomb
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FIG. 1. The (α, n) cross sections obtained using the α-OMP
(solid lines), α-OMP-NoDis (dotted lines), α-OMP-Wconst (dash-
dotted lines), and α-OMP-Avrigeanu (dashed lines) versus the
experimental data taken from Refs. [16,19,29,66] for 107Ag (a), 113In
(b), 115In (c), and 121Sb (d) target nuclei.

barrier for the α + 74Ge, α + 121Sb, α + 151Eu, and α +
187Re reactions. It is clear to see in this Fig. 5 that the potential
depth is increased with decreasing Ecm(Elab). At Ecm(Elab) <
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FIG. 2. Same as Fig. 1 but for 123Sb (a), 127I (b), 130Ba (c), and
132Ba (d) targets. Experimental data are taken from Refs. [26,66,67].
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FIG. 3. As Fig. 1 but for 151Eu (a), 162Er (b), 166Er
(c), and 168Yb (d) targets. Experimental data are taken from
Refs. [21,22,68,69].

EB, the potential depth significantly differs from that obtained
without dispersion, while two potentials become closer at
Ecm(Elab) > EB. This behavior explains why the cross sec-
tions obtained using the α-OMP-NoDis at Ecm(Elab) in the
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FIG. 4. Same as Fig. 1 but for 169Tm (a), 187Re (b), 191Ir (c), and
193Ir (d) targets. Experimental data are taken from Refs. [17,23,27].

FIG. 5. The real parts of the α-OMPs obtained with (broken
lines) and without (solid lines) dispersive corrections for α + 74Ge
(a), α + 121Sb (b), α + 151Eu (c), and α + 187Re (d) reactions at
several energies (E1–4) below and above the Coulomb barrier (EB).

vicinity of the Coulomb barrier are slightly lower than those
obtained using the α-OMP, and two potentials predict almost
similar cross sections at energies far above the EB as discussed
above. In addition, although the difference between α-OMP
and α-OMP-NoDis is significant at low energies (Fig. 5),
their predictions on the cross sections only slightly differ in
this energy region (Figs. 1–4). This is because the imaginary
term has a strong influence on the absorption properties at
low energies, so the depth of the shallow pockets has weak
accesses to the (α, n) cross sections. As compared to the
predictions of the α-OMP-Avrigeanu, the α-OMP provides a
slight improvement on the cross-section data. The best results
obtained using the present α-OMP are seen for the (α, n)
reactions on 107Ag, 113,115In, 121,123Sb, 127I, 151Eu, 162Er,
169Tm, and 187Re targets. This validates the accuracy of the
presently proposed α-OMP for the relevant (α, n) reactions.

Figures 6–9 depict the (α, γ ) cross sections obtained
within the α-OMP, α-OMP-NoDis, α-OMP-Wconst, and α-
OMP-Avrigeanu for several reactions. The best-fitted cross
sections obtained within some previous analyses [20,66,70]
using the TALYS code as well the results obtained using the
NON-SMOKER code with default parameters [66] are also dis-
played in Figs. 6 and 7. The results presented in these figures
indicate that although different α-OMPs can describe rather
well the cross sections of considered (α, n) reactions, their
predictions on the corresponding radiative α-capture reac-
tions reveal some deviations from the measured data. For
instance, one can see in Fig. 7(d) that the cross sections of
the 121Sb(α, γ ) 124I reaction obtained using the NON-SMOKER

code with default parameters are about 2–4 times higher than
the experimental data [66]. Even the best fitted TALYS calcula-
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FIG. 6. The (α, γ ) cross sections obtained using the α-OMP
(solid lines), α-OMP-NoDis (dotted lines), α-OMP-Wconst (dash-
dotted lines), and α-OMP-Avrigeanu (dashed lines) versus the
experimental data taken from Refs. [19,70] for 74Ge (a), 90Zr (b),
92Zr (c), and 107Ag (d) targets. Some available best fitted cross
sections using the TALYS library are also given for reference. The
scaling factors for the γ widths used in the calculations with the
α-OMP (Gα-OPM) and α-OMP-Avrigeanu (GAvrigeanu) are provided in
each figure.

tions still exhibit some deviations from the measured data at
low energies [see, e.g., Figs. 6(a) and 6(c)]. This observation
implies that while the α width can be described rather well by
different OMPs, the discrepancies between the calculated and
measured cross sections for the (α, γ ) reactions should be due
to the neutron and γ widths. Therefore, in the present work,
the rescaling factors of the γ width, which are, respectively,
denoted by Gα-OPM and GAvrigeanu for the α-OMP and α-OMP-
Avrigeanu potentials, are used to describe the (α, γ ) cross
sections. The best fitted values of Gα-OPM and GAvrigeanu for
all studied reactions are shown in Figs. 6–9.

It is also seen in Figs. 6–9 that, similarly to the (α, n)
reactions, the dispersive factors of the α-OMP have only a
minor effect on the (α, γ ) cross section. However, the effect
of energy-independent depth of the imaginary part at low
energies is stronger for the (α, γ ) reactions than for the (α, n)
ones, namely the (α, γ ) cross sections calculated using the
energy-independent depth overestimate those obtained using
the energy-dependent one as well as the experimental data.
This finding is important as it confirms that the depth of the
imaginary part of α-OMP should be energy dependent.

The preceding analyses have demonstrated that the pro-
posed α-OPM can provide a good description of the exper-
imental cross sections of (α, n) and (α, γ ) reactions (with
rescaling factors for the γ width). Furthermore, this α-OMP is
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FIG. 7. Same as Fig. 6 but for 112Sn (a), 113In (b), 115In (c),
and 121Sb (d) targets. Experimental cross sections are extracted from
Refs. [16,20,29,30,66,71]. The best fitted cross sections using the
TALYS library and the results obtained using the NON-SMOKER code
with default parameters are respectively given in (a) and (d) for
reference.
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Experimental cross sections are extracted from Refs. [17,27].

more appropriate for studying the α-induced reactions in the
higher-mass region due to its derivation from the underlying
physics and least free parameters as compared to those of
the Avrigeanu potential. For instance, the α-decay half-lives
[log10(T 1/2

α )] calculated using the real part of the present
α-OPM (CDM3Y+repulsion) are, respectively, −2.6291 and
−4.0112 for two superheavy nuclei, 266Hs and 270Ds, which
are very close to their corresponding experimental values of
−2.6383 and −4.0000 [72]. Hence, the real part of the present
α-OPM can provide a good description of α-decay properties.

IV. CONCLUSIONS

In the present work, an improved version of the α-nucleus
optical model potential (α-OMP) has been proposed for the
reactions relevant to the γ process. The proposed potential
includes an energy-dependent imaginary part expressed in
terms of a phenomenological Woods-Saxon form, while its
real part is treated based on the double-folding model (DFM)
with the standard density-dependent CDM3Y1 interaction
plus a repulsive potential (CDM3Y1+Repulsion). In addition,
the potential takes into account also the real dispersive term

derived from the drastic changes in the imaginary and real
parts of the potential at energies near the Coulomb barrier.
The α-OMPs are then applied to describe the (α, γ ) and (α, n)
cross sections on twenty target nuclei in the intermediate and
heavy mass regions. The results obtained are compared with
those calculated within the Avrigeanu potential, as well as
the available experimental data. The impacts of dispersive
correction to the real part and the energy dependence of the
imaginary part on the α-induced cross sections have also been
investigated.

It has been found that the α-induced cross sections are
extremely sensitive to the imaginary part of the potential,
particularly in the case of (α, γ ) reactions at energies be-
low the Coulomb barrier. Moreover, the (α, γ ) cross sections
calculated within the α-OMP with the energy-independent
imaginary depth significantly overestimate the experimental
data. This observation is consistent with previous findings
that the imaginary part of the α-OMP should be energy de-
pendent. Overall, the proposed α-OMP together with that
of Avrigeanu nicely describe the measured data of all in-
vestigated (α, n) reactions. As for the (α, γ ) reactions, both
theoretically calculated cross sections reproduce reasonably
well the experimental data after scaling the radiative γ width.
This implies that the present α-OPM can provide accurate
α widths for theoretical studies of the production of p nu-
clei, hence more theoretical research on the radiative strength
functions is recommended. Moreover, the proposed α-OPM
is more suitable for investigating the α-induced reactions
in the higher-mass region as it is derived from the under-
lying physics and has fewer adjustable parameters than the
Avrigeanu potential.
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