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Coulomb breakup reaction of loosely bound 17F with dynamic polarization potentials
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We investigate the elastic scattering, inelastic scattering, breakup reaction, and total fusion reactions of the
17F + 208Pb system using an optical model approach by including the dynamical polarization potential. In
particular, we focus on the breakup reaction channels, whose effects on other reactions have been argued to
be small. By exploiting two different potentials composed of a surface-type Woods-Saxon potential, which were
obtained by a fitting analysis, and a Love-type optical potential, the breakup reaction cross sections are explained
with other elastic and quasielastic scattering cross sections. For the breakup reaction at Elab = 170 MeV in the
forward angle region, where only exclusive reaction data are known, inclusive breakup reaction data are deduced
from available theoretical and experimental E1 strength values. We discuss the breakup reaction effects on the
other nuclear reactions related to the 17F projectile in detail.
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I. INTRODUCTION

In general, the optical model (OM) is typically used to
describe the elastic scattering data between projectiles and
target nuclei in terms of one channel. According to this model,
except for the elastic scattering channel described by the one
channel, all other channels including the breakup reaction, the
neutron and proton transfer reaction, and the fusion reaction
are considered to be absorption channels. However, the OM
has a disadvantage in that it cannot distinguish between direct
and fusion reactions in the absorption channel. Consequently,
an improved OM is required to explain fusion reaction from
the view point of the direct reaction (DR) [1–8]. To this end,
Udagawa et al. extended and developed the OM by decom-
posing the absorption reaction channel into DR and fusion
reaction channels within the same framework [1–8]. This ap-
proach is known as the extended OM.

In order to apply the extended OM, the dynamic polariza-
tion potential (DPP) was used [9,10], which has a volume-type
Woods-Saxon potential corresponding to the fusion part and a
surface-derivative-type Woods-Saxon potential corresponding
to the DR part. Then, the optimal parameters of the DPP were
extracted, which simultaneously satisfied the elastic scatter-
ing, other DRs, and fusion cross sections, using χ2 analysis.
It was considered remarkable that the extended OM could
well explain the nuclear reaction of not only tightly bound
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projectiles [3,6] but also weakly bound projectiles [7,8] on the
heavy target nuclei.

However, in the case of weakly bound neutron-rich halo
nuclei such as 6He, 11Li, and 11Be, the simple extended OM
described above cannot explain the experimental data of elas-
tic and breakup reactions including the valence neutron(s)
effect [11–14]. In general, these halo nuclei are composed of
a charged core nucleus and one (or two) valence neutron(s).
Therefore, owing to the Coulomb interaction generated by
the target nucleus, the core nucleus acts on a repulsive force,
but the valence neutron(s) does not act on any force. For
this reason, the breakup reaction channels related to the E1
transition in the continuum state are easily opened by the
Coulomb interaction. This phenomenon is called Coulomb
dipole excitation (CDE) [15–17]. A new form of the DPP,
such as the CDE and long-range nuclear (LRN) potentials,
is required to describe the breakup reaction of the valence
neutron(s) in neutron-rich halo nuclei. In our previous papers
[18–23], we clarified the nuclear reaction of neutron-rich halo
nuclei such as 6He, 11Li, and 11Be using the extended OM
including the CDE and LRN potentials.

One point to note is that the CDE potential can also be used
to explain the inelastic scattering cross sections due to the first
excited state associated with the E1 transition. Unlike 6He or
11Li nuclei, the other typical neutron-rich nucleus, 11Be, has a
low separation energy (Sn = 504 keV) and one excited state at
an energy level (E1st

x = 320 keV) below the separation energy
[24]. In our previous study [21], we investigated the contri-
bution of the inelastic scattering channel to consider the first
excited state related to the E1 transition for a 11Be + 197Au
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system below the Coulomb barrier energy, Ec.m = 30.1 MeV.
Our theoretical results could well explain the experimental
data. Additionally, Coulomb excitation potentials related to
the E2 transition, the E3 transition, and so on, may also exist.
The DPP related to the E2 transition by Coulomb interaction
is called the Coulomb quadrupole excitation (CQE) potential.
One CQE potential was suggested by Love et al. [9] that was
useful for taking into account the contribution of the inelastic
scattering channel in the bound state to the elastic channel,
or the breakup reaction channel in the continuum state to the
elastic channel. Using Love’s CQE potential considering the
Coulomb excitation effect, the reduction in PE , which is the
ratio of the elastic scattering cross section to that of Ruther-
ford scattering, has been well explained for the 12C + 184W
system [9,25], the 18O + 184W system [9,25], and so on.

Until now, we have only investigated neutron-rich halo
nuclei using the extended OM. However, recently, many in-
teresting experiments have been reported for the scattering
of light neutron-deficient (or proton-rich) nuclei projectiles
on heavy target nuclei, such as the 17F + 208Pb system at
Elab = 86 MeV [26], 90.4 MeV [27], 94.5 MeV [28], 98
MeV [27,29], 120 MeV [29], and 170 MeV [30,31]. Along
with the data, many theoretical papers have analyzed the
elastic (or quasielastic) scattering of 17F on the 208Pb tar-
get [28,32,33]. To this end, these papers have exploited the
continuum-discretized coupled channel (CDCC) method. Ref-
erences [32,33] have calculated the elastic scattering cross
sections with the CDCC formalism including folding poten-
tial and microscopic treatment for the projectile nucleus 17F
at Elab = 170 MeV. In Ref. [28], also, they have reported
additional experimental data of the quasielastic scattering at
Elab = 94.5 MeV and theoretical analysis by the CDCC and
coupled reaction channel (CRC) methods in which transfer
channels of one or two nucleons are considered. Here we note
that the CDCC calculations in these papers focused on the
description of the elastic scattering channel.

Therefore, in this paper, we simultaneously calculate the
angular distributions of 17F on 208Pb measured for elastic, in-
elastic, and breakup channels at Elab = 98, 120, and 170 MeV
using the extended OM approach by considering the DPP in
order to consider the elastic channels as well as other reaction
channels. The reason behind choosing these three energies is
that the quasielastic (QE; elastic + inelastic) scattering and
the breakup reaction cross sections exist together [27,29]. A
representative proton-rich nucleus 17F is assumed to have a
core nucleus of 16O and one weakly bound valence proton.
The separation energy of the valence proton for 17F (Sp) is
approximately 600 keV, and there exists one excited state
(E1st

x = 495 keV), which is related to the E2 transition, below
the separation energy [30]. This implies that the inelastic
scattering and breakup reaction channels can be easily opened
because the separation energy and the first excitation energy
of the 17F projectile are smaller than 1 MeV. Therefore,
when calculating the elastic scattering cross sections for the
17F + 208Pb system, the inelastic scattering and the breakup
reaction channels must be considered together.

This paper is organized as follows. In Sec. II, we sum-
marize the formalism of the OM and describe the optical
potential used in the present study. In Sec. III, we investigate

the elastic scattering, inelastic scattering, breakup reaction,
and total fusion cross sections of the 17F + 208Pb system from
a simultaneous χ2 analysis using the DPPs. We then discuss
the characteristics of proton-rich nuclei through the breakup
reaction and extract the theoretical elastic scattering cross
section using the inelastic scattering potential. Finally, we
summarize our results and conclude our paper in Sec. IV.

II. FORMALISM

To simultaneously calculate the angular distributions of
17F on 208Pb measured for the elastic, inelastic, breakup, and
total fusion channels in the scattering, we use the Schrödinger
equation as follows [7,8,34]:

[E − Tl (r)]χ (+)
l (r) = UOM(r) χ

(+)
l (r), (1)

where Tl (r) is a kinetic energy operator expressed as a func-
tion of the angular momentum l , and χ

(+)
l (r) is a distorted

partial wave function. In Eq. (1), the OM potential UOM(r) is
composed of the real monopole Coulomb potential VC(r), the
real energy-independent bare potential V0(r), the imaginary
inelastic scattering potential Winel.(r), and the complex DPP
UDPP(r) as follows:

UOM(r) = VC(r) − V0(r) − Winel.(r) − UDPP(r)

= VC(r) − V0(r) − Winel.(r) − [VDPP(r) + iWDPP(r)].

(2)

In the OM, the real part is related to the elastic scattering
channel and the imaginary part is related to other absorp-
tion channels. It should be noted that the energy-independent
bare potential consists of three parts as follows: The first
is the interaction between the core nucleus of 17F projectile
(16O) and the target nucleus (208Pb). The second is the in-
teraction between the valence proton and the target nucleus.
The third is the interaction between the valence proton and
the core nucleus. In principle, to obtain the bare potential
of the 17F + 208Pb system, we have to extract each poten-
tial parameter by χ2 fitting to the elastic scattering data
for the 16O + 208Pb and p + 208Pb systems and solving the
bound state problem for the p-16O interaction as followed in
Refs. [12,14] for the 11Li + 208Pb and 11Be + 64Zn systems.
In this work, however, we use a microscopic folding potential
[35]:

V0(r) =
∫

dr1

∫
dr2ρ1(r1)ρ2(r2)vNN (r12 = |r − r1 + r2|).

(3)
Here, vNN is the M3Y interaction including the knock-on

exchange effect [35,36] and is given as

vNN (r) = 7999
e−4r

4r
− 2134

e−2.5r

2.5r
− 276δ(r). (4)

In Eq. (3), the nuclear matter distribution for the target nuclei,
ρ1(r1), is given in the Woods-Saxon form [37]:

ρ1(r) = ρ0/
[
1 + exp

( r − c

z

)]
, (5)

with ρ0 = 0.164 fm−3, c = 6.624 fm, and z = 0.549 fm,
while ρ2(r2) is the nuclear matter distribution for the projectile
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nucleus, which consists of a core nucleus (16O) and a valence
proton, as follows [36,38,39]:

ρ2(r) = ρ
16O
2 (r) + ρ

p
2 (r), (6)

with

ρ
16O
2 (r) = 0.1317(1 + 0.6457r2) exp(−0.3228r2), (7)

and

ρ
p
2 (r) =

(
3

2πR2
h

) 3
2

exp

(
− 3r2

2R2
h

)
, with Rh = 3.78 fm. (8)

Here, we take the nuclear matter densities of the core nucleus
and the valence proton from Refs. [36,38,39].

Next, we must determine the inelastic scattering potential
Winel.(r) related to the E2 transition in order to consider the
first excited state of the 17F projectile as follows [9]:

Winel.(r)

=

⎧⎪⎨
⎪⎩

−
[
1 − 2

7

(
rC
r

)2
− 1

21

(
rC
r

)4]
KC (r)WP

r5 for r � rC,

− 2
3 KC

WPr4

r9
C

for r < rC,

(9)

with

KC (r) =
[

1 − Z1Z2e2

rEc.m.

]−1/2

(10)

and

Wp = 0.01676
μZ2

i

k
B(E2)g2(ξ ) for i = 1 or 2. (11)

Note that in Ref. [9], KC in Eq. (9) is replaced by the
value of

√
10 ≈ 3.16 for r < rC because it diverges at

r = Z1Z2e2/Ec.m in Eq. (10). In Eq. (11), μ is the reduced
mass, k is the wave number defined by

√
2μEc.m/h̄, B(E2)

is the quadrupole electric transition strength, and g2(ξ ) is an
adiabaticity correction factor, which is a function of the adia-
baticity parameter ξ = a0ε/h̄v, [9,15]. Here, a0 is the distance
of the closest approach in a head-on collision. More informa-
tion on this potential can be found in Ref. [9]. It should be
noted that the inelastic scattering potential Winel.(r) is not used
for χ2 fitting to determine the optimized parameters because
χ2 fitting for QE scattering cross-section data is performed
in this work. Furthermore, this potential is used to predict the
elastic and inelastic scattering cross sections and is discussed
again in Sec. III.

Finally, we consider the DPP, UDPP(r), in Eq. (2). In gen-
eral, the DPP consist of a real part VDPP(r) and an imaginary
part WDPP(r). As mentioned earlier, because the valence pro-
ton in the 17F nucleus is easily separated by the Coulomb and
interacts with the target nucleus 208Pb, the breakup reaction
increases considerably. This interaction mainly occurs on the
surface or at a distance farther than that because the valence
proton of the projectile is primarily affected by the Coulomb
interaction generated by the target nucleus. For this reason, we
must introduce another surface-type Woods-Saxon potential

to describe the interaction between them as follows:

U BU(r) = 4aBU
i (V BU + iW BU)

d
[
1 + exp

(
X BU

i

)]−1

dRBU
i

,

(12)
i = 0 and W,

where X BU
i = (r − RBU

i )/aBU
i with RBU

i = rBU
i (A1/3

1 + A1/3
2 ).

The subscript “BU” refers to the breakup reaction. Moreover,
as an additional DPP in Eq. (2), we have to consider the total
fusion reaction between the projectile and the target nucleus.
This is because the nuclear fusion reaction takes place inside
the target nucleus mainly when the projectile passing through
the Coulomb barrier fuses with the target nucleus. Thus, a
volume-type Woods-Saxon potential is adopted as follows:

U TF(r) = (V TF + iW TF)
[
1 + exp

(
X TF

i

)]−1
, i = 0 and W

(13)

where X TF
i = (r − RTF

i )/aTF
i with RTF

i = rTF
i (A1/3

1 + A1/3
2 ).

The subscript “TF” refers to the total fusion reaction. Finally,
using these BU and TF potentials, the DPP can be expressed
as follows:

UDPP(r) = U BU(r) + U TF(r)

= [V BU(r) + iW BU(r)] + [V TF(r) + iW TF(r)].
(14)

III. RESULTS

A. Simultaneous χ2 analysis

To obtain the optimized parameter sets for the BU and TF
potentials in our calculations, we perform simultaneous χ2

fitting for the experimental QE, breakup reaction, and total
fusion cross-section data using the four adjustable parameters
(V BU, W BU, V TF, and W TF) in Eq. (14). The extracted param-
eter sets are listed in Table I. In this work, we assume that
the real and imaginary parts of the radius and the diffuseness
(aBU

0 = aBU
W , rBU

0 = rBU
W , aTF

0 = aTF
W , rTF

0 = rTF
W ) are fixed to

be the same as each other. As indicated in Table I, after χ2

fitting, the same value for all incident energies was obtained
for three parameters (rBU

0 = rBU
W , aTF

0 = aTF
W , rTF

0 = rTF
W ); how-

ever, a value dependent on the energy was obtained for the
diffuseness parameter for the TF potential, aBU

0 = aBU
W . Details

on the last three rows of the table are provided in Sec. III C.
Here we note that the difference between the χ2 values at

Elab = 98 and 170 MeV amounts to dozens of times. This is
because of the different error bars for the experimental elastic
scattering data at the two incident energies. In practice, the
related error bars are approximately 10% for the case of Elab =
98 MeV and 1% for Elab = 170 MeV, respectively, at forward
angles. As a result, the χ2 value defined as

χ2 =
N∑
i

(
σth. − σexpt.

	σexpt.

)2/
N (15)

at Elab = 170 MeV becomes larger than that at Elab =
98 MeV. Here σth., σexpt., 	σexpt., and N are the cross sec-
tions of the theoretical calculation, the experimental data, the
error bar of the experimental data, and the number of data,
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TABLE I. Optimized parameter sets of the DPPs for the 17F + 208Pb system. ri = Ri/(A1/3
1 + A1/3

2 ) with i = 0 and W . Subscripts 0 and
W denote the real and imaginary parts, respectively. The last three rows are the optimized parameter sets obtained from the simultaneous χ2

fitting considering the Coulomb dipole excitation (CDE) potential of Eq. (19) for Elab = 170 MeV.

Elab V BU W BU aBU
0 = aBU

W rBU
0 = rBU

W V TF W TF aTF
0 = aTF

W rTF
0 = rTF

W

(MeV) Set (MeV) (MeV) (fm) (fm) (MeV) (MeV) (fm) (fm) χ2

98 −0.70 0.073 0.343 1.64 −18.79 21.87 0.55 1.20 0.83
120 0.08 0.060 0.748 1.64 −9.46 99.94 0.55 1.20 5.16
170 0.13 0.041 0.651 1.64 −7.89 61.18 0.55 1.20 31.91
170 (A) 0.38 0.036 0.624 1.60 −13.11 40.54 0.55 1.20 40.43
170 (B) 0.39 0.018 0.569 1.62 −11.19 40.43 0.55 1.20 43.76
170 (C) 0.40 0.019 0.585 1.62 −11.30 39.96 0.55 1.20 43.57

respectively. The other point is that the V BU and W BU values
in Table I are so small compared to others. This results from
the fact that the breakup reaction cross sections are very small
compared to the total reaction ones as shown in Table II and
Fig. 3. To show that the parameters V BU and W BU we obtained
are the most optimized values, we examine the alteration of
the χ2 values by changing the two parameters little by little
after fixing the other parameters listed in Table I. Figure 1
shows the alteration of the χ2 values according to the change
of two parameters at Elab = 98 and 170 MeV, respectively.
One can notice that, from the smallest χ2 value by the two
parameters [for example, (V BU, W BU) = (−0.70, 0.073) for
Elab = 98 MeV and (0.13, 0.041) for Elab = 170 MeV], the
χ2 value increases rapidly even if its value changes a little bit.
In particular, this trend is salient by the change of W BU rather
than by the change of V BU. This shows clearly that both pa-
rameters are optimized in the present χ2 fitting to the available
data.

It should be noted that, in this calculation, we use the QE
scattering data instead of the elastic scattering data because
there are currently no elastic scattering data available. To
obtain the theoretical QE scattering cross sections, we perform
χ2 fitting using the experimental QE scattering data without
the inelastic scattering potential, Winel.(r), corresponding to
the inelastic scattering channel in Eq. (2). Then, we extract
the theoretical elastic scattering cross sections by subtracting
the contribution from the inelastic scattering potential without

additional χ2 fitting. More details are provided in Sec. III B.
By using these extracted optimal parameter sets, we then cal-
culate the angular distributions of the elastic, QE scattering,
and breakup reaction cross sections as well as the total fusion
ones as a function of Ec.m.. Finally, we plot them as shown in
Figs. 2 and 3.

B. Elastic, inelastic, and quasielastic cross sections

As described in Sec. III A, we performed χ2 fitting for the
QE scattering cross sections, the theoretical results for which
are plotted as solid black lines in Fig. 2(a) and are compared
with the experimental data, represented using solid red circles.
As shown in Fig. 2(a), the theoretical calculations for the QE
scattering cross sections match well with the experimental
data.

To extract the elastic scattering cross sections, we then
need to perform a new calculation, subtracting the contribu-
tion from the inelastic scattering potential without additional
χ2 fitting. To do this, we utilize the inelastic scattering poten-
tial expressed using Eqs. (9)–(11) with B(E2) = 21.64 e2 fm4

[40]. As a result, we can predict the theoretical calculations
for the elastic scattering cross sections, denoted as the dashed
blue lines in Fig. 2(a). However, the difference between the
elastic and the QE scattering cross sections is indiscernible.
Therefore, to investigate the contribution of the inelastic scat-
tering cross section, we plot the ratio of the inelastic scattering

TABLE II. Inelastic, breakup, total fusion, and total reaction cross sections. Here, σ
QE
R is extracted from the χ 2 fitting for the experimental

quasielastic scattering cross-section data. σR is the summation of σ
QE
R and the inelastic scattering cross sections σinel., which are obtained from

the inelastic scattering potential using Eqs. (9), (10), and (11). The results of sets (A), (B), and (C) at Elab = 170 MeV are obtained by using
the optimized parameter sets in Table I.

Energy σInel. σBU σCDE σTF σ
QE
R σR

(MeV) Set (mb) (mb) (mb) (mb) (mb) (mb)

98 Our result 126 75 – 279 354 480
98 Expt. – 68 ± 5 [29] – 317 ± 64 [41] – –
120 Our result 97 145 – 1330 1475 1572
120 Expt. – 125 ± 7 [29] – – – –
170 Our result 74 95 – 2254 2349 2423
170 (A) Our result 80 76 22 2174 2228 2308
170 (B) Our result 80 35 106 2168 2309 2389
170 (C) Our result 80 39 119 2166 2324 2404
170 Expt. – 104 ± 10 [30] – – – –
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FIG. 1. The alteration of the χ 2 values due to the change of the real and imaginary depth parameters, V BU and W BU, for the surface-type
Woods-Saxon potential in Eq. (12) for (a) Elab = 98 MeV and (b) Elab = 170 MeV.

FIG. 2. Ratio Pi = σi/σRU with i = elastic (EL), quasielastic (QE), and inelastic (inel.) for the 17F + 208Pb system. Here, σEL, σQE, σinel.,
and σRU are the elastic, quasielastic, inelastic, and Rutherford cross sections, respectively. In panel (a), the dashed blue and solid black lines
represent the theoretical ratios PEL and PQE, respectively. Red circles denote the experimental PQE data from Refs. [27,29,30] for the 17F + 208Pb
system. In panel (b), the dotted red lines represent the theoretical ratio Pinel..
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FIG. 3. Angular distribution of the breakup reaction cross sec-
tions for the 17F + 208Pb system at Elab = 98, 120, and 170 MeV.
The black solid lines represent the theoretically calculated angular
distribution of the breakup reaction cross sections obtained from the
simultaneous χ 2 analysis. Red solid circles and blue solid squares
with error bars denote the experimental inclusive and exclusive
breakup reaction cross-section data for the 17F + 208Pb system, taken
from Refs. [29,30] and Ref. [31], respectively.

cross sections to the Rutherford cross sections, denoted as
Pinel. in Fig. 2(b). It can be seen that Pinel. lies below 0.1 at
all incident energies. This implies that the inelastic scattering
cross sections, which is the difference between QE and elastic
scattering cross sections, is relatively small compared to the
total fusion cross sections, as indicated in Table II, which lists
the total inelastic scattering cross-section values as well as the
breakup, total fusion, and total reaction cross-section values
for each incident energy. Interestingly, the contribution of the
inelastic scattering cross sections to the total reaction tends to
decrease as the incident energy of the projectile increases.

C. Breakup and total fusion cross sections

From the simultaneous χ2 analysis, we finally calculate the
breakup reaction and total fusion cross sections. As indicated
in Fig. 3, we compared experimental data (red solid circles)
with theoretical calculations (black solid lines) for the differ-
ential inclusive breakup reaction cross sections. For reference,
we provide the formula for the differential cross sections
for each reaction channel adopted in our previous papers

[6,20–22]:

dσi

d

= ka0

16π

1

cos
(

θc.m.
2

)
sin3

(
θc.m.

2

) ∑
l

π

k
(2l + 1) Ti;l ,

i = inel., BU, CDE, and TF, (16)

with

Ti;l = 8

h̄v

∫ ∞

0
|χ+

l (r)|2 Wi(r)dr. (17)

The imaginary potential type of each reaction channel in
Eq. (17) is given in Eqs. (9), (12), (13), and (19), respectively.
Note that the relative angular momentum l is defined by
l = ka0

2 cot( θc.m.

2 ) as a function of θc.m.. Also, from the integral
over the scattering angle θc.m., we can obtain the total cross
section by each reaction channel listed in Table II using the
following formula:

σi =
∑

l

π

k2
(2l + 1) Ti;l . (18)

Our theoretical results reproduce the experimental data
relatively well. However, as shown in Fig. 3(c), in addition
to the inclusive BU reaction, experimental exclusive breakup
(EBU) cross section data are also present at forward angles
(10◦ � θc.m. � 50◦) for Elab = 170 MeV. It is thought that
there should exist some contributions from the inclusive cross
sections around the forward region with θc.m. � 30◦. This may
imply that an additional potential is needed to properly include
the BU reaction at forward angles (or in long-range regions).

Therefore, in the following, we discuss how to include fea-
sible inclusive breakup reaction contributions expected from
the B(E1) strength distribution around low-energy excited
regions of 17F. Hereafter, we deduce the BU cross sections
expected to stem from those E1 transitions using the follow-
ing CDE potential:

U BU
CDE(r) = 4π

9

Z2
t e2

h̄v

1

(r − a0)2r

∫ ∞

εb

dε
dB(E1)

dε

×
[
g
( r

a0
− 1, ξ

)
+ i f

( r

a0
− 1, ξ

)]
, (19)

with

f
( r

a0
− 1, ξ

)

= 4ξ 2
( r

a0
− 1

)2
exp(−πξ )K ′′

2iξ

[
2ξ

( r

a0
− 1

)]
,

where Zt is the charge number of the target nucleus and K ′′
is the second derivative of the modified Bessel function. The
g( r

a0
− 1, ξ ) function in Eq. (19) is the real part of the CDE

potential, which is extracted from the dispersion relation [15]
and given by

g
( r

a0
− 1, ξ

)
= P

π

∫ ∞

−∞

f
(

r
a0

− 1, ξ
)

ξ − ξ ′ dξ ′. (20)

First, we look up available experimental B(E1) values.
According to ENSDF data [40], there are Jπ = 1/2− (Ex =
3.104 MeV) and Jπ = 5/2− (Ex = 3.857 MeV) states with
B(E1) values of 0.001 53 and 0.004 38 W.u., respectively.

014601-6



COULOMB BREAKUP REACTION OF LOOSELY BOUND … PHYSICAL REVIEW C 105, 014601 (2022)

FIG. 4. (a) Coulomb strength distributions dB(E1)/dε as a function of 	 value for B(E1) = 0.13 e2 fm2 at ε = 2.92 MeV. The solid black
line is a guide line corresponding to ε = 2.92 MeV. (b) Angular distributions of the breakup reaction cross sections obtained by considering the
CDE potential for the 17F + 208Pb system at Elab = 170 MeV. Experimental data are the same as those in Fig. 3(c). More details are provided
in the text.

Here, Ex is the excitation energy, and W.u. is the abbreviation
of the Weisskopf unit. In our calculations, however, we use
only the experimental B(E1) = 0.001 53 W.u. corresponding
to the lowest excited state, Jπ = 1/2− (Ex = 3.104 MeV),
above the separation energy to extract the BU cross sections.

In order to investigate the BU cross sections obtained from
the experimental E1 strength distribution, we reattempt to per-
form a simultaneous χ2 analysis including the CDE potential
of Eq. (19). In this calculation, we assume that the real and
imaginary parts of the radius and the diffuseness (aTF

0 = aTF
W ,

rTF
0 = rTF

W ) in the TF potential are fixed to be the same as each
other. Then, we perform a simultaneous χ2 analysis using six
adjustable parameters (V BU, W BU, V TF, W TF, aBU

0 = aBU
W , and

rBU
0 = rBU

W ). Nevertheless, as the experimental B(E1) value
used is too small, the angular distribution of the BU cross
sections is very insignificant. Therefore, we do not discuss
these results by the experimental B(E1) value any further in
this paper.

Recently, De Gregorio et al. [42] illustrated the theoretical
B(E1) strength distribution in the low-energy region ow-
ing to the single-particle characters below the pygmy dipole
resonance region, which are B(E1) = 0.13 e2 fm2 at Ex =
2.92 MeV and B(E1) = 0.22 e2 fm2 at Ex = 6.49 MeV. These
values are much larger than the experimental ones. In Eq. (19),
we employ the Coulomb strength distribution dB(E1)/dε

proposed in Ref. [43] using the Lorentz function with the
Lorentzian width 	,

dB(E1)

dε
= 1

2π
�n

	(
ε − En

x

)2 + (
1
2	

)2 B(E1). (21)

Here, for B(E1), we take the lowest peak [B(E1) =
0.13 e2 fm2 at Ex = 2.92 MeV] because we are considering
the energy region near the Coulomb barrier. En

x is the nth
excitation energy. We perform simultaneous χ2 analysis again
in the same way as that using the experimental B(E1) value,

by changing the Lorentzian width 	 values in Eq. (21). As
a result, we obtain three optimized parameter sets at Elab =
170 MeV listed in the last three rows of Table I. Set (A)
in Table I is obtained by using a theoretical B(E1) value
of 0.13 e2 fm2 without the 	 value. Sets (B) and (C) are
obtained by using a theoretical B(E1) value of 0.13 e2 fm2

with 	 = 0.25 and 2.00, respectively. Using these parameters,
we can also extract the inelastic, breakup, CDE, total fusion,
and total reaction cross sections in sets (A), (B), and (C) of
Table II. Note that the total BU cross sections are the sum of
the BU and CDE ones (σBU + σCDE) in the case of sets (A),
(B), and (C) of Table II.

Figure 4(a) shows the Coulomb strength distribution
dB(E1)/dε as a function of the 	 value for B(E1) = 0.13
e2 fm2 at ε = 2.92 MeV. The dotted green and dashed vi-
olet lines represent the Coulomb strength distributions with
	 = 0.25 and 2.00, respectively. It can be seen that, as the
	 value increases, the height and the depth of the distri-
bution decreases and spreads, respectively. The (total) BU
cross sections obtained from the theoretical Coulomb strength
distribution dB(E1)/dε are also presented in Fig. 4(b). The
short-dotted magenta, dotted green, and dashed violet lines
are the BU cross sections obtained by the BU + CDE potential
without 	 and with 	 values of 0.25 and 2.00, respectively.
One interesting point in Fig. 4 is that the contribution of the
EBU cross sections at the forward angle (θc.m. � 30◦) can-
not be reproduced using only the surface-type Woods-Saxon
potential (black solid line), whereas that of the inclusive BU
cross section at a forward angle can be provided by adding
the CDE potential (short-dotted magenta, dotted green, and
dashed violet lines). Therefore, from Fig. 4(b), it can be seen
that the contribution of the CDE potential in any form is
required to account for feasible EBU cross sections at the
forward angle.

We now discuss the BU effects on other reactions. Results
are summarized for sets (A), (B), and (C) for Elab = 170 MeV
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in Table II. Interestingly, despite considering the CDE po-
tential, an increase in the (total) BU cross sections can be
observed; however, the change in the total fusion cross sec-
tions is insignificant. This is attributed to the fact that the total
fusion reaction occurs mainly when the incident nucleus and
the target nucleus are close to each other; therefore, its cross
section is not affected much because the CDE potential mainly
acts in the long-range region. As a result, it can be seen that
the total reaction cross sections also increase as the 	 value
increases.

IV. CONCLUSIONS

In this study, we investigated the 17F + 208Pb system near
and above the Coulomb barrier in order to evaluate the
breakup reaction effects on other reactions relevant to the
proton halo nucleus because the breakup reaction effects on
neutron-halo or neutron-rich nuclei have already been clar-
ified. To this end, we first calculated the Coulomb breakup
cross sections for the 17F + 208Pb system for various energies

and included the feasible inclusive BU process due to the
CDE from the B(E1) strength. The calculations were carried
out using the OM, the potentials for which were extracted
deliberately from existing data related to 17F. Second, effects
from the BU processes were quantitatively studied on other
reactions related to 17F. In conclusion, the breakup reactions
on the 17F + 208Pb system may largely affect other nuclear
reactions on the system rather than those expected in other
previous discussions. However, additional breakup data for
forward angles are required to draw a clearer conclusion on
the breakup reaction effects on the halo nucleus 17F.
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