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Landscape appreciation of systematic structure properties
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The structural properties of even-even nuclei along the β-stability line are systematically analyzed and
investigated by means of our improved potential-energy-surface (PES) approach. The equilibrium deformations
obtained from the PES minima are compared with available experimental data and other theoretical results. From
a different viewpoint, taking the nuclei on the stability line as footholds, we systematically present two-nucleon
separation energies and half-lives in the corresponding isotopic chains. Very regular laws can be seen, especially
below Z = 84. The observed trends and anomalous behavior are briefly discussed. The energy difference
between theory and experiment for the binding energies and two-nucleon separation energies indicates that
the improved PES calculations with our fitting macroscopic model parameters are relatively in better agreement
with experiments. Based on the systematic law of two-nucleon separation energies, the bound limit of even-even
nuclei is crudely estimated along the stability line.
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I. INTRODUCTION

Most of the nuclei in nature were formed at the creation
of the universe or after supernovae explosions [1]. Their half-
lives are usually longer than the expected age of the Earth and
the Solar System (≈4.6 billion years) or the Universe (≈13.8
billion years), indicating that they are stable or practically
stable. These stable nuclei, less than 300 nuclides (the nuclide
number is slightly different, depending on the timescale used),
form a “valley of stability” (which is also referred to as the
“belt of stability” or the “band of stability,” or a “peninsula
of stability” in a “sea of instability”) in the nuclear chart. The
nuclei in the valley are of special interest in nuclear physics
because they not only are naturally existent but also are impor-
tant candidates of the projectile-target combinations in nuclear
reactions used for producing radioactive nuclei though the
high-intensity radioactive-beam facilities and the radioactive
targets start to be used nowadays [2].

Along the valley of stability, the semi-empirical approxi-
mation formulas were fit half a century ago, such as N − Z =
0.4A2/(A + 200) in Ref. [3] and Z = A/(1.98 + 0.0155A2/3)
in Ref. [4], which can allow one to estimate the mass num-
ber A or neutron number N for a given proton number Z .
The curves described by two such formulas are usually re-
ferred to as the β-stability lines (also, the backbone of the
belt of stability) and almost overlap except for the slightly
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different extrapolations in the high-Z region. The nuclei lo-
cated at the northwest (southeast) of the stability line contain
too many protons (neutrons) to be stable, tending to become
stable nuclei by, e.g., α, β−, or β+ decay or electron capture
and allowing them to move closer to the optimal neutron-
proton ratio. As is well known, only a certain number of
combinations of neutrons and protons can form the stable
nucleus which has enough ability (e.g., binding energy) to
permanently hold its nucleons together (however, regardless
of neutron-proton combinations, no stable members are iden-
tified in some isotopes with Z > 83). It has been found that
the nuclei consisting of specific nucleon numbers, e.g., 2,
8, 20, 28, 50, 82, and 126 (for neutrons), have prominent
stability, possessing a relatively higher average binding energy
per nucleon. Such magic numbers corresponding to shell clo-
sures have been predicted by the nuclear shell-structure model
[5–9] and proved by experimental observables with sudden
discontinuities [10], e.g., in the nucleon separation energies
with changing Z or N .

Up to now, the heaviest doubly magic nucleus is 208
82 Pb126,

almost lying on the stability line. Naturally, the search for
the next heavier doubly magic nucleus and the northeast limit
of the nuclear chart is more fascinating. Theoretical models
based on the macroscopic-microscopic approaches [11–20]
using various potentials predicted that the heavier doubly
magic candidate is the superheavy nucleus 298

114Fl184, which
lies very close to this extrapolated β-stability line and may
be stable enough to exist in nature. Some self-consistent
mean-field calculations prefer Z = 120 and N = 172 to be
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the shell closures [17,21–23]. Furthermore, around the next
doubly magic nucleus, the predictions also show that there
may exist a batch of shell-stabilized superheavy nuclei which
form a small so-called “island of stability” (relative to the
“peninsula of stability”). It is expected that nuclei near the top
of the island of stability can exist, e.g., many years instead of
some milliseconds [24]. Presently, along the stability line, the
experimentally synthesized heaviest even-even nucleus is the
nucleus 264

102No162 [25], although the periodic table of elements
contains 118 known and named elements [26–29].

As mentioned above, nuclear structural properties will
strongly affect the stability of nuclei. Nuclear binding ener-
gies and decay half-lives increase markedly in the vicinity
of nucleon closed shells, which give rise to spherical nuclear
shapes. Indeed, nuclear shape is very helpful for understand-
ing the fundamental interaction related to microscopic nuclear
structure. It is known that nuclear stability both in the super-
heavy and drip-line regions depends on nuclear deformations.
For instance, the fission barriers and the nucleon(s) sepa-
ration energies are to a large extent related to ground-state
nuclear deformations. Theoretically, these low-lying nuclear
structure phenomena can be well described by the mean-
field approach. Although the self-consistent Hartree-Fock or
relativistic mean-field microscopic theories have been well
developed during the past several decades, the well-known
Nilsson or Woods-Saxon (WS) one-body mean-field poten-
tials are still widely used in nuclear structure research and
never stop developing. We have conducted some related
studies [30–36] by using the potential-energy-surface (PES)
calculation method within the framework of the macroscopic-
microscopic models.

The present investigation focusing on the ground-state
properties (e.g., shapes and binding energies) of even-even
nuclei along the valley of stability up to the predicted super-
heavy island (near the 298

114Fl184 nucleus) are performed in terms
of the realistic WS potential (a good approximation of the
self-consistent Hartree-Fock mean field), combining two dif-
ferent macroscopic and microscopic parts. Such an empirical
potential poses a high predictive power while its computing
algorithms are relatively simple. Very recently, we performed
the investigation of the propagating uncertainties from the
WS potential parameters [36]. However, the single-particle
mean field is not our primary concern here, from the point
of view of the model, the main contribution of the present
work is to provide a set of macroscopic-model parameters
by least-square fitting to recent experimental data [10]. In
addition, from the special footholds, we exhibit and analyze
the experimental half-lives and two-nucleon separation ener-
gies of available even-even nuclei. With the improved PES
method, we evaluate the even-even nuclei up to the predicted
“island of superheavy elements” along the β-stability line. A
crudely bound limit based on two-nucleon separation energies
is proposed by an empirical extrapolation which does not
include any interaction assumption.

The paper is organized as follows: In Sec. II, we briefly in-
troduce the unified procedure of two potential-energy-surface
methods used and simultaneously provide the necessary ref-
erences. The results and discussions are presented in Sec. III.
At last, we give a summary in Sec. IV.

II. THEORETICAL FRAMEWORK

A. General description of potential-energy-surface method

For a long time many results have been obtained by the
PES method with the realistic WS potential. A short presen-
tation of the unified procedure of this treatment will be given
below, including the necessary references. The basic idea in
this approach is that the total binding energy of a nucleus can
usually be decomposed in two parts,

Etotal(Z, N, β ) = Emac(Z, N, β ) + Emic(Z, N, β ), (1)

where Emac is the macroscopic bulk-energy term, being a
smooth function of Z , N and/or deformation, and Emic is
the microscopic quantum corrections calculated, e.g., from
a phenomenological single-particle potential well. β denotes
a set of deformation coordinates in the deformation space
(β2, γ , β4). In general, the calculated procedure is carried out
in five steps, e.g., as mentioned in Ref. [37]:

The total potential energy can obviously be given by the
sum of macroscopic and microscopic energies obtained in the
last two steps. Some different variants of the PES method have
been developed according to the different ways of treating
these five steps.

In this work, we describe the nuclear shape by means
of the parametrization of the nuclear surface with the help
of spherical harmonics. The nuclear potential is calculated
in a multidimensional space (β2, γ , β4) including the axial
and nonaxial deformation degrees of freedom. The single-
particle energies (eigenvalues) and the corresponding wave
functions (eigenfunctions) are obtained by solving the static
Schrödinger equation with a WS-type nuclear potential, in-
cluding a central potential, a spin-orbit coupling potential and
the Coulomb potential for the protons (see, e.g., Sec. 2 of
Ref. [38] for detailed expressions). That is, by giving a set
of the WS parameters (e.g., the Universal parameter set is
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adopted here; see Table 1 of Ref. [38]), the deformed WS
potential can be generated numerically at each (β2, γ , β4)
deformation lattice. The WS Hamiltonian matrix elements
are calculated by using the basis of the axially deformed
harmonic oscillator in the cylindrical coordinate system. Then
the single-particle solutions (e.g., levels and wave functions)
are given by diagonalizing the Hamiltonian matrix. Next, by
using the single-particle levels obtained, the shell and pairing
corrections at each deformation point (β2, γ , β4) are respec-
tively calculated in terms of the Strutinsky method [39] and
Lipkin-Nogami (LN) method [40]. It is worth noting that
the LN method allows avoiding the spurious pairing phase
transition which may occur in the calculation of the traditional
Bardeen-Cooper-Schrieffer (BCS) type. The monopole pair-
ing is taken into account and its strength G is estimated by the
average gap method [41]. The adopted pairing windows for
both protons and neutrons contain dozens of single-particle
levels, e.g., half of the particle number Z and N , below and
above the Fermi surface.

The macroscopic energy is usually calculated by the liquid
drop (LD) model. Nowadays, there exist many phenomeno-
logical LD models in the literatures. Below, we list several
frequently used ones in the macroscopic-microscopic calcula-
tions, such as the standard LD model [42], the finite-range
droplet model [43], and the Lublin-Strasbourg drop model
[44]. These macroscopic models with slightly different prop-
erties are usually used for calculating the smoothly varying
part of the nuclear energy, in which the dominating terms are
associated with the volume energy, the surface energy, the
symmetry energy, and the Coulomb energy.

B. Two variants of potential-energy-surface calculations

In the present work, we perform the calculation for the total
binding energy (defined as negative) by two PES methods
with slightly different treatments in macroscopic and micro-
scopic energies. In the first method, the macroscopic energy
ELD1 is calculated by a standard LD model [42], namely,

ELD1(N, Z, β ) = a1

[
1 − κ

(
N − Z

A

)2]
A

+ a2

[
1 − κ

(
N − Z

A

)2]
A2/3BS

+ c3
Z2

A1/3
BC + c4

Z2

A
, (2)

where the model parameters a1 = −15.677 MeV, a2 =
18.56 MeV, c3 = 0.717 MeV, c4 = −1.2113 MeV, and κ =
1.79. The relative surface and Coulomb energies Bs and Bc are
only functions of nuclear shape. The shell and pairing correc-
tions are considered in the microscopic energy Emic1, which
reads [39]

Emic1(Z, N, β ) = Eshell(Z, N, β ) + Epair(Z, N, β ). (3)

Note that the treatments for the microscopic corrections can be
found in Refs. [39,40] (also, cf. Refs. [30–35] and references
therein). Since these are widely used and relatively standard,
it is not necessary to give a detailed description here. As

TABLE I. Two sets of parameters of the macroscopic LD energy
ELD2 [45,46], as defined in Eq. (4). Note that the old parameters are
taken from Ref. [46] and the new ones are refitted to 578 even-even
nuclei in the AME2016 mass table. Two rms values are calculated
for these 578 even-even nuclei based on the old and new parameters,
respectively. Energies are in units of MeV.

av as asym aasym C C4 σrms

Old −15.707 18.302 117.481 −161.323 0.717 −0.882 0.667
New −15.725 18.403 118.228 −165.496 0.719 −0.919 0.614

described above, the total binding energy (in order to compare
with data, the absolute value is used here) of a nucleus can be
calculated by summing the macroscopic and microscopic en-
ergies at each deformation grid. The smoothed PES can finally
be obtained by interpolating, e.g., using a spline function, be-
tween the calculated sampling points. The nuclear properties
including the equilibrium deformations, binding energies, and
so on can be analyzed already with the help of the minima of
the PES. For short, we call this method PES-1 in this work.

Now let us introduce the second PES calculation, which
is similarly referred to as PES-2 below. In this method, the
corresponding macroscopic energy is given by [45,46]

ELD2(N, Z ) = avA + asA
2/3 + asymT (T + 1)

A

+ aasymT (T + 1)

A4/3
+ C

Z2

A1/3
+ C4

Z2

A
. (4)

Note that the present coefficients of Eq. (4) are obtained by
us through a least-squares fit to the binding energies of 578
available even-even nuclei [10]. During the parameter fit, the
χ2 function is defined as

χ2 =
578∑
i=1

(
Bexpt

i − Btheo
i

)2
, (5)

where Btheo
i stands for the calculated binding energy (namely,

the negative Etotal as mentioned above) and Bexpt
i stands for

experimental data.
Table I shows the old [46] and new (present) parameters

for the LD energy defined in Eq. (4), together with their root-
mean-square (rms) deviation values (characterizing to some
extent the quality of the fit). It should be pointed out that the
rms value given by PES-1 is 4.505 MeV, which is greater than
the values obtained by PES-2 (e.g., 0.667 or 0.614 MeV, as
seen in Table I). At this time, the microscopic part is defined
as (same as that in Ref. [46])

Emic2(Z, N, β ) = Edef(Z, N, β )

+ Eshell(Z, N, β ) + Epair(Z, N, β ), (6)

where the shell and pairing corrections Eshell and Epair are
same as those in Eq. (3). The deformation correction energy
is written as [38,42,47]

Edef(Z, N, β ) = {[BS(β ) − 1] + 2χ [BC(β ) − 1]}E (0)
S , (7)

where the spherical surface energy E (0)
s and the fissility pa-

rameter χ are Z and N dependent, cf. Refs. [42,47]. The
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FIG. 1. Valley of stability and several typical boundaries on Z-N
plane using the P-factor contour map as background. The black
square symbol corresponds to a stable nucleus, which is arbitrarily
defined as one with a half-life longer than ≈108 years. In such a
classification, there will be 288 nuclides in total [1]. The gray and
white solid lines represent the two stability lines calculated by using
the formula given in Refs. [3,4], respectively. The region between the
two pink solid lines means that the nuclei have already been observed
or synthesized [25]. The two black long-dash lines above and below
the valley of stability respectively indicate the proton and neutron
drip lines given by Möller et al. [57]. The wine short-dash line is the
N = Z line, just to guide the eye.

quantities BS and BC are same to those in Eq. (2) which
includes the deformation energy. The summation of two terms
ELD2 and Emic2 gives the total binding energy in the PES-2
calculation.

Note that the PES-1 and PES-2 calculations will give the
same equilibrium deformations but different binding energies
since the treatments of the deformation energy, shell, and
pairing corrections are the same but the spherical LD energies
differ. With the aid of the PES calculations, the present work
investigates some nuclear properties associated with the shape
and binding energies along the β-stability line. In addition,
Xu et al. [48] performed the configuration-constrained PES
calculation for the high-K isomers where the binding energy
calculated by the PES-1 method was used for adjusting the
pairing strength based on the five-point mass formula [41].
Such an adjustment is of importance for reproducing the exci-
tation energies of high-K states. Relative to PES-1 calculation,
the present improvement reduced the rms value of the binding
energies for 578 even-even nuclei from 4.505 to 0.614 MeV.
It will be reasonable to believe that the improved PES cal-
culation will give a better description for the adjustment of
the pairing strength since it can provide the relatively accurate
binding energy (but this is beyond our present project and we
just focus on even-even nuclei here).

III. RESULTS AND DISCUSSION

To evaluate the nuclear properties, some phenomenological
or empirical or systematic laws are often used since they
are usually simple but valid and weakly model-dependent,
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FIG. 2. The available phenomenological quantities (a) R4/2 ratio
[25], and (b) P factor for even-even nuclei along the β-stability line.

even model independent. As is pointed out by Casten et al.
[49], the P [P ≡ NpNn/(Np + Nn)] factor is one of the phe-
nomenological quantities where Np and Nn are respectively
the numbers of valence protons and neutrons (for more details,
see, e.g., Refs. [49–53]). Nuclear collectivity and deforma-
tion, especially in the heavy nuclei region, are expected to
depend on it sensitively. As is known, nuclear deformation
depends to an extent on the competition between the like-
nucleon pairing interaction and the neutron-proton interaction
[49]. Such competition can be suitably described by the P
factor defined above since it can be viewed as the average
number of interactions of each valence nucleon with those of
the other type. Much empirical evidence [52] indicates that
the n-p residual interaction and the pairing gap are typically
on the order of 250 keV and 1.0–1.5 MeV, respectively. When
each valence nucleon interacts with about 4 to 5 nucleons of
the other type (corresponding to P ≈ 4–5), the transition to
deformation will occur near this domain. At that time, the
residual n-p and pairing interactions become competitive. Us-
ing the contour maps of the P factor as the background, Fig. 1
illustrates the available stable nuclei and the β-stability lines
plotted in terms of the formulas N − Z = 0.4A2/(A + 200)
[3] and Z = A/(1.98 + 0.0155A2/3) [4], together with the pre-
dicted drip lines [18] and the boundaries of even-even nuclei
synthesized experimentally. One can evaluate the P-factor
distribution along the stability line. We notice that the stability
lines almost go across the top of the highest P-factor “hill.”
Near this “peak,” the rotational bands are identified in 254No
[54] and 256Rf [55,56], indicating the expected collectivity
and deformed properties.
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FIG. 3. Calculated ground-state equilibrium deformations (a) β2, (b) γ , and (c) β4 for even-even nuclei with 10 � Z � 118 along the
β-stability line, compared with the FY + FRDM (FF) calculations [57] and the available data [58,59]. Note that the selected nucleus (e.g., N
or A) for a given Z is determined by Green’s expression [3], N − Z = 0.4A2/(A + 200), and two PES calculations give the same equilibrium
deformations. See the text for more details.

In this paper, we choose to investigate the nuclear prop-
erties of 59 even-even nuclei which lie on or are the closest
to the β-stability line (the Green’s expression [3], N − Z =
0.4A2/(A + 200), is arbitrarily adopted) for given even pro-
ton numbers from Z = 2 to 118. Of course there will be 88
even-even nuclei on the stability line for given even neutron
numbers from N = 2 to 176 (the largest N in the observed
even-even nuclei), but the obtained conclusions will be simi-
lar. As shown in Fig. 2(a), the plot of the P factor as a function
of Z indicates that there are two peaks which are higher than
the critical shadow region. To cross-check this large collec-
tive behavior, we present the R4/2 [≡E (4+

1 )/E (2+
1 )] ratio of

the selected 55 even-even nuclei in Fig. 2(b), together with
several critical points (see Refs. [60–68] for more details).
Such a parameter is arguably one of the best indicators of
changes in low-lying nuclear structure. Although it cannot
describe the magnitude of the deformation, it is often able
to provide nuclear deformed properties [69]. Moreover, these
critical R4/2 values are widely used to identify collective
properties of even-even nuclei. Figure 2(b) illustrates that
most of the nuclei on the stability line exhibit the collective
behavior with R4/2 > 1.82 (the Mallmann critical point [60]),
in good agreement with the results given by the P-factor
plot.

Figure 3 shows the ground-state equilibrium deformations
β2, γ , and β4 obtained from the calculated PES minima for
even-even nuclei along the stability line, together with the
calculations by the folded-Yukawa (FY) single-particle po-
tential and the finite-range droplet model (FRDM) [57] and
the available experimental data [58,59]. As is known, the
systematically collected data concerning the most important
quadrupole deformation parameter β2 can be obtained not
only from reduced transition probabilities B(E2) [58,59] but
also from experimental quadrupole moment values [59]. The
β2 value given by using the reduced transition probabilities
B(E2) is always positive and by definition automatically in-
cludes the dynamic effect. The quadrupole deformation β2

calculated from the quadrupole moment values is obtained
by not considering nuclear surface vibrations since the rela-
tionship is obtained by assuming that the amplitude of the
near-spherical nucleus shape vibrations is small in comparison
with the nucleus equilibrium deformation.

Note that, based on the measured static electric-quadrupole
moment Q in the laboratory system [59], β2 is calculated
by [70]

β2 = 15Q

19Z〈r〉2

(I + 1)(2I + 3)

3K2 − I (I + 1)
, (8)
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FIG. 4. The experimental half-lives (in log10 scale) of even-even nuclei along 59 different isotopic chains, for each subfigure, taking
the corresponding neutron number N (cf. the dashed line and the N number given for each isotopic chain) of the even-even nucleus on
the β-stability line as a reference. The data are taken from Ref. [25] and the red solid circle denotes the lower limit of the data (e.g., for
140Te T1/2 > 300 ns, the datum 300 ns is adopted).
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FIG. 5. Similar to Fig. 4, but for two-proton and two-neutron separation energies. The data are taken from Ref. [10].

where I is the spin of the state and K is the angular-momentum
projection on the symmetry axis. Considering the surface dif-
fusion properties in light nuclei (e.g., for A � 100), the value

of 〈r2〉 was evaluated by using the expression [71]

〈r2〉 = 0.6R2
0(1 + 10/3(πa0/R0)2)

1 + (πa0/R0)2
, (9)
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where the parameters R0 = 1.07A1/3 fm and a0 = 0.55 fm
(which can be obtained from the data on fast-electron scat-
tering). For A > 100, 〈r2〉 = 0.6 × (1.2A1/3)2 fm2. Usually,
there are rather obvious differences between these two ex-
perimental β2 values extracted from measured B(E2) and Q,
especially in the soft nuclei. As we can see from Fig. 3(a), it
seems that the difference of β2 values from two different kinds
of measurements supports the vibrating effects in light nuclei
during the calculations. In the heavier nuclei, our calculations
agree with the available data and the results given by Möller
et al. [57]. Moreover, the calculated deformations, e.g., β2,
are in good agreement with the empirical analysis, e.g., cf.
Fig. 2. The γ and β4 deformations are attracting much interest
in the research of nuclear shape as well. The present calcula-
tions will provide some useful information but the anomalous
points [e.g.,the anomalous β

Q
2 in 170

66 Dy94, as seen in Fig. 3(a)]
will need verification.

Nuclear stability (or rate of decay), which is governed by a
combination of quantum mechanical rules, nuclear forces, and
electrostatic charge, is usually measured in terms of half-life.
In Fig. 4, we present the half-lives of 59 isotopic chains, from
Z = 2 to 118, taking the selected nuclei on the β-stability
line as footholds. That is, the half-lives are plotted against
N , but the corresponding N of nuclei on the stability line
are used for the reference coordinates. After such coordinate
shifts, one can easily find that the half-lives in each isotopic
chain systematically decrease as the neutron number N moves
away from the reference point at least up to the Pb isotopes.
Above Z = 82, it seems that the half-life properties lose the
systematic behavior visible for the lighter nuclei. From the
present data with Z > 82, regardless of the N number, no
stable nuclei exist except for several so-called primordial ra-
dioactive nuclides (e.g., 232Th, 235,238U, and 244Pu).

Moreover, one can notice that two maxima may appear
during the half-life evolution, although both are unstable. In
addition, below the Z = 50 Sn isotopes, there are more data
on the right side of the stability line, whereas after this iso-
tope, more data are observed on the neutron-deficient side. In
particular, all the observed data locate on the left side of the
stability line, namely, the neutron-deficient direction. To ex-
plore along the stability line, the neutron-rich projectile-target
combinations seem necessary. Note that the 294

118Os176 nucleus
with the largest Z up to now has been identified but there is
neither half-life information available nor two-nucleon sep-
aration energies. It is certainly expected that the half-lives
will rapidly increase upon approaching the 298

114Fl184 nucleus,
verifying the prediction of the island of stability. Anyway,
from this point of view (standing on the β-stability line), it
seems that one can easily notice some systematic properties
which may be helpful for deducing the related physics behind
them.

The binding energy and the nucleon(s) separation energy
are of importance for nuclear structure. They can provide
important information on the relative stability of nuclei, the
nucleon-nucleon interactions in the nucleus, the bound limits
of nuclei, the shell gaps, and so on [72]. Under the same
horizontal-coordinate convention as Fig. 4, Fig. 5 illustrates
the available two-nucleon separation energies for 59 even-
even isotopic chains. As is well known, separation energies
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FIG. 6. Comparison of discrepancies between experimental and
calculated (a) binding energies and (b) binding energy per nucleon
based on the first (PES-1) and the second (PES-2) method (see text
for more details) for even-even nuclei along the β-stability line. The
proton number 12 is the lowest value of Z that we consider in the
present investigation. Experimental data are from Ref. [10].

of isotopic (isotonic) nuclei of a given parity type (e.g.,
even-even, even-odd, odd-even, or odd-odd) follow linear sys-
tematics within each shell region if plotted as a function of
N (Z) [10]. Indeed, as seen in Fig. 5, one can see such lin-
ear systematics: the two-neutron separation energy generally
decreases with increasing N, reflecting the symmetry energy
and the shell filling, while at certain values of N the slope
of the curve changes sharply [72], corresponding to the shell
closure; the opposite trend for two-proton separation energies.
Meanwhile, it can be found from Fig. 5 that two lines for two-
proton and two-neutron separation energies in each isotopic
chain cross at the stability line and the absolute values of
the slopes of these two lines have a decreasing trend with
increasing proton number Z. Above 264

102No162, experimental
data are scarce but the evolution trends seem to be valid and
await experimental clarification. Figure 6 compares discrep-
ancies between experimental and calculated binding energy
and binding energy per nucleon based on two PES methods
for even-even nuclei along the β-stability line. The discrep-
ancies of binding energy and binding energy per nucleon
are defined as 	B = Bexpt(Z, N ) − Btheo(Z, N ) and 	B/A =
Bexpt(Z, N )/A − Btheo(Z, N )/A, respectively. Obviously, one
can notice that the improved method gives better agreement
with experimental data, especially for nuclei above N = 40.
The improvement in the second method reduces the root mean
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FIG. 7. Similar to Fig. 6, but for (a) two-proton separation ener-
gies S2p and (b) two-neutron separation energies S2n. Data are taken
from Ref. [10].

square error in the calculated binding energies from 4.305 to
0.533 MeV and the error in the calculated binding energies
per nucleon from 0.030 to 0.010 MeV.

Figure 7 shows the discrepancies between experimental
and calculated two-nucleon separation energies, e.g., de-
fined by 	S2n = Sexpt

2n (Z, N ) − Stheo
2n (Z, N ) for neutrons and

S2n(Z, N ) = B(Z, N ) − B(Z, N − 2) (similarly for protons). It
should be pointed out that we take the convention that the
binding energy B(Z, N ) is positive. As seen in Fig. 7(a), the
differences 	S2p have a complicated zigzag pattern in these
two calculated results. This behavior may be due to the pres-
ence of large shell effects at proton closures which lead to
jumps in the binding energy. However, it is interesting that
such behavior seems not to occur for neutrons, as seen in
Fig. 7(b). One can find that the discrepancies between theory
and experiment have a decreasing trend with increasing Z .
The improvement in the second method reduces the root mean
square error in the calculated two-proton separation energies
from 0.966 to 0.926 MeV and the error in the calculated
two-neutron separation energies from 0.802 to 0.368 MeV.

Based on the improved PES method, Fig. 8 shows the
calculated two-proton and two-neutron separation energies
for even-even nuclei up to the predicted superheavy island
along the stability line and their differences, together with the
comparison with experiments. It seems that the two-neutron
separation energies against Z represent an approximately lin-
ear relationship, decreasing with increasing proton numbers.
It is known that two-neutron separation energies approxi-
mately equal twice the chemical potential λ. As illustrated in
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FIG. 8. (a) Calculated two-nucleon separation energies S2p (cir-
cles) and S2n (squares) of even-even nuclei along the stability line
against Z up to 118 in terms of the second PES method. The results
of the linear least-square fit are also shown, where r is the Pearson
correlation coefficient. (b) Comparison of differences between ex-
perimental (solid squares) and calculated (using the improved PES
method, i.e., open circle symbols) values of S2n-S2p. Data are taken
from Ref. [10].

Fig. 8(a), the two-nucleon separation energies are still more
than 8 MeV for the nuclei up to Z = 118 on the stability
line, indicating that the nucleons will be strongly bound at
these zones. Based on a simple linear least-square fit, we
can crudely estimate the bound limit (e.g., when S = 0, Z =
202 ± 8) along the stability line. Combining the formula of
the β-stability line, it is easy to determine that the heaviest
even-even bound nucleus may be (or be close to) the 574

372202
nucleus (between 548

354194 and 600
390210 along the stability line).

From Fig. 8(b), one can see that both theoretically and ex-
perimentally, the differences between S2n and S2p exhibit an
obvious staggering behavior but the calculated results agree
with available data very well, which indicates that the ex-
trapolations to the high-Z region along the stability line are
reasonable and believable to an extent using the improved PES
method. Practically, this bound limit is almost impossible to
be verified nowadays. However, it still bears some information
from a theoretical point of view.

IV. SUMMARY

In summary, we have systematically investigated the evo-
lution of structural properties along the β-stability line based
on the PES method in the (β2, γ , β4) deformation space.
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The predicted nuclear mass (binding energy), which is a
critical input quantity for nuclear reaction and decay, is to
an extent improved by using the new modeling and param-
eters for macroscopic energy. We compared the calculated
ground-state deformations with experiments and with previ-
ous theoretical results. It seems that the vibrational effect may
not be ignored and is responsible for the deformation dis-
agreement between experiment and theory in the soft nuclei.
Taking the nucleus on the stability line as the origin of the
coordinates, one can see the very similar signatures of the
evolution both for two-nucleon separation energies and for nu-
clear half-lives in its isotopic and isotonic chains. The binding
energy and two-nucleon separation energy of the nuclei on
the β-stability line are investigated and analyzed, indicating
the improved PES calculations can describe experimental data
better. Furthermore, we crudely estimate the bound limit along
the stability line. The present investigation will be helpful for

systematically understanding the structure evolution of nuclei
along the stability line, up to the predicted superheavy island.
It will also be interesting to further examine their related prop-
erties at, e.g., high-spin and/or high-temperature (excitation
energy) conditions in the future.
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