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A unified theoretical model reproducing charge radii of known atomic nuclei plays an essential role in making
extrapolations for unknown nuclei. Recently developed new ansatz which phenomenologically takes into account
the neutron-proton short-range correlations (np-SRCs) can describe the discontinuity properties and odd-even
staggering (OES) effect of charge radii along isotopic chains remarkably well. In this work, we further review the
modified root-mean-square (rms) charge radii formula in the framework of relativistic mean field (RMF) theory.
The charge radii are calculated along various isotopic chains that include the nuclei featuring the N = 50 and
82 magic shells. Our results suggest that RMF with and without considering a correction term give an almost
similar trend of nuclear size for some isotopic chains with open proton shell, especially the abrupt increases
across the strong neutron closed shells and the OES behaviors. This reflects that the np-SRCs have almost
no influence for some nuclei due to the strong coupling between different levels around Fermi surface. The
weakening OES behavior of nuclear charge radii is observed generally at completely filled neutron shells and
this may be proposed as a signature of magic indicator.
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I. INTRODUCTION

Nuclear charge radii, which can characterize the charge
density distributions and the Coulomb potentials in nuclei,
provide access to nuclear structure information [1]. Plenty
of methods are employed to perform measurements of nu-
clear charge radii, such as muonic atom x rays (μ−) [2],
high-resolution laser spectroscopy techniques [3–8], high en-
ergy elastic electron scattering (e−) [9–11], and isotope shifts
(ISs) [12,13], etc. So far, more available charge radii data are
provided in the nuclear chart [14]. As one of the important
input quantities in astrophysics, nuclear charge radius plays
an important role in theoretical study [15]. Moreover, reliable
predictions can also serve as useful guides for experimental
detection of charge radii of nuclei far away from the β-
stability line.

In general, nuclei charge radii often display the emergence
of simple patterns and regular behaviours or global properties
that the variations of charge radii along isotopic chains rep-
resent discontinuous features [14,16–18]. These remarkably
abrupt changes in charge radii are observed naturally across
the neutron-closure shells, namely the kinks at N = 20, 28,
50, 82, 126 [14,19–27]. The strong shell structure results
in the parabolic-like shapes of charge radii with respect to
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the variation of neutron number. In addition, the odd-even
staggering (OES) effect that the nuclear charge radii of odd-N
isotopes are smaller than the averages of their even-N neigh-
bors, is generally observed throughout the nuclear chart [14].

With the accumulation of experimental data, many empir-
ical relations and microscopic models have been proposed to
investigate the variations of nuclear charge radii. The general
nuclear size is ruled by A1/3 law through introducing the shell
and isospin effects [28,29]. Similarly, Z1/3 dependence for
nuclear charge radius is also directly proposed in Ref. [30].
The sophisticated Garvey-Kelson (GK) relation had been
transformed to describing the nuclear charge radius [31,32],
but its extrapolating ability is limited [33,34]. For heavy or
superheavy neutron-rich elements, it is worth noting that their
bulk properties are barely obtained due to short half-lives [35].
Recent works attempted to deduce the charge radii based
on the α-decay properties [36,37], even cluster and proton
emission data [38]. The microscopic nuclear structure models
based on the mean-field approach such as the Hartree-Fock-
Bogoliubov (HFB) model [39,40] and relativistic mean field
(RMF) theory [41,42] can reveal the inner nuclear interactions
self-consistently. As encountered in ab initio calculations with
chiral effective field theory (EFT) interactions [19], these
models cannot reproduce the fine structure of nuclear charge
radii well. In recent years, Bayesian neural networks as an
alternative approach were devoted to describe the charge radii
in the nuclear chart [43–45]. This approach can describe well
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the experimental data within uncertainties, but the underlying
physical mechanism is unclear.

Various mechanisms have been proposed to elucidate the
evolution of nuclear charge radii, such as the core polariza-
tion by valence neutrons [46,47], precise knowledge of radial
moments [48], adjacent nucleons relations [49], quadrupole
deformation [50], etc. The sophisticated Fayans EDF model,
in which a novel density-gradient term was introduced into
the pairing interaction, can reproduce the staggering effects
of charge radii for Ca and Sn isotopes [24,51]. This model
demonstrates that surface pairing components play an essen-
tial role. By contrast, the phenomenologically modified charge
radii formula which associates to the neutron-proton (np) pair
correlations was proposed in the relativistic mean field (RMF)
theory within NL3 parametrization set [52]. This new ansatz
can remarkably describe the discontinuity properties and OES
effects of charge radii along Cu and In isotopic chains [53]. As
argued in Ref. [54], the short-range correlations (SRCs) orig-
inating from np pairing contribute to the root-mean-square
(rms) charge radius of finite nuclei. The np correlations play
an essential role in characterizing the OES of nuclear charge
radii [55] and the magnitude of the neutron skin in asymmetric
nuclei [56].

As mentioned in Ref. [54], the effect of np-SRCs has an
influence on the computed rms charge radius. In some cases,
however, this effect has no contribution to the charge radius. In
Ref. [26], it was pointed out that pairing did not play a crucial
role in the origin of the kink at magic number and OES be-
haviors. This means the experimental data can be reproduced
predominately at the mean-field level. To understand these un-
certainties, we further check the recently developed approach
by studying the charge radii of nuclei featuring the N = 50
and 82 magic shells. We focus on the variations of nuclear
charge radii and the OES behaviors along isotopic chains and
aim to make a further complement for our new ansatz.

This paper is organized as follows. In Sec. II, we briefly
report the theoretical model. In Sec. III, we present the results
and discussions. A short summary and outlook are provided
in Sec. IV.

II. THEORETICAL MODEL

The relativistic mean field (RMF) theory had made re-
markable successes in describing various nuclear physics
phenomena [57–67]. For nonlinear self-consistent Lagrangian
density, nucleons are described as Dirac particles which
interact via the exchange of σ , ω, and ρ mesons. The electro-
magnetic field is served as photon. The effective Lagrangian
density is written as

L = ψ̄[iγ μ∂μ − M − gσ σ − γ μ(gωωμ + gρ �τ · �ρμ + eAμ)]ψ

+ 1
2∂μσ∂μσ − 1

2 m2
σ σ 2 − 1

3 g2σ
3 − 1

4 g3σ
4

− 1
4�μν�μν + 1

2 m2
ωωμωμ + 1

4 c3(ωμωμ)2 − 1
4

�Rμν · �Rμν

+ 1
2 m2

ρ �ρμ · �ρμ + 1
4 d3(�ρμ�ρμ)2 − 1

4 FμνFμν, (1)

where M is the mass of nucleon, mσ , mω, and mρ are the
masses of the σ , ω, and ρ mesons, respectively. Here, gσ ,
gω, gρ , and e2/4π are the coupling constants for σ , ω, ρ

mesons, and photon, respectively. In the present work, the

Dirac equation for the nucleons and the Klein-Gordon type
equations with sources for the mesons and the photon are
solved by the expansion method with the axially symmetric
harmonic oscillator basis [41]. Twelve shells are used for ex-
panding the fermion fields and 20 shells for the meson fields.
The NL3 parameter set is employed [68]. In order to obtain
the ground state properties, the Hamiltonian of the system
becomes H ′ = H − λ〈Q〉, the second term on the right-hand
side represents the modified linear constraint part [69], where
λ is the spring constant that its value is changed during the
self-consistent iteration and Q is intrinsic multipole moment.
The ground state properties of finite nuclei are obtained by
constraining quadrupole deformation β20. The values of β20

change from −0.60 to 0.60 with the interval of 0.01. In gen-
eral, the mean-square charge radius of a nucleus has the form
(in units of fm2) [41,70]

R2
ch =

∫
r2ρp(r)d3r∫
ρp(r)d3r

+ 0.64 fm2, (2)

where in the first term, ρp(r) corresponds to the charge density
distribution of point-like proton and then the second term
accounts for the finite size effects of proton [70]. However,
the shell closure and OES effect of charge radii cannot be
reproduced well for Ca isotopes [52]. Since the modified
expression had been proposed in the following way:

R2
ch =

∫
r2ρp(r)d3r∫
ρp(r)d3r

+ 0.64 fm2 + a0√
A

�D fm2. (3)

The last term on the right-hand side is the modified term which
associates to the Cooper pair condensation [71]. The quantity
A is the mass number and a0 = 0.834 is a normalization con-
stant for nuclei with Z < 50. For nuclei with Z � 50, a0 =
0.22 is used [52]. The quantity �D = |Dn − Dp| represents
the difference of Cooper pair condensation between neutron
and proton. In Eq. (3), the modified term is associated to the
Cooper pair condensation function with the following form:

Dn,p =
n,p∑

k>0

ukvk. (4)

This quantity can represent a measurement of the number of
Cooper pairs in the BCS wave function [71], where vk and
uk are the BCS amplitudes of occupation and nonoccupation
probability of the kth single-particle orbital, respectively. The
summation is over all the occupied single-particle levels. It
is calculated self-consistently by solving the state-dependent
BCS equations with a δ force interaction [72,73]. More details
and discussions are shown in Ref. [52].

III. RESULTS AND DISCUSSION

A. Cooper pair components

As mentioned above, the information about Cooper pair
components is obtained by tackling the pairing correlations in
atomic nuclei. Conventionally, the pairing correlations can be
treated either by the BCS method or by the Bogoliubov trans-
formation. The Bogoliubov transformation is widely used
in a theoretical framework, such as in the great successful
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FIG. 1. Cooper pair components of proton (solid circle) and neu-
tron (open square) are shown along Kr isotopic chain.

relativistic Hartree-Bogoliubov (RHB) models [74–77]. Es-
pecially, recent study shows that the deformed RHB model
in continuum makes a predictive power for nuclear mass
in regions of astrophysical interest [78]. Likewise, the BCS
method can also capture the ground state properties of finite
nuclei throughout the periodic table [41]. In this work, we
focus on the behavior of charge radii along isotopic chains
with respect to the variation of neutron number. The pairing
window of 12 MeV both above and below the Fermi surface
is employed for the particle-particle channel. The pairing
strength is generally determined by fitting to the odd-even
mass staggering [79]. In order to reflect the universality of
our results, the pairing strength is V0 = 322.8 MeV fm3 for
all calculations [52]. The accuracy of the convergence is deter-
mined by the self-consistent iteration in binding energy, which
is lower than 10−6 MeV.

The difference of Dn and Dp is employed to equivalently
measure the np-SRCs components in the rms charge radius.
As shown in our previous work [52], the fine structure of finite
nuclei charge radius is determined by the modified term. In
Ref. [54] the authors demonstrated that the np-SRCs had no
contribution to charge radii for some open shell nuclei. This
can be easily understood in our new ansatz that Dn and Dp

might be comparable for open shell nuclei due to the strong
coupling between different levels around the Fermi surface.
From this point of view, the quantities Dn,p as a function of
neutron number are plotted along Kr (Z = 36) isotopic chain
in Fig. 1. One can find the values of quantities Dn and Dp

are indeed close for the neutron and proton. Consequently,
the modified part has slight influence on the rms charge radii.
In order to clarify this phenomenon, more isotopic chains are
investigated.

B. Variations of charge radii along isotopic chains

For the convenience of discussion, the results obtained by
Eq. (2) are labeled as RMF(BCS), and RMF(BCS)* represents
the results performed by the modified charge radii formula

FIG. 2. Charge radii of krypton (a), strontium (b), tellurium (c),
and xenon (d) isotopes are obtained by the RMF(BCS) (short-dashed
line) and the modified RMF(BCS)* (open diamond) approaches,
respectively. The experimental data are taken from Ref. [14] (filled
circle).

Eq. (3). In Fig. 2, charge radii of krypton (a), strontium (b),
tellurium (c), and xenon (d) isotopes are obtained by the
RMF(BCS) and RMF(BCS)* methods. For krypton (a) and
strontium (b) isotopes, the charge radii of these two isotopic
chains vary smoothly with increasing neutron number until
N = 50. The rapid increasing trends are shown across N =
50, but the slope of the change of strontium isotopic chain
is larger than krypton’s. The similar rapid increase of charge
radii across N = 50 was studied earlier in RMF within the
NL-SH parametrization set [80]. These nuclei with closed
shells are more difficult to excite than their neighbors, which
is evidenced by their relatively stable properties [16,81,82].
This suggests that these regular and rapidly increasing pat-
terns of charge radii across N = 50 are common features
observed in self-bound many-nucleon systems [14].

For 75Kr, there exists a large deviation between experi-
mental value and the calculated result. The distinctive aspect
that the shape deformation has an influence on the charge ra-
dius should be considered carefully [28,50]. The experimental
data indicates the possible quadrupole deformation parameter
β20 ≈ 0.27 for nucleus 75Kr [83]. However, in our calculation,
β20 is around 0.48 for this nucleus. The same scenario can also
be encountered for 96Kr, but with the calculated quadrupole
deformation parameter β20 ≈ 0.32. According to the above
discussions, the quadrupole deformation parameter in exper-
iment may be much smaller than the calculated value. Along
the Sr isotopic chain, the charge radii beyond the neutron
number N = 60 appear to increase with surprisingly leaping
slope. As argued in Ref. [84], some particular isotopes, as
in the region around Z = 40, N = 60, and Z = 62, N = 90,
are considered to present a rapid onset of deformation. Ac-
tually, for 98–100Sr, the calculated quadrupole deformation
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FIG. 3. Same as Fig. 2, but for barium (a), cerium (b),
neodymium (c), and samarium (d) isotopes.

parameters β20 are almost 0.45. For 81–88Sr isotopes, the
rms charge radii formula with correction term can reproduce
experimental data well. But the rms charge radii of some
proton-rich nuclei are slightly overestimated by the modified
formula.

Remarkably, the emergency of rapidly increasing patterns
of charge radii is also observed across N = 82 in various
different isotopic chains [14,16]. As shown in Fig. 2(c) and
(d), this feature is also found for tellurium and xenon isotopic
chains. However, these two methods almost give similar re-
sults with the increasing neutron number. In order to further
elaborate the discontinuity aspects of nuclear charge radii
across the N = 82 neutron shell, in Fig. 3, the calculated
results for barium (a), cerium (b), neodymium (c), and samar-
ium (d) isotopic chains are also shown. We can find that
both of these two methods almost give similar trends with
the increase of neutron number, especially the effect of shell
closures on charge radii across N = 82. Similar to Fig. 3(c),
the RHB theory describes very well the kink at N = 82 in
the charge radii of neodymium isotopes [85]. This disconti-
nuity aspect was presented evidently owing to the relatively
stable properties of closed-shell nuclei [23,24]. This had been
attributed to the rather small isospin dependence of the spin-
orbit term in the RMF model [86].

The parabolic-like shapes of nuclear charge radii are
observed generally between two strong neutron closed
shells [14,16]. This distinct feature was evidently presented
between N = 20 and N = 28 shells along the calcium isotopic
chain [14,19]. In addition, this peculiar phenomenon can also
be found dramatically in the latest study of cadmium [23]
and tin [24] isotopic chains. In contrast to calcium isotopes,
the amplitudes of the parabolic-like shape of nuclear charge
radii had been reduced remarkably. As shown in Ref. [52], the
convex behavior of nuclear charge radii between two magic
neutron shells can be well reproduced by the modified for-
mula. Therefore, we may infer that the parabolic-like shape

of nuclear charge radii can also be observed between N = 82
and N = 126 shell closures, but with smaller amplitudes. Thus
more reliable experimental data are urgently needed.

C. OES behaviors in nuclear charge radii

As shown above, the calculated results clearly show that
the RMF(BCS) and RMF(BCS)* approaches give almost sim-
ilar trends of nuclear size along isotopic chains with Z =
36, 38, 52, 54, 56, 58, 60, and 62. Although the modi-
fied term is introduced in the RMF(BCS)* approach, the
quantities measuring the Cooper pair components are close
for the neutron and proton due to the strong coupling be-
tween different levels around Fermi surface. In order to
further reflect the differences among these two methods,
it is essential to investigate the odd-even variations of nu-
clear charge radii. As mentioned above, the OES effects of
nuclear charge radii are generally observed throughout the
nuclear chart [14]. The possible mechanisms had been pro-
posed, such as blocking of ground state quadrupole vibrations
by the odd neutron [87] and core polarization by valence
neutrons [46,47]. Meanwhile, phenomenological four-particle
correlations or α-particle clustering were also supposed to
produce the OES of nuclear charge radii [55]. Another theo-
retical approach which includes the three- or four-body part in
an effective residual interaction was also introduced to repro-
duce the normal OES of nuclear charge radius well [88,89]. In
addition, the special deformation effects also lead to the large
staggering, especially in very neutron-deficient mercury and
gold isotopes [90,91]. In Ref. [92], it was pointed out that the
size of the neutron pairing energy had an influence on the large
OES of charge radii of mercury isotopes near the N = 104
midshell region, and the shape coexistence was also observed.

In order to emphasize these phenomena, the three-point
formula has been employed to extract the local variations of
charge radii along isotopic chains [51]. It is written in the form

�r (N, Z ) = 1
2 [R(N − 1, Z ) − 2R(N, Z ) + R(N + 1, Z )], (5)

where R(N, Z ) is the rms charge radius of a nucleus with
neutron number N and proton number Z . In Fig. 4, odd-
even staggering effects of charge radii along krypton (a),
strontium (b), tellurium (c), and xenon (d) isotopic chains
are shown with and without the modified term. As shown in
this figure, we can find that both of these two methods can
reproduce the odd-even oscillation effect. But for 85,86,90,91Sr
and 128,129,132,133Xe, the OES behaviors with the RMF(BCS)
approach cannot follow the trend of experimental data with
respect to the RMF(BCS)* method. Meanwhile, the modified
expression slightly overestimates the OES of nuclear charge
radii, especially for tellurium isotopes. The same scenario can
also be found along 90–95Sr isotopes. The reason is that Dn is
larger than Dp. For example, Dn = 1.9021 while Dp = 0 for
90Sr. As demonstrated in Ref. [52], one can properly describe
the OES of charge radii by adjusting the parameter a0 in
Eq. (3). In order to keep the global description, we will not
further perform a fine tuning in this work.

In Fig. 5, the OES effects of charge radii along barium (a),
cerium (b), neodymium (c), and samarium (d) isotopic chains
are also shown. As encountered in tellurium isotopes, the

014325-4



ODD-EVEN STAGGERING AND SHELL EFFECTS OF … PHYSICAL REVIEW C 105, 014325 (2022)

FIG. 4. Odd-even staggering effects of charge radii along kryp-
ton (a), strontium (b), tellurium (c), and xenon (d) isotopic chains
are obtained by the RMF(BCS) (dashed line) and the modified
RMF(BCS)* (open diamond) approaches, respectively. The experi-
mental data are taken from Ref. [14] (filled circle).

OES behaviors are also slightly overestimated in barium and
neodymium isotopic chains. In the cerium isotopic chain, the
experimental results are not shown due to the absence of odd-
mass nuclei data [14]. However, both of these two approaches
give almost similar trends with the increase of neutron number
except 142–146Ce isotopes. For samarium isotopes, the OES
amplitudes of nuclear charge radii are also slightly overesti-
mated by the RMF(BCS)* method. As discussed above, this
is due to the overestimated difference between Dn and Dp

in the modified term. As mentioned in Ref. [52], this may
be improved by restoring the particle number conservation in
tackling pairing correlations.

FIG. 5. Same as Fig. 4, but for barium (a), cerium (b),
neodymium (c), and samarium (d) isotopic chains.

The values obtained by the three-point OES formula em-
phasize the flattening of the isotopic dependence of the charge
radii along isotopic chains [51]. In Figs. 4(a) and 4(b), the
OES of charge radii along krypton (Z = 36) and strontium
(Z = 38) isotopic chains cannot strictly follow the general
oscillation trend at N = 50. We definitely label this weak-
ening behavior as “abnormal staggering effect”. Actually,
these phenomena are also observed at neutron magic number
N = 28 (Ca), 50 (Sr, Y, Zr), 126 (Pb), etc. [14]. As shown
in Figs. 4 and 5, similar cases are encountered at N = 82
closed shells. This may provide a signature to identify the
evidences of shell closure effects along isotopic chains in the
nuclear chart. As mentioned before, nuclear charge radii may
be influenced by many possible mechanisms, such as pair-
ing interaction and quadrupole deformation, etc. Therefore,
more available experimental data are needed to verify these
arguments.

IV. SUMMARY AND OUTLOOK

The rapid increases of nuclear charge radii are com-
monly observed features across N = 50 and 82 closed shells
throughout the periodic table [14]. The latest studies further
demonstrate these discontinuity phenomena along cadmium
and tin isotopic chains [23,24]. In this work, the modified
formula is employed to study charge radii along rich-data
even-Z isotopic chains, such as krypton (Z = 36), strontium
(Z = 38), tellurium (Z = 52), xenon (Z = 54), barium (Z =
56), cerium (Z = 58), neodymium (Z = 60), and samarium
(Z = 62) elements. Our results can reproduce the universal
kink features of nuclear charge radii, namely a smooth in-
crease towards shell closures and then an abrupt increase
through N = 50 and 82 filled shells. The similar scenario is
encountered at N = 28 and 126 [52]. From calculated results,
we can find that both of these methods present similar re-
sults or the modified formula shows slight improvement. This
means that the np pairs correction has almost no influence on
charge radii for these nuclei with open proton shells and this
is consistent with Ref. [54].

Our results can reproduce the OES behaviors of charge
radii, but this trend is overestimated at magic neutron clo-
sures. Based on �r’s definition, this seemingly corresponds
to the inverse OES of charge radii, namely anomalous OES
behavior. As shown in Ref. [52], the weakening of OES be-
haviors of charge radii was evidently found at N = 28 and
126 closed shells. Actually, this debilitating tendency can
be observed naturally at neutron magic numbers [14]. We
propose this commonly observed signature as an indicator to
capture the magicity properties throughout nuclear chart. We
should mention that many possible mechanisms are proposed
to explain the fine structure of nuclei size [26,46–49,54],
especially those about the unpaired nucleons near magicity
numbers.

The atomic nucleus is formed by two different kinds of
fermions (protons and neutrons) which interact mainly by the
electromagnetic and strong forces. It is pointed out that new
data in neutron-rich nuclei all exhibit an intriguingly simple
increase in charge radii across closed shells [16]. More-
over, the electromagnetic properties of isotopes around magic
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numbers of protons and neutrons have been found to exhibit
astonishingly simple trends. As demonstrated in Ref. [54],
the np-SRCs which originate from short-range neutron-proton
tensor interaction will cause protons to move far away from
the center of the nucleus. For open shell nuclei, the quantity
of Cooper pair components coming from protons and neutrons
is roughly comparable due to the strong coupling between
different levels around the Fermi surface. That is why both
of these two approaches give almost similar results. Consider
the results for both open and closed proton shell isotopes
in the present and our previous works, the new ansatz is a
unified approach in describing the nuclear size quantitatively.
However, it is still an open question to include the np-SRCs
self-consistently in density functional theory.
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