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Moments and radii of exotic Na and Mg isotopes
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The ground-state properties of neutron-rich exotic Na and Mg isotopes with even numbers of neutrons, N ,
are studied up to drip lines. The shell-model calculations with an ab initio effective nucleon-nucleon interaction
reported by Tsunoda, Otsuka, Takayanagi et al. [Nature (London) 587, 66 (2020)] are extended to observables
such as magnetic dipole and electric quadrupole moments, and charge and matter radii. Good agreements with
experimental data are found, and predictions are shown up to drip lines. A prescription to extract the deformation
parameters for the eigenstates of the Monte Carlo shell model is presented, and the obtained values are used
to calculate charge and matter radii. The increase of these radii from the droplet model is described as the
consequences of the varying deformation of the surface and the growing neutron excitations or occupations
in the p f shell, consistent with the drip-line mechanism presented in the above reference. The neutron skin
thickness is shown to be about 0.1 fm for N = 20, which can be compared to the value for 208Pb in an A1/3

scaling. The relation of the neutron skin thickness to the electromagnetic moments is discussed for an exotic
nucleus, 31Na.
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I. INTRODUCTION

Exotic nuclei keep providing us with exciting questions
and challenges to nuclear physics. Here, exotic nuclei mean
atomic nuclei with unbalanced ratios of the proton number
Z and the neutron number N , and are transformed to less
unbalanced nuclei through β decays [1,2]. The destinations of
such decays are stable nuclei, where those ratios are closer to
unity and the lifetimes are basically infinite. The exotic nuclei
are “exotic” in many features as compared to stable nuclei.
While the major subjects there include the formation of the
neutron halo [2,3], the shell evolution as functions of Z or N
[4], etc., another one lies in the variation of the surface de-
formation. In fact, it has been shown [5] that the neutron drip
line, meaning the last bound nucleus with the maximum N
for a given Z (i.e., fixed isotope chain), is determined, at least
for F, Ne, Na, and Mg isotopes, by the mechanism driven by
the interplay between the deformation and monopole energies.
This is in contrast to the other traditional drip-line mechanism
with the single-particle origin, which is valid, at least, for
nuclei with Z � 8 and yields the neutron halo. Interestingly
enough, these two drip-line mechanisms may emerge alterna-
tively as Z increases. The neutron drip lines not only provide
us with intriguing challenges to be explored, but also exhibit
crucial conditions or constraints to interdisciplinary studies,
for instance, stellar nucleosynthesis. As the present drip-line
mechanism may dominate the structure of a number of heavy
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nuclei, it is of urgent importance to investigate physical ob-
servables of exotic nuclei for the in-depth anatomy of this
mechanism.

We focus, in this paper, on the ground-state properties of
even-N Na isotopes: magnetic moments, electric quadrupole
moments, and charge and matter radii. The radii of even-N
Mg isotopes are discussed also. By extending the calculations
of Ref. [5], we show how existing experimental data can be
reproduced and what are predicted. The moments and radii
are precious probes of various aspects of the ground states.
Besides, from the charge and matter radii, the thickness of the
neutron skin is discussed.

II. SHELL-MODEL FRAMEWORK AND
THE EEDF1 INTERACTION

As mentioned in Sec. I, the theoretical results are obtained
by extending the shell-model-based approach of Ref. [5]. The
same Hamiltonian and (single-particle) model space as in
Ref. [5] are taken, but more observables are evaluated, leading
us to new insights. The model space is composed of all single-
particle orbits in the sd and p f shells, on top of the 16O inert
core. The many-nucleon Hilbert space can be gigantic for this
model space, and the Monte Carlo shell model (MCSM) [6,7]
is needed to cover all relevant nuclei. The present effective
nucleon-nucleon (NN) interaction was derived, in an ab initio
way from the interaction of the chiral effective field theory
[8], and the in-medium renormalization is made through the
extended Krenciglowa-Kuo (EKK) method [9–11]. Note that
one can straightforwardly combine two major shells in the
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FIG. 1. (a) Magnetic and (b) spectroscopic electric quadrupole
moments of the ground states of Na isotopes: 3/2+

1 (5/2+
1 ) states for

21,23,29–41Na (25,27Na). Red circles and lines indicate present theoreti-
cal results. In panel (a), while g factors take free values for the dashed
line, the orbital g factors include an isovector shift of 0.2 for the
solid line. Blue closed circles in panel (a) are experimental data from
Ref. [18]. In panel (b), blue closed (open) circles are experimental
data from Ref. [29] ([30]), while green symbols are from Ref. [18].
In panel (b), theoretical results are obtained with the same effective
charges as in Ref. [17].

EKK method, whereas this is a challenge in other ab initio ap-
proaches [4,11–14]. The Fujita-Miyazawa three-nucleon force
[15] is incorporated in the manner of Ref. [16]. The present
effective NN interaction for the sd-p f shell was first reported
in Ref. [17], and was named EEdf1.

III. MAGNETIC AND ELECTRIC
QUADRUPOLE MOMENTS

We start with the magnetic moments of the ground states
of the Na isotopes, as shown in Fig. 1(a) in comparison to
experimental data [18]. While the magnetic moments were not
touched in Ref. [5], the present theoretical values are calcu-
lated from the same wave functions as in Ref. [5]. The present
work correctly reproduces the ground-state spins and parities
(JP) except for 21,27Na, where the lowest JP = 5/2+ and 3/2+
states are in the wrong order in the present calculation, but the
excitation energies are as small as 30 and 24 keV, respectively.

Note that the ground states in this paper always refer to those
in experiments.

The magnetic moments obtained with free spin g fac-
tors (gs) and free orbital g factor (gl ) exhibit [dashed line
in Fig. 1(a)] reasonable agreement with experimental data.
Because the Schmidt value is 4.8 (0.1) n.m. for JP = 5/2+
(3/2+), the structures of these nuclei are far from simple
single-particle pictures. The quenching of the spin g fac-
tors is usually needed in shell-model calculations in order
to reproduce experimental values [19–23]. For instance, a
standard value of the quenching is 0.85 [21]. For Na iso-
topes, a quenching factor 0.9 is used in Ref. [24] where the
SDPF-M shell-model interaction was taken for the model
space composed of the sd shell and the lower part of the p f
shell. The present work fully activates the sd and p f shells
and the EEdf1 interaction is derived in an ab initio way as
stated above. The quenching of spin g-factor is considered
to be mainly due to two-particle–two-hole (2p2h) excitations
across shell gaps [20,25–28]. Such 2p2h excitations are not
included in shell-model calculations with one major shell,
where the quenching of spin g factors are then needed. In
contrast, because the sd and p f shells are fully included and
the NN interaction is adequate for the mixing between the
two shells, it is natural that the room for the spin g-factor
quenching becomes narrower.

Figure 1(a) also shows that the agreement is improved by
introducing an isovector shift of 0.2 to the orbital g factors
(gl = 1.2 for protons and −0.2 for neutrons). In Ref. [24],
a similar shift of 0.15 was taken. Such a shift is considered
to originate in the meson exchange effect directly on the
magnetic process [19,20]. This effect is independent of the
configuration mixing and can occur irrespectively of the spin
g-factor quenching. The M1 operator can, in principle, be de-
rived similarly to the effective NN interaction. It is of interest
to see what consequences may arise in such future studies, and
we hope this work provides some hints.

The magnetic moment of 31Na may have particular impor-
tance in the present study. Because of N = 20, if no neutrons
were excited from the sd to the p f shell, this nucleus would
have a closed neutron shell, implying that its structure is close
to the single-particle picture and that its ground-state mag-
netic moment is basically given by the Schmidt value. Indeed,
the calculation only with the proton sd shell and the USD
interaction [21] yields the 5/2+ ground state and its magnetic
moment, 4.4 n.m., in disagreement with experiments. We shall
come back to this point later in the relation to the neutron skin.

Figure 1(b) displays the spectroscopic electric quadrupole
moments of the ground states of Na isotopes. The effec-
tive charges are the same as in Ref. [17]: 1.25e (0.25e) for
protons (neutrons) with e being the unit charge. A salient
agreement with experiment [18,29,30] is seen, particularly for
29,31Na isotopes. Note that we multiply absolute magnitudes
shown in Ref. [29] by the signs from the present calculation.
Combined with the nice description of the B(E2;2+

1 → 0+
1 )

values depicted in Ref. [17], the present description of the
quadrupole deformation appears to be quite appropriate. The
strong deformation of the 31Na ground state was pointed out
by a deformed Hartree-Fock calculation [31], which became
a landmark in the study of exotic nuclei. The N = 20 closed
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shell yields a tiny quadrupole moment of the ground state of
31Na.

IV. CHARGE RADIUS AND DEFORMATION
PARAMETERS

Having the features described so far, we move on to the
charge radius. The main part of the radius is accounted for
by the droplet model, where a sphere with an equal density
is assumed. On top of that, it is known [32] that the radius
changes if the shape of the nuclear surface is deformed from a
sphere. We restrict ourselves, in this work, to the quadrupole
deformation as the major source of this change. The mean-
square charge radius is usually written as (see, for instance,
Refs. [33,34]):

〈r2〉ch = 〈r2〉DM
{
1 + (5/4π ) β2

2

}
, (1)

where β2 denotes the deformation parameter, and 〈r2〉DM

means the droplet model value given by

〈r2〉DM = (3/5) (R0A1/3)2. (2)

Here, R0 is a parameter and A stands for the mass number,
A = Z + N . We use R0 = 1.28(fm) in the present work.

We now need the values of the deformation parameter, β2,
as input to Eq. (1). This is not straightforward, and we take
advantage of the T plot [35,36] of the MCSM [6,7].

The quadrupole(-deformed) shape can be expressed in
terms of so-called deformation parameters, β2 and γ , which
imply, respectively, the magnitude of the deformation and
the proportion of the ellipsoid axes [32,37]. For instance,
γ = 0◦ (60◦) corresponds to a prolate (oblate) shape, while
0◦ < γ < 60◦ is generally referred to as triaxial shapes. The
potential energy surface (PES) is drawn by the constrained
Hartree-Fock calculation for the Hamiltonian being used. The
constraints are given by quadrupole matrix elements in the
intrinsic (or body-fixed) frame, Q0 and Q2 in the standard
notation [37]. The values of (Q0, Q2) are related to those of
(β2, γ ) by the formula [38]

β2 = fscale

√
5/16π (4π/3R2

0A5/3)
√

(Q0)2 + 2(Q2)2 (3)

and γ = arctan (
√

2Q2/Q0), where fscale is the rescaling fac-
tor for the isoscalar quadrupole operator. The E2 operator
is (e + e′

p)Qp + e′
nQn with Qp,n denoting proton or neutron

quadrupole operator and e′
p,n being their induced charges due

to in-medium effects. Additional terms in the isoscalar case
are assumed to be e′

nQp + (e + e′
p)Qn obtained by exchanging

coefficients of the proton and neutron terms of the E2 opera-
tor. This holds exactly for N = Z nuclei with a perfect charge
symmetry and is considered to be a good approximation oth-
erwise. We thus obtain fscale = (e + e′

p + e′
n)/e, and Eq. (3) is

shown to work well in a variety of studies including [39–43].
The eigenstates of the Hamiltonian are obtained by the

MCSM: The eigenstate is expanded by MCSM basis vectors,
{Pφi} (i = 1, ..., n), where φi’s are deformed Slater determi-
nants and P is the projection operator onto the designated
angular momentum and parity, e.g., Jπ = 3/2+ for 31Na.
For each φi, intrinsic quadrupole moments, (Q0, Q2), are
calculated. We plot individual φi on the PES according to

such (Q0, Q2) values. Namely, (Q0, Q2) are used as par-
tial coordinates of φi. The importance of φi to the lth
eigenstate, ξl , can be represented by the overlap probability,
|〈ξl | {Pφi}〉|2/〈{Pφi} | {Pφi}〉. Thus, φi can be plotted as a
circle at the “coordinate” (Q0, Q2) on the PES, with the area
proportional to this overlap probability. This scheme is called
the T plot [11,36] and has been used in many works, for
instance, Refs. [39–47].

Figure 2(a) exemplifies the T plot for the 3/2+
1 ground state

of 31Na. One sees the distribution of φi’s on the PES: Human
eyes may observe the mean values of Q0 and Q2 around 95
and 10 (fm2), respectively. As β2 can be calculated from these
values, it is of importance to extract appropriate values of Q0

and Q2 in a certain process free of human eyes.

V. EXTRACTION OF DEFORMATION
PARAMETERS FROM T PLOT

We present a prescription inspired by the approach pro-
posed in Ref. [48]. We start with the norm matrix N defined
by matrix elements Ni j = 〈{Pφi} | {Pφ j}〉 with i, j = 1, .., n
with n being the number of MCSM basis vectors. Noting that
N is Hermitian, we diagonalize it with the kth eigenvalue, nk ,
and the ith component of its eigenvector, gki. As the matrix
(gki ) is unitary, the states defined by

ψk = 1√
nk

∑
i

gki {Pφi}, k = 1, ..., n, (4)

form a set of orthonormal state vectors. The eigenstate of the
Hamiltonian is expanded as

ξl =
∑

k

flk ψk, (5)

where flk’s are amplitudes, and the matrix ( flk ) is unitary.
We here restrict ourselves to the ground state denoted by l
= 1. In practice, one of the states ψk’s exhibits a large overlap
with ξ1. For the sake of clarity, k = 1 means the ψk with the
largest overlap hereafter. We note that | f11| � 0.9 holds in the
examples being discussed. In such cases, replacing nk by a
k-independent appropriate constant n0 ≈ n1, we obtain

ξ1 ≈ 1√
n0

∑
i

{∑
k

f1k gki

}
{Pφi}. (6)

Once we have Eq. (6), as
∑

k flkgki forms a unitary matrix,
the state {Pφi} is interpreted to be included in the eigenstate
ξ1 with the probability |∑k f1kgki|2. A mean value of Q2

0,
is taken as

∑
i Q0

2
i |

∑
k flkgki|2, where Q0i is Q0 of φi. The

mean value of Q2
2 is treated similarly. From them, we obtain

β2
2 , and input it to Eq. (1), which gives us the radius. Note

that cross terms due to nonorthogonalites are absorbed, to
a large extent, by gki and nk , as this is the case in the ex-
amples shown in Fig. 2. We present an intuitive sketch of
the present process by employing a simple example (with-
out projections) composed of two basis vectors φ1 = u + v
and φ2 = u − v, where |u| ≈ 1, |v| 	1, |u|2 + |v|2 = 1, and
u and v are orthogonal. Two vectors φ1 and φ2 are not or-
thogonal, but are independent. We assume that φ1 and φ2 are
tractable (e.g., Slater determinants), whereas u and v are rather
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FIG. 2. T plot for the ground states of [(a)–(e)] Na and [(f)–(i)] Mg isotopes. (a) The usual T plot. [(b)–(i)] A new analysis (see text) is
introduced with red circles implying larger overlap probabilities in Eq. (6) (>0.03) with the MCSM ground states. The extracted Q0 and Q2

values are shown by crosses. Probable (Na) [49] and predicted (Mg) [5] driplines are indicated.

complicated to be treated explicitly. If the state of interest
happens to be ξ = u, ξ is expressed as ξ = (1/2){φ1 + φ2}.
After some mathematical manipulations, for an operator O,
the expectation value can be approximated as 〈ξ |O|ξ 〉 ≈
(〈φ1|O|φ1〉 + 〈φ2|O|φ2〉)/2, which corresponds to the afore-
mentioned argument. If 〈v|O|u〉 ≈ 〈v|u〉〈u|O|u〉 = 0 holds,
the above approximation of 〈ξ |O|ξ 〉 becomes better. In the
present study, through more complex actual processes, the
representative values of Q0,2 are extracted.

Figures 2(b)–2(e) show, respectively, the T plot for the
ground states of 27,31,39,41Na, with 39Na probably at the drip
line [49]. The area of T-plot circles represent the overlap
probabilities |∑k f1kgki|2. The circles yielding larger values
(>0.03) are shown in red. Figures 2(a) and 2(c) display dif-
ferent patterns, but the differences are small. The extracted
mean values of Q0 and Q2 are indicated by the positions of
the crosses. These positions turn out to be remarkably close to
what are suggested by human sight.

Figure 2(b) displays that T-plot circles are concentrated
in the domain around (Q0, Q2) ≈ (40,10)(fm2) for 27Na. In
Figs. 2(c) and 2(d), such concentration moves to the regions
around (Q0, Q2) ≈ (95,15) and (110,25) (fm2) for 31Na and

39Na, respectively. Figure 2(e) shows that the T-plot cir-
cles substantially move backward for 41Na, implying that
41Na gains less binding energy from the deformation than
39Na, locating the drip line at 39Na. Detailed discussions
on this type of underlying mechanism for the drip line are
found in Ref. [5]. Figures 2(f)–2(i) show similar features
for Mg isotopes, where the drip line was predicted at 42Mg
in Ref. [5].

Figure 2 as a whole shows that the γ value remains fi-
nite and never approaches 0◦ (a prolate shape with the axial
symmetry). In other words, triaxial shapes are favored by all
the nuclei there. In detail, the γ value is 15–20◦ around N =
20, and becomes larger even somewhat beyond γ = 30◦ in
more exotic isotopes, in both Na and Mg chains. The relation
between the triaxiality and the drip line is of great interest,
and the triaxiality appears to be one of the essential degrees of
freedom in predicting and describing drip lines.

Figure 3 depicts β2 values thus calculated as a function of
N . The onset of deformation is seen already at 29Na consis-
tently with Fig. 1(b) [17,50]. It is of interest that for N � 20,
the β2 values are almost the same between Na and Mg for the
same N . We find that N = 16 behaves like a magic number.
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FIG. 3. Derived β2 values of Na (red solid lines) and Mg (blue
dashed lines) isotopes as functions of the neutron number, N .

The β2 value remains large from N = 18 or 20 up to drip lines.
This is consistent with the shell evolution scenario [4,51].
A sustained strong deformation appears also in the merged
island-of-inversion picture [52], in contrast to the original
picture of the island of inversion [53]. Experimentally, as a
reference, β2 is reported as 0.43 (3) for the 2+

1 state of 32Mg
[18,54], lying just above the present value in Fig. 3. The β2

value is 0.501 (30) or 0.0484 (38) from the B(E2; 2+
1 → 0+

1 )
value of 32Mg [55]. Because the present calculation repro-
duces the electric quadrupole moment for 29,31Na (see Fig. 1)
and also because the basic trend in Fig. 3 is consistent with the
compilation in [55], these (minor) discrepancies may be better
understood in future studies including those among different
probes.

VI. CHARGE AND MATTER RADII

We now calculate the charge radii by Eq. (1) with the
extracted β2 values. Figure 4(a) shows the calculated root-
mean-square (rms) charge radii in a reasonable agreement
with experimental data for 25−31Na, a compilation [56], and a
recent work [57]. We stress that there is no adjustment for this
agreement and that the nice reproduction of the experimental
data, particularly the increase from N = 14 or 16 to N = 20,
appear to be very promising for further studies on more exotic
isotopes up to the dripline. We note that the radius increase
due to deformation is caused by 2h̄ω, 4h̄ω, or higher mix-
ings among single-nucleon states (à la Nilsson-model-type
mixing). The coupled-cluster calculation in Ref. [57] yields
a smaller rms charge radius �3.1 fm for 31Na, which can be
a natural outcome if a strong deformation exceeds the limit of
the calculation.

The observed charge radii are substantially larger than the
present values for 21,23Na, most likely due to proton-halo-type
phenomena due to the weaker binding. While this is an inter-
esting subject, it is outside the scope of the present work.

The charge radius can be related to the point-proton (mean
square) radius, 〈r2〉pp by [59,60]

〈r2〉ch = 〈r2〉pp + 〈
R2

p

〉 + 〈
R2

n

〉 N

Z
+ 3h̄4

4m2
p

, (7)

ra
di

us
 (f

m
)

(a) 

ra
di

us
 (f

m
)

(b)

Mass number, A

FIG. 4. Charge and matter rms radii of Na isotopes (red and dark
blue symbols connected by lines) in comparison to experimental
ones (other symbols). Blue and red symbols include the deformation
effect, while the latter in panel (b) contains effects of neutrons in
the p f shell. Gray solid lines represent the spherical drop model.
Regarding experimental data, (a) light blue (purple) symbols are
from Ref. [56] ([57]). (b) Light blue symbols denote data obtained
by two slightly different analyses in Ref. [58].

where 〈R2
p〉 (〈R2

n〉) is the squared charge radius of a proton
(neutron), and mp denotes the proton mass. The actual values
are 〈R2

p〉 = 0.77 (fm2) and 〈R2
n〉 = −0.11 (fm2) [56].

The matter (mean square) radius is defined [58] as
〈r2〉pm = (Z〈r2〉pp + N〈r2〉pn)/ A, where 〈r2〉pn is the point
neutron (mean square) radius. To start with, we assume 〈r2〉pn

= 〈r2〉pp. This is favored by the strong proton-neutron at-
traction, and is consistent with the droplet model, where the
radius, ∝ A1/3, is the same for all pairs of (Z , N) with a fixed
A = Z + N . The harmonic oscillator potential (HOP) gives an
interpretation that protons and neutrons exhibit the same value
of 〈r2〉 if they are in the same HOP shell. With this modeling
〈r2〉pn = 〈r2〉pp, the rms matter radius is calculated and is
compared with experimental data [58] [see dark blue symbols
in Fig. 4(b)]. A good agreement is seen for 29Na, but the
calculated value is around the lower edge of the error bar for
31Na. The relation between 〈r2〉pn and 〈r2〉pp may change once
N � Z holds and excess neutrons are in the higher shell. The
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FIG. 5. Charge and matter rms radii of Mg isotopes (red and dark
blue symbols connected by lines) in comparison to experimental ones
(other symbols). See the caption of Fig. 4. Regarding experimental
data, (a) light green, light blue, and light purple symbols are taken,
respectively, from Refs. [61,56], and [57]. (b) Light blue symbols
denote data obtained by two slightly different analyses in Ref. [58].

difference of 〈r2〉pn from 〈r2〉pp is estimated, with the HOP
wave functions, as h̄np f /(mω) where m is the nucleon mass, ω
is the HOP parameter, and np f means the number of neutrons
in the p f shell, provided by the shell model calculations. The
calculated rms matter radii are shown by red solid line in
Fig. 4(b), yielding an improved agreement with experiment
for 31Na [58] due to neutron excitations to the p f shell. As
protons are hardly excited to the p f shell in the present cases,
this mechanism is relevant only to neutrons. We note that the
radius increase due to deformation is caused by 2h̄ω or higher
excitations of single nucleons, and therefore is different in
character from the present increase due to neutron excitations
or occupations in the p f shell. It is not appropriate to directly
calculate 〈r2〉 values from the present shell-model wave func-
tions, because of substantial renormalization contained in the
EKK calculations. This task remains for the future.

The present results on Mg isotopes are shown in Figs. 5(a)
and 5(b), in comparison to experimental data [56–58,61]. The
rms charge and matter radii exhibit reasonable agreements

with experimental ones, while error bars are generally shorter
than for Na isotopes.

VII. NEUTRON SKIN THICKNESS

We now touch on the neutron skin [62–64]. As dis-
cussed above, the neutron radius 〈r2〉pn gains extra increase
in neutron-rich isotopes due to excitations or occupations in
the p f shell, meaning that the density distribution of neu-
trons spreads outward and the neutron skin is formed. The
neutron-skin thickness is defined as

√〈r2〉pn − √〈r2〉pp, and
its calculated value turned out to be 0.10 fm for 31Na, while
it is as small as 0.02 fm for 27Na. The predicted thickness is
0.19 fm for 39Na (drip line). Similar values are obtained for
Mg isotopes as a function of N .

We here recall that the neutron skin thickness is related,
in the present approach, to the number of neutrons in the p f
shell. As discussed above, this value is also crucial to the mag-
netic and electric quadrupole moments of 31Na, suggesting
their interesting relation to the neutron skin thickness.

The neutron skin thickness is experimentally evaluated as
0.156–0.283 fm for 208Pb [65,66]. Because (31/208)1/3 =
0.53, the present value is on the simple A1/3 scaling despite
apparent differences between 31Na and 208Pb. This is a very
intriguing subject for future. In Ref. [67], the neutron skin
thickness was shown to be larger (e.g., ≈0.2–0.4 fm for 31Na,
likely due to smaller proton rms radii then available).

VIII. SUMMARY

In summary, we discussed ground-state properties of exotic
Na and Mg isotopes, with the ab initio EEdf1 interaction
applied in the sd + p f model space. The calculated re-
sults depict agreements with experiments and suggest that the
structure evolves as a function of N in those exotic nuclei in
the way presented in Ref. [5]. We showed how the charge
and matter radii can be calculated within the shell model
including deformation effects, thanks to the well-known for-
mula, Eq. (1). The estimation of β2 values was made, first by
human sight and more objectively by utilizing the prescription
inspired by Ref. [48], while the obtained β2 values do not dif-
fer too much between these approaches. These developments,
some of which may be scrutinized more in the future, enable
us to calculate and predict the radii as consequences of various
correlations emerging from nuclear forces acting on many
valence nucleons. The neutron skin thickness is assessed, as it
is of importance in its relevance to the nuclear compressibility
(see, for instance, Ref. [65]). The radii and moments are vital
measures of the ground states and are shown to be accessible
by shell-model approaches. Their further clarifications are of
great importance in the explorations into the terra incognita
including drip lines.
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