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Appearance of a peak in the symmetry energy at N = 126 for the Pb isotopic chain
within the relativistic energy density functional approach
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The newly derived relativistic energy density functional [Phys. Rev. C 103, 024305 (2021)], which stems from
the effective field theory motivated relativistic mean field (E-RMF), is employed to establish the appearance
of peaks and/or kinks in the symmetry energy over the isotopic chain of Pb nuclei. The coherent density
fluctuation model parametrization procedure for finite nuclei is adopted here to obtain the relativistic energy
density functional at local density. The relativistic energy density functional from relativistic mean-field theory
takes precedence over the Brückner energy density functional as it accurately predicts the empirical saturation
density and binding energy per nucleon E/A, so-called coester band problem. Interestingly, using the relativistic
energy density functional, it is possible to predict the peak at N = 126 for recently developed G3 and widely used
NL3 parameter sets, which is not observed for Brückener’s functional in spite of using the relativistic mean-field
density. From the present analysis, the newly fitted energy density functional is found to be minutely sensitive to
the choice of the parameter sets employed.
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I. INTRODUCTION

The study of nuclear symmetry energy and its isospin
dependence is of central interest in various areas of nuclear
physics [1–4] and astrophysical systems including neutron
stars [5,6]. This is one of the most essential characteristics
of nuclei that are far from the stability line. Several recent
studies have unequivocally demonstrated that the presence of
kinks in the symmetry energy of finite nuclei over the isotopic
chain points to the existence of magic numbers [7–12]. The
advancement in the sophisticated experimental radioactive
ion beam facilities using the projectile-fragmentation reaction
method with fast ion-beams at FRIB (USA) [13], RIKEN
(Japan) [14], GSI (Germany) [15], FLNR (Russia) [16], CSR
(China) [17], and SPIRAL2/GANIL (France) [18] have led
to a renaissance of investigating the behavior of symmetry
energy at and above the saturation density [19]. An alterna-
tive way to produce the radioactive ion beam is the isotope
separator online (ISOL) technique, which has recently gained
momentum for highly asymmetric isospin nuclei [20]. The
notable examples among them are at Lou-vain la Neuve
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(Belgium) [21], Spiral (France) [22], Alto (France) [23,24],
ISAC (Canada) [25], and REX ISOLDE (Switzerland/France)
[26]. In this context, the symmetry energy is closely as-
sociated with the isospin asymmetry of both finite and
infinite nuclear matter, and hence serves as a bridge between
them [27]. To predict this isospin and density-dependent quan-
tity, the so-called symmetry energy for both infinite nuclear
matter and finite nuclei, one has to use a reliable and conve-
nient approach that works in a wide range of densities, i.e.,
from sub- to suprasaturation density.

Conventionally, various approaches such as the liquid drop
model [28,29], Skyrme energy density functional [30,31],
Hartree-Fock with random phase approximation [32], rel-
ativistic mean field with random phase approximation
predicated on effective Lagrangians with density-dependent
meson-nucleon vertex functions [33], among other many-
body approaches, have been employed to study the symmetry
energy of finite nuclei at a local density approximation. In
parallel to these, the well-known Brückner energy density
functional [34,35] within the coherent density fluctuation
model as those in Refs. [8,11,36,37] is successfully applied
for the study of surface properties of nuclei. It is well known
that the classical Brückner energy density functional fails
to satisfy the Coester-Band problem [38,39], i.e., inabil-
ity to accurately reproduce the empirical saturation density
ρ ≈ 0.15 fm−3 and binding energy per nucleon in the limit
E/A ≈ −16 MeV [40]. Later on, a few alternative at-
tempts which considered the incorporation of various realistic
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nucleon-nucleon potentials [38,41] into the Brückner energy
density functional are found either to overestimate the nuclear
matter density or underestimate the binding energy. In other
words, the saturation properties must satisfy the nuclear equa-
tion of state while extrapolating to higher density and isospin
asymmetry.

Recently, the surface properties of nuclei can be estimated
by using the nonrelativistic and relativistic inputs within
the coherent density fluctuation model [8,11,12,36,37]. From
these analyses, one can find the notable peaks and/or kinks
that have been observed for traditional magic neutron and/or
proton, for example, N = 20, 28 for Ca and N = 82 for Sn
along with a few predictions for drip line and superheavy
island [8,10–12,36,37]. On the other hand, these studies are
unable to reproduce peaks and kinks for Pb (N = 126), which
may be associated with the saturation properties. In this
context, it necessitates a well-grounded approach that can
both tackle the Coester-Band problem [38,39] as well as the
suprasaturation object including neutron star. In our previous
work, a newly fitted relativistic density functional has been
introduced [42] and tested for a few double magic nuclei.
Hence, it is our main objective to test the newly relativistic
energy density functional for the isotopic chain of Pb nuclei.
In the present analysis, the symmetry energy and its volume
and surface components are calculated by using the relativistic
energy density functional, which stems from the effective-
field theory motivated relativistic mean-field model [43,44]
for the well-known NL3 and recently developed G3 parameter
sets.

The paper is organized as follows: Section II describes
briefly the relativistic mean-field approach along with the
coherent density fluctuation model. The results obtained from
the calculations are discussed in Sec. III and a concise sum-
mary and conclusions are presented in Sec. IV.

II. RELATIVISTIC ENERGY DENSITY FUNCTIONAL

The effective field theory motivated relativistic mean-field
approach is constructed by taking the interactions of isoscalar
(scalar σ , vector ω) and isovector (scalar δ, vector ρ) mesons
with nucleons and among themselves. The crossed coupling
of mesons up to fourth order is also included. The relativistic
mean field is known to be highly successful in reproducing
the ground-state properties of not only β-stable nuclei but
also provides a plausible prediction of the properties of drip
lines and superheavy nuclei [43,44]. Lately, this formalism
has gained a wide range of application in nuclear astrophysics.
In particular, it describes the structure of neutron star and
gives an accurate prediction of the tidal deformability [45].
Exhaustive details on the relativistic mean-field Lagrangian
and parametrization can be found in Refs. [42–44,46,47]. The
energy density Enucl. [42–44] is obtained by assuming that an
uniform field is created by the exchange of mesons, where
the oscillation of nucleons is considered as a simple harmonic
motion. From the relativistic mean field energy density, the
equation of motions for the mesons and the nucleons are
obtained from the Euler-Lagrange equation. A set of coupled
differential equations are obtained and solved self-consistent

manner [44]. The scalar and vector densities are given as

ρs(r) =
∑

α

ϕ†
α (r)βϕα, (1)

ρv (r) =
∑

α

ϕ†
α (r)τ3ϕα, (2)

and deduced from the converged solutions within spherical
harmonics. ρv (r) in Eq. (2) is used within coherent density
fluctuation model to obtain the weight function |F (x)|2 with
which the symmetry energy SA is obtained.

The energy density of infinite and isotropic nuclear matter
are deduced from the energy-momentum tensor:

Tμν =
∑

i

∂νφi
∂L

∂ (∂μφi )
− gμνL. (3)

The zeroth component of the energy-momentum tensor T00

gives the energy density of the system as a function of scalar
and vector density ρs and ρv respectively [42]:
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A. E-RMF fitting procedure

The conversion of the nuclear matter quantities [Eq. (4)]
from momentum space to the coordinate space is the major
distinction of the calculation. In other words, the nuclear
matter quantities are reconstructed at local density. It is as-
sumed that the nuclear matter is made up of tiny spherical
pieces described by a local density function termed as flucton
and defined as ρ0(x) = 3A/4πx3. As such, the fitted binding
energy function of relativistic mean field is expressed as [42]

E (x) = Ckρ
2/3
0 (x) +

14∑
i=3

(bi + aiα
2)ρ i/3

0 (x). (5)

The first term represents the kinetic energy, whose coefficient
Ck is given as Ck = 37.53[(1 + α)5/3 + (1 − α)5/3] following
the Thomas-Fermi approach. The asymmetry parameter α

is defined as α = ρn−ρp

ρn+ρp
, with ρn and ρp being the neutron

and proton density distributions, respectively. A number of
terms are involved in the polynomial fitting [Eq. (5)], which
is used to obtain the exact nature of the binding per parti-
cle E/A in position space. The mean deviation is calculated

using the formula δ = [
∑n

j=1(E/A) j,Fitted − (E/A) j,RMF]/n.
The term (E/A) j,Fitted represents the binding energy deduced
from Eq. (5), (E/A) j,RMF is the binding energy per nucleon
from the relativistic mean field (RMF) functional, and n is
the number of data points. From the analysis [42], it is found
that 12 terms are considered to obtain the best fit and the

014318-2



APPEARANCE OF A PEAK IN THE SYMMETRY ENERGY … PHYSICAL REVIEW C 105, 014318 (2022)

coefficients extrapolated from the polynomial fitting are pre-
sented in Table I of Ref. [42].

The nuclear matter symmetry energy SNM is obtained from
the following standard relations [44,48],

SNM = 1

2

∂2(E/ρ)

∂α2

∣∣∣∣
α=0

, (6)

which is given as follow using Eqs. (2) and (3):

SNM = 41.7 ρ
2/3
0 (x) +

14∑
i=3

ai ρ
i/3
0 (x). (7)

The density of closed and semiclosed shell spherical Pb
nucleus is calculated using relativistic mean field formalism
and used as input in the coherent density fluctuation model
to calculate the weight function, which is the major quantity
that bridges nuclear matter parameters in x space and finite
nuclei in r space using local density approximation. The r and
x space are matched together, by the superposition of the total
density of the nucleus and an infinite number of fluctons, using
the coherent density fluctuation model approach.

B. Brückner’s prescription

The expression for the energy density of infinite and isotropic
nuclear matter are obtained from the Brückner functional de-
fined as [34,35]

E (ρ)nucl. = AV0(x) + VC − VCx, (8)

where

V0(x) = 37.53[(1 + α)5/3 + (1 − α)5/3]ρ0(x)2/3

+ b1ρ0(x) + b2ρ0(x)4/3 + b3ρ0(x)5/3

+ α2[b4ρ0(x) + b5ρ0(x)4/3 + b6ρ0(x)5/3]. (9)

Here, b1 = −741.28, b2 = 1179.89, b3 = −467.54, b4 =
148.26, b5 = 372.84, b6 = −769.57 and the total density
ρ = ρn + ρp is the sum of the neutron and proton density
distributions [9]. In each flucton, there are protons having
Coulomb energy VC = 3

5
Z2e2

x and Coulomb exchange energy
VCx = 0.7386Ze2(3Z/4πx3)1/3. The important part of the
present calculation is to convert the nuclear matter quantities
in Eq. (8) from momentum (ρ) to coordinate (r) space in the
local density approximation. The nuclear matter symmetry
energy parameter SNM is obtained from the well-defined re-
lation [36,44,48]:

SNM = 1

2

∂2(E/ρ)

∂α2

∣∣∣∣
α=0

= 41.7ρ0(x)2/3 + b4ρ0(x) + b5ρ0(x)4/3 + b6ρ0(x)5/3

(10)

at local density. The weight function |F (x)|2 for a given den-
sity ρ (r) is defined as

|F (x)|2 = −
(

1

ρ0(x)

dρ(r)

dr

)
r=x

, (11)

with
∫ ∞

0 dx|F (x)|2 = 1. More comprehensive analytical
derivations are found in Refs. [8,36,37,49,50]. Here the

FIG. 1. The relativistic mean field densities and weight functions
for 180,190,208,236,266Pb with NL3 and G3 parameter sets. The densities
of 180,190,208,236,266Pb nuclei are shown in upper panel with solid,
dotted, short dashed, long dashed, and dot-dashed lines, respectively.
The same are shown for the weight function |F (x)|2 but in the lower
panel.

relativistic mean-field densities obtained from G3 and NL3
parameter sets are used as local density to calculate the weight
function as defined in Eq. (11). The densities near the sur-
face region monotonically decrease for finite nuclei, which
produces a peak in the weight function for this region. It is
to be noted that the peak of the weight function appears in
the tail part of the density distribution. Further discussion is
given below in the result section with Fig. 1. The coherent
density fluctuation model provides an easy transition from
the properties of nuclear matter to those of finite nuclei. The
finite nucleus symmetry energy SA with mass number A is cal-
culated by weighting the corresponding quantity for infinite
nuclear matter within the coherent density fluctuation model,
as given below [36,37,51]:

SA =
∫ ∞

0
dx |F (x)|2 SNM (ρ(x)). (12)

The symmetry energy SA in Eq. (12) is the surface-weighted
average of the corresponding nuclear matter quantity in
the local density approximation limit for finite nuclei. To
estimate the symmetry energy, the densities are obtained self-
consistently from relativistic mean field and folded with the
nuclear matter parameters using the coherent density fluctua-
tion model.

The surface SA
S and volume SA

V components of symme-
try energy are analyzed separately in the framework of
Danielewicz’s liquid drop model [52–54]. The symmetry en-
ergy SA is connected with the surface and volume components
as [55]

SA = SA
V

1 + SA
S

SA
V

A−1/3
= SA

V

1 + A−1/3/κ
. (13)

From Eq. (13), the individual components of SA
V and SA

S can be
written as

SA
V = SA

(
1 + 1

κA1/3

)
(14)
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and

SA
S = SA

κ

(
1 + 1

κA1/3

)
. (15)

Here, κ ≡ SA
V

SA
S

is the ratio of the volume and surface sym-
metry energy. The symmetry energy, its volume, and surface
components are calculated within the coherent density fluc-
tuation model formalism [8,9,52–57]. Recently, an alternative
approach has been introduced by Gaidarov et al. to obtain the
volume and surface symmetry energy components by taking
the nonrelativistic densities in the weight function [57].

III. RESULTS AND DISCUSSIONS

A. Density and weight function |F(x)|2

Figure 1 represents the densities of three different regions
of Pb isotopic series. We have considered the densities of
180Pb, 190Pb, 208Pb, 236Pb, and 266Pb for the β stable and
drip-line regions as representative cases ranging from the
neutron-deficient, β-stable, and neutron-rich regions, which
analyse the relative changes of the density with respect
to neutron-proton isospin asymmetry. From the relativistic
mean-field density, we acquire the weight function |F (x)|2
of the nucleus. Here, |F (x)|2 is one of the crucial factors to
determine the surface properties of the nucleus. This value
is significant with a radial distribution of ≈5–10 fm for
180,190,208Pb and ≈5–12 fm for 236,266Pb, showing the surface
properties of the nuclei (see lower panel of Fig. 1), because
this region of the nucleus lies in the tail part of the density
distribution of nucleons as shown in the upper panel of Fig. 1.

B. Symmetry energy

The peak in the surface properties such as nuclear symme-
try energy and its component are used as indicators of shell
and subshell closure [8,11,12,36,37]. The possible reasons for
the disappearance of the peak at neutron number N = 126
for Pb nuclei have been discussed. It is reported that the
peak shifted a few units (N = 120) than N = 126 when the
Brückner energy density functional is used in the evaluation
of symmetry energy within the coherent density fluctuation
model formalism. The use of the self-consistent relativistic
mean field density does not improve the situation much. To
see the effect on the functional chosen, here the recently
developed relativistic energy density functional [42], which
systematically incorporates the Coester-Band problem [38,39]
via the relativistic mean-field Lagrangian density, is compared
to the conventional Brückner functional.

Figure 2 displays the profile of the symmetry energy SA

as a function of neutron numbers ranging from N = 98 to
N = 184 for Pb isotopes. Here, only the even-even nuclei
are considered to preserve the time-reversal symmetry and
also avoid the odd-even staggering. A comparison is made
between the symmetry energy obtained from Brückner (green
open diamonds) and relativistic energy density functionals
(black open circles) to assert their respective suitability in
the Pb isotopic chain. Although the trends seem to be some-
what similar, both predictions fall between different ranges

FIG. 2. The nuclear symmetry energies are shown for the rela-
tivistic energy density and Brückner energy density functionals for
the Pb isotopes with G3 (open circle) and NL3 (open diamond)
parameter sets. The arrow represents the value of SA at N = 126.

of values. In other words, Brückener’s predicted values are
bounded between 28.0 and 29.2 MeV while those from rela-
tivistic mean field with G3 force parameter are found between
29.4 and 30.6 MeV over the isotopic chain. Similarly, for
NL3 set, the Brückner’s prediction is in the range 27.5–29.2
MeV and the relativistic energy density functional result is
in between 33.6 and 35.7 MeV for the considered Pb chain.
The symmetry energy at saturation for nuclear matter with G3
and NL3 forces are 31.8 and 37.4 MeV, respectively [43,44].
At N = 126, the symmetry energy of the relativistic energy
density functional differs by 1.73 MeV for G3 from its Brück-
ner prediction, whereas this difference for NL3 is 7.40 MeV.
This implies the relativistic mean-field approach gives larger
symmetry energy than the Brückner approach. Further, we
noticed few maxima and minima in the relativistic mean-field
prediction of symmetry energy both in G3 and NL3 models,
indicating the structure effect of the isotopic chain. However,
these variations in SA are very small and cannot be considered
as the shell-subshell closure. In the case of NL3, few other
maxima appears in the symmetry energy curve. Although
these peaks almost comparable with N = 126, we do not
consider those as shell-subshell closures because of the small
fluctuation in the values of SA. Mostly we respect the trend of
the curve while locating the shell-subshell closure as shown in
Fig. 2. Furthermore, from Brückner’s prescription, no signifi-
cant peak is found at the N = 126 shell closure, corresponding
to 208Pb as also reported in earlier studies [8,11,12,36,37] and
the references therein. This peak shifted to N = 120 which is
not a closed shell for Pb nucleus. In contrast, interestingly, the
relativistic energy density functional shows a notable peak at
the neutron shell closure N = 126 in G3 and NL3 parameter
sets. More careful inspection shows that the trajectories of the
symmetry energy exhibits an anomalous trend in both cases,
which is very common in the mean-field calculation due to
the structure effect of the nucleus. Although the predictions
for both parameter sets have different magnitude, it is obvi-
ous that they are characterized with the same trends for the
shell-subshell closure. This indicates that the relativistic en-
ergy density functional predictions for shell-subshell closure
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FIG. 3. The surface (SA
S ) and volume (SA

V ) symmetry energies are
estimated using Danielewicz’s liquid drop prescription for the Pb
isotopes with G3 (open circle) and NL3 (open diamond) parameter
sets. The arrow represents the symmetry energy at neutron number
N = 126.

within surface properties such as symmetry energy and its
components are merely sensitive to the choice parameter set
used.

C. Volume and surface components of symmetry energy

Figure 3 displays the variation of SA
S and SA

V over the
Pb-isotopic chain as a function of the neutron number N .
There exists a strong correlation between the parameters SA

S
and SA

V . Although a similar trend is observed in their pro-
files, it is clear that their respective magnitudes vary with
their neutron numbers and they are bound between different
energy ranges. In particular, from their respective values, the
volume component contributes more to the symmetry energy.
In both cases, a notable peak or kink is found at the neutron
shell closure N = 126. Again, the NL3 predictions seem to
be characterized with lesser undulations and/or fluctuations as
compared to the G3 parameter set. One of the striking obser-
vations in the relativistic energy density functional framework
is that parametrization plays a key role in its calculations.
More elaborate details on the surface and volume components
of the symmetry energy as well as their parametrizations and
respective contributions can be found in Refs. [58,59].

D. Coester-band problem

Having obtained a peak at N = 126 using the relativistic
energy density functional with the G3 and NL3 parameter
sets, it is yet necessary to validate the appropriateness of this
functional in the wake of the Coester-band problem. Figure 4
shows the variation of the nuclear matter binding energy per
nucleon E/A as function of the baryonic density for sym-
metric nuclear matter with the Brückner (green dotted line)
and relativistic mean-field (G3 and NL3 with red dashed and
black solid lines respectively) functionals. Relatively, one can
vividly notice that while E/A shifts toward the lower density
region, the deepest minimum in the Brückner’s prescription
turns out to underestimate E/A as −14.9 MeV and over-
estimate the saturation density ρ to be ≈0.2 fm−3. In the

FIG. 4. Binding energy per particle (E/A) as a function of nu-
clear matter density (ρ) for NL3 (black solid), G3 (red dashed), and
Brüeckner energy density functionals (green dotted). The rectangular
box indicates the Coester band with empirical density and binding
energy per nucleon [38,39].

case of a relativistic energy density functional, the deepest
minimum passes through the band at E/A = −16 MeV and
ρ = 0.15 fm−3 rather than the empirical one as shown in
the rectangular box [38,39]. This resolves the issue of the
Coester-band problem [38,39], which is directly connected
with the energy density, and the isospin-dependant quantities
such as symmetry energy and its component and/or coeffi-
cient. Hence, the dilute picture of peak at the magic number in
the case of Brückener’s functional can be correlated with the
Coester-band problem. In other words, the successful achieve-
ment of the Coester-band problem within relativistic energy
density functional is reflected in the calculation of symme-
try energy and its component and reproduce the peak of Pb
isotopes at N = 126, contrary to Brückner’s functional at
N = 120. This shifting of the peak from N = 126 to N = 120
may be correlated with the shifting of the energy minimum to
the Fermi momentum value k f ≈ 2.0 fm−3.

IV. SUMMARY AND CONCLUSIONS

The surface properties of Pb isotopes are evaluated us-
ing the newly fitted expression of Ankit et al. derived from
relativistic mean-field formalism to resolve the Coester-band
problem encountered in the conventional Brückner energy
density functional. The relativistic mean-field densities with
the NL3 and G3 parameter sets are used as inputs to obtain
the weight function within the coherent density fluctuation
model. The relativistic energy density functional manifests a
remarkable success in accurately reproducing the empirical
saturation density ρ as well as the binding energy per nucleon
E/A. Hence, it is established that this approach has an edge
over the Brückner’s prescription.

Besides, the relativistic energy density functional is used
to establish the existence of peak in the symmetry energy
of finite nuclei over the Pb isotopic chain at N = 126 corre-
sponding to the double magic 208Pb nucleus, which has been
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hitherto elusive within the conventional Brückner’s prescrip-
tion. Although the trend in the Pb-isotopic chain is not smooth
enough (especially with the G3 parameter set), a careful in-
spection reveals that the relativistic energy density functional
is susceptible to the choice of parameter set and may be a
manifestation of the structure effects of the nucleus. In other
words, a smoother behavior is observed using the NL3 pa-
rameter set. This infers that the result could be improved by
choosing an appropriate parameter set and taking into account
the proper structure effects.
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