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We propose a new many-body method based on the correlation functions, in which the multiple products
of the correlation functions are expanded into the many-body diagrams using the cluster expansion method and
every diagram is independently optimized in the total-energy variation. We apply this idea to the tensor-optimized
antisymmetrized molecular dynamics (TOAMD) using the bare nucleon-nucleon interaction and show the results
of the s-shell nuclei within the triple products of the correlation functions of tensor and central types. We evaluate
the effect of the independent optimization of the many-body diagrams on the solutions. It is found that the triple
products provide the sizable effect in the present scheme, which results in the good reproduction of the total
energy and the Hamiltonian components of nuclei with respect to the few-body calculations.
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I. INTRODUCTION

It is known that the bare nucleon-nucleon (NN) interaction
has strong characteristics of short-range repulsion and tensor
force [1,2]. In finite nuclei, the short-range repulsion reduces
the amplitudes of nucleon pairs at short distance as the short-
range correlation, and the tensor force produces the D-wave
transition of nucleon pairs as the tensor correlation. These
correlations are physically different, but commonly induce the
high-momentum motion of nucleons in nuclei [3].

In light-mass region, the Green’s function Monte Carlo
(GFMC) method has been developed to treat the nucleon-
nucleon correlations directly in nuclei. In GFMC, they can
reproduce the binding energies and the energy spectra of light
nuclei up to 12C within three-nucleon forces [4]. It is also
shown that the one-pion exchange force produces about 80%
of the entire attraction of the two-body interaction energy [1].
The pion exchange process is a dominant source of the tensor
force, hence the treatment of the tensor force is essential
to describe the nuclear many-body systems. In GFMC, the
correlation functions are multiplied to the reference nuclear
wave function and it is important to know how to optimize
the correlation functions appropriately to minimize the total
energy of nuclei.

Based on the approach using the correlation functions, we
have developed a new many-body method for finite nuclei
treating the strong interaction directly, the so-called tensor-
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optimized antisymmetrized molecular dynamics (TOAMD)
[5–16]. The TOAMD framework is a variational method
of describing the correlations induced by nuclear force. In
TOAMD, we use the AMD wave function as a reference state
[17], which can describe the structures of light nuclei with
effective interactions. In TOAMD, we adopt the two-body
correlation functions of tensor- and central-operator types
corresponding to the NN interaction in nuclei, and they are
multiplied to the AMD reference state. We further consider the
multiple products of these correlation functions, which finally
define the total nuclear wave function involving the many-
body correlations. We can determine each of the correlation
functions in these multiple products using the total-energy
variation.

So far, we have applied TOAMD to the s-shell nuclei and
the p-shell 5He nucleus within the double products of the
correlation functions [6–9,16], which is a second order of
the correlation functions. In TOAMD, the multiple products
of the correlation functions are expanded into the series of
the many-body diagrams in the cluster expansion. In the ex-
pansion of the specific products of the correlation functions,
the relative weights between many-body diagrams are fixed
by the particle exchange properties of the diagrams, which is
so-called the symmetry factors. We take all diagrams fixing
the relative weights, while forms of the correlation functions
are optimized in the individual products to minimize the total
energy of a nucleus, which increases the variational accu-
racy of TOAMD. Owing to this property, we have shown
that the binding energies in TOAMD are better than those in
the Jastrow method using common form of the correlation
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functions for every pair [7,8,18]. For 5He, we further per-
formed the generator coordinate calculation by superposing
several AMD reference states, and discussed the excited state
with the possibility of the 3He +d clustering structure, which
is different from the ground state with a 4He +n type. We
recently adopted the concept of TOAMD in the nuclear matter
calculation with the bare NN interactions [19–21].

In TOAMD, we can extend the variational accuracy by
adding the higher orders of the correlation functions in the
total wave function, in which the matrix elements at any order
of TOAMD are presented in the analytical form. In the present
study, we extend TOAMD in two aspects. 1) We increase the
order of TOAMD from the second to the third one, which
includes the triple products of the correlation functions. 2) We
use the cluster expansion to decompose the multiple products
of the correlation functions into the many-body diagrams. We
extend this process by treating each diagram as the indepen-
dent basis state, and the correlation functions in each diagram
are determined variationally. This extension further increases
the variational space of TOAMD. In this study, we confirm
the effects of these new extensions in the calculation of s-shell
nuclei with the bare NN interactions.

In Sec. II, we explain the many-body framework of
TOAMD and propose a new treatment of the cluster-
expansion diagrams. In Sec. III, we show the results of s-shell
nuclei 3H and 4He with the bare Argonne-type NN interac-
tions and discuss the effect of the present new method. A
summary is given in Sec. IV.

II. METHOD

A. Tensor-optimized antisymmetrized molecular dynamics
(TOAMD)

We explain the wave function of TOAMD for the nucleus
with mass number A. We start from the AMD wave function
�AMD, which is the Slater determinant of the nucleon wave
functions φστ (r) as

�AMD = 1√
A!

det

{
A∏

i=1

φσiτi (ri )

}
, (1)

φστ (r) =
(

2ν

π

)3/4

e−ν(r−D)2
χσχτ . (2)

The function φστ (r) consists of a Gaussian wave packet with
a range parameter ν and a centroid position D, a spin part χσ ,
and an isospin part χτ . In this work, χσ is the up or down
component and χτ is proton or neutron.

In TOAMD, we adopt two kinds of the two-body corre-
lation functions to make the correlated wave function from
�AMD; one is FD for the tensor force with a relative D-wave
transition and the other is FS for short-range repulsion. These
functions are defined explicitly as

FD =
1∑

t=0

A∑
i< j

f t
D(ri j ) S12(r̂i j )(Pτ,i j )

t , (3)

FS =
1∑

t=0

1∑
s=0

A∑
i< j

f t,s
S (ri j )(Pτ,i j )

t (Pσ,i j )
s (4)

with a relative coordinate ri j = ri − r j . The operators Pτ and
Pσ exchange the isospin and spin components between nucle-
ons, respectively. The labels t and s represent the spin-isospin
dependence of the correlation functions. The pair functions
f t
D(r) and f t,s

S (r) are determined in the total-energy variation.
The functions FD and FS express the correlations between two
nucleons in nuclei. It is noted that FS generally describes the
central correlation including short-range one.

We further consider the multiple products of the correla-
tion functions to make the many-body correlations beyond
two-body one, and these terms are multiplied to �AMD and
superposed. We define the TOAMD wave function starting
from the single correlation functions as the first order:

�
single
TOAMD = (1 + FS + FD) × �AMD. (5)

We introduce the next second order of the correlation func-
tions in TOAMD by successively adding the double products
consisting of FD and FS as

�double
TOAMD = (1 + FS + FD + FSFS + FDFS + FDFD)

×�AMD. (6)

We finally define the third order including the triple products
of the correlation functions as

�
triple
TOAMD = (1 + FS + FD + FSFS + FDFS + FDFD

+ FDFSFS + FDFDFS ) × �AMD. (7)

Here, we add the terms having FD and FS simultaneously in
Eq. (7), because it is found that both correlations are important
in the second order analysis [6,9]. For other combinations of
triple products, FSFSFS and FDFDFD, each term has an overlap
with the FDFDFS and FDFSFS , respectively, because two D
waves of FDFD can be coupled with two S waves of FSFS ,
hence the partial effects of FSFSFS and FDFDFD are included
in FDFDFS and FDFSFS , respectively. Numerically, the FDFDFD

term requires the largest computational effort because of the
triple products of the tensor operators. For these reasons, in
the present analysis, which is a first one with the triple cor-
relation functions in TOAMD, we put a priority on the terms
including both FD and FS .

We successively add the terms of multiple products of the
correlation functions starting from �AMD to confirm the con-
vergence of the solutions. These three kinds of the TOAMD
wave function corresponds to the power series expansion us-
ing FD and FS , but all the functions of FD and FS in each
term of Eqs. (5), (6), and (7) can be different and their func-
tional forms are variationally determined, although we use the
common notations of FD and FS . This property of TOAMD
increases the variational degrees of freedom in comparison
with the Jastrow method, in which the common correlation
functions are assumed for all nucleon-pairs [17]. In the present
study, we adopt up to the third order of the TOAMD wave
function in Eq. (7).

We explain the Hamiltonian with a two-body realistic NN
interaction as

H =
A∑
i

ti − TG +
A∑

i< j

vi j . (8)
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FIG. 1. Diagrams of the cluster expansion of F 2. The vertical
lines are the particles and the horizontal lines are the correlation
functions F . The numbers in the square brackets such as [12:12]
represent the configurations to specify the diagram [8], in which each
F is separated by column.

Here, ti and TG are the kinetic energies of each nucleon and
the center of mass, respectively. We employ the realistic NN
interaction vi j of the AV6′ and AV8′ potentials [22–24] con-
sisting of central and tensor terms and the LS term is added in
the AV8′ potential. We also add the point Coulomb interaction
for protons. The total energy E of a nucleus is given as

E = 〈�TOAMD|H |�TOAMD〉
〈�TOAMD|�TOAMD〉

= 〈�AMD|H̃ |�AMD〉
〈�AMD|Ñ |�AMD〉 . (9)

We expand the TOAMD wave function �TOAMD using Eq. (7)
and define the correlated operators with the upper tilde in
Eq. (9) with the AMD wave function �AMD. The operators
H̃ and Ñ are the summation of the multiple products of the
operators such as F †HF and F †F with F being FD or FS .
Each of the multiple products of the correlation functions in H̃
and Ñ is expanded into the irreducible many-body operators
using the cluster expansion [5,9], in which each of many-body
operator is expressed by using the specific configuration and
diagram. In the simplest case of F †F , this term is expanded
into two-body, three-body, and four-body operators, which
are expressed with the configurations of [12:12], [12:13] and
[12:34] with particle indices in the square brackets, respec-
tively. The corresponding diagrams are displayed in Fig. 1.
For two-body interaction V , the correlated interaction F †V F
provides diagrams from the two-body term as [12:12:12] to
the six-body term as [12:34:56]. For one-body operators such
as the kinetic energy, the correlated operators are written by
diagrams with up to the five-body term as [12:3:45].

In TOAMD, we adopt all the terms in the cluster expan-
sion of the correlated operators in Eq. (9), and calculate the
corresponding matrix elements with the AMD wave function.
Due to this condition, TOAMD becomes a variational method
for nuclei with the bare NN interaction. The TOAMD wave
function has two kinds of variational functions: the AMD
wave function �AMD and the correlation functions FD and
FS . We use the variational principle with respect to the total
energy E as δE = 0 in Eq. (9). In the determination of the
radial forms of FD and FS , we express the pair functions f t

D(r)
and f t,s

S (r) in the linear combination of the Gaussian functions

with the number NG as

f t
D(r) =

NG∑
n=1

Ct
n e−at

nr2
, (10)

f t,s
S (r) =

NG∑
n=1

Ct,s
n e−at,s

n r2
. (11)

The variational parameters are at
n, at,s

n , Ct
n, and Ct,s

n with the
index n. We set NG = 7 at most to get the converging so-
lutions. For the Gaussian ranges at

n, at,s
n , we search for the

optimal values in a wide range. The expansion coefficients
Ct

n and Ct,s
n are obtained in the eigenvalue problem of the

Hamiltonian matrix. For the double and triple products of the
correlation functions such as FDFD, the products of Gaussian
functions in Eqs. (10) and (11) are treated as the single basis
functions.

Finally, we define the TOAMD wave function in a linear
combination form using the coefficients C̃α for the Gaussian
expansion of the correlation functions

�TOAMD =
∑
α=0

C̃α �TOAMD,α, (12)

where the label α is the set of the Gaussian index n and the
labels s and t in the correlation functions. The summation
includes the basis states with single, double, and triple correla-
tions. We give the AMD wave function the label of α = 0. The
Hamiltonian and norm matrices are Hαβ and Nαβ , respectively,
and are given as

Hαβ = 〈�TOAMD,α|H |�TOAMD,β〉
= 〈�AMD|H̃αβ |�AMD〉, (13)

Nαβ = 〈�TOAMD,α|�TOAMD,β〉
= 〈�AMD|Ñαβ |�AMD〉. (14)

We solve the following generalized eigenvalue problem, and
obtain the total energy E and the coefficients C̃α:∑

β=0

(Hαβ − E Nαβ )C̃β = 0. (15)

It is noted that the expression in Eq. (12) is general for
all the terms of the basis states in TOAMD including the
double and triple products of the correlation terms. By solving
Eq. (15), we optimize all the correlation functions simul-
taneously with the double and triple products. This means
that when we successively add the correlation terms, all the
terms are optimized at each step of the calculation under the
variational principle.

We explain the procedure to evaluate the matrix elements
of the correlated many-body operators using the AMD wave
function in Eqs. (13) and (14). We express the NN interac-
tion vi j as a sum of Gaussians, similarly to the correlation
functions fi j and then we essentially perform the Gaussian
integration. In the cluster expansion of H̃αβ and Ñαβ , the
many-body operators have the set of the square of the interpar-
ticle coordinates r 2

i j in the Gaussians with various connections
such as those shown in Fig. 1. We perform the Fourier trans-
formation of each Gaussian in vi j and fi j with the momentum
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k, which becomes the products of the plane waves, eik·ri e−ik·r j ,
and we calculate the single-particle matrix elements of the
plane waves in AMD using Eq. (2). We finally perform the
multiple integration over all momenta and obtain the ma-
trix elements of the many-body operators in the analytical
form [5,9].

B. New cluster expansion

We explain a new scheme of the cluster expansion of the
multiple products of the correlation functions in TOAMD.
In the TOAMD basis states, we have the terms of F 2 and
F 3, which produce the irreducible many-body diagrams in
the cluster expansion. We treat all the resulting diagrams
independently and determine the correlation functions in each
diagram variationally. This is a new idea of the present study
and we call this new framework “New-TOAMD”. We ex-
plain New-TOAMD in more detail and for simplicity, we
omit the spin-isospin dependence in the two-body correlation
function F . We start from the expression of the correlation
function F as

F =
A∑

i< j

fi j = 1

2

A∑
i �= j

fi j ⇔ 1

2
[12], (16)

fi j =
NG∑
n

cn gn
i j, gn

i j = e−an (ri−r j )2
, (17)

F =
NG∑
n

cn Gn, Gn = 1

2

A∑
i, j

gn
i j . (18)

The factor
1

2
in Eq. (16) is a symmetry factor to control

the pair number in the correlation consistently. The left-right
arrow transforms the correlation into the configuration with
square brackets. The function gn is a Gaussian with a range
index n for one nucleon-pair and Gn is the summation of
gn over all pairs. In the summation, we simply denote the
condition of

∑A
i �= j as

∑A
i, j . In the same manner, for the

F 2 case,

FF ′ =
(

1

2

A∑
i, j

fi j

)(
1

2

A∑
i, j

f ′
i j

)
(19)

= 1

2

A∑
i, j

fi j f ′
i j +

A∑
i, j,k

fi j f ′
ik + 1

4

A∑
i, j,k,l

fi j f ′
kl (20)

=
NG∑
n

NG∑
n′

cncn′ (21)

×
⎛⎝1

2

A∑
i, j

gn
i jg

n′
i j +

A∑
i, j,k

gn
i jg

n′
ik + 1

4

A∑
i, j,k,l

gn
i jg

n′
kl

⎞⎠
⇔ 1

2
[12 : 12] + [12 : 13] + 1

4
[12 : 34]. (22)

The diagrams are shown in Fig. 1. In the ordinary TOAMD,
we keep the relation of weights, namely, symmetry factors,
among two-, three-, and four-body diagrams, which indicates
that the form of F 2 is also kept in the wave function. The

FIG. 2. Diagrams of the cluster expansion of F 3 included in the
present calculation.

basis number of the F 2 term is N2
G and the products of cncn′

are variational coefficients.
It is noticed that each of many-body diagrams has the

symmetry with respect to the particle exchange. This means
that each diagram can be the single basis state and it is not
necessary to fix the relative weights of three diagrams us-
ing the symmetry factors in Eq. (21). In New-TOAMD, the
weight of each diagram can be determined in the total-energy
variation as

FF ′ ⇒
NG∑
n

NG∑
n′

(
c[2]

n,n′G
[2]
n,n′ + c[3]

n,n′G
[3]
n,n′ + c[4]

n,n′G
[4]
n,n′

)
,

G[2]
n,n′ =

A∑
i, j

gn
i jg

n′
i j for two-body correlation, (23)
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FIG. 3. The omitted diagrams of the cluster expansion of F 2 and
F 3 because of the duplicated condition.

G[3]
n,n′ =

A∑
i, j,k

gn
i jg

n′
ik for three-body correlation, (24)

G[4]
n,n′ =

A∑
i, j,k,l

gn
i jg

n′
kl for four-body correlation. (25)

We treat each diagram independently in the total wave func-
tion with the corresponding weights c[2]

n,n′ , c[3]
n,n′ , and c[4]

n,n′ , for
two-body, three-body, and four-body diagrams, respectively.
Hence the basis number of the F 2 term increases as 3 ×
N2

G and we can evaluate the physical contributions of each
diagram in nuclei. It is noted that in this new scheme that
the form of F 2 is not necessarily kept in the wave function,
because we do not keep the symmetry factors of the expanded
diagrams. For the F 3 terms, we perform the similar extension
of the cluster expansion diagrams, explicitly shown later.

From the property of the independent treatment of the
many-body diagrams, we can also omit the specific diagrams,
the effect of which can be expressed by other diagrams. For
example, [12], [12:12], and [12:12:12] are the ladder diagrams
of the cluster expansion of F , F 2, and F 3, respectively, as
shown in Fig. 1. In the explicit forms, they are given as∑

i, j

fi j ⇔ 1

2
[12], (26)

∑
i, j

fi j f ′
i j ⇔ 1

2
[12 : 12], (27)

∑
i, j

fi j f ′
i j f ′′

i j ⇔ 1

2
[12 : 12 : 12]. (28)

TABLE I. Total energy E and Hamiltonian components of the
kinetic energy (K), central force (C), and tensor force (T) for 3H
in New-TOAMD with the AV6′ potential in units of MeV. ν =
0.10 fm−2. We successively add the correlation terms.

AMD +S +D +SS +DS +DD +DSS +DDS

E 10.70 2.33 −5.16 −6.35 −7.52 −7.92 −7.93 −7.95
K 11.82 12.21 30.68 36.72 44.50 46.43 46.53 46.79
C −1.12 −9.89 −15.52 −19.53 −24.16 −24.71 −24.77 −24.88
T 0.00 0.00 −20.32 −23.53 −27.86 −29.64 −29.70 −29.86

They can give the same effect of two-body correlations in the
wave function. Hence it is sufficient to include the diagram
[12] at least in the total wave function, and we can remove
the diagrams of [12:12] and [12:12:12]. We adopt this new
scheme of the cluster expansion in New-TOAMD.

In the present study, we consider up to the F 3 terms in
TOAMD and some of the diagrams are omitted because of the
duplicated correlations already included in the wave function.
In the expansion of F 2, we adopt [12:13] and [12:34] as shown
in Fig. 1. In the F 3 case, for example, the three-body diagram
of [12:12:13] has partly the ladder diagram of [12:12] and then
can be omitted because of the diagram of [12:13] in the F 2

term. In Fig. 2, we summarize the many-body diagrams in the
cluster expansion of F 3, which are included in the calculation
with the independent weights. We put the labels of 3a and
3b for three-body diagrams, 4a, 4b, 4c, and 4d for four-body
case, and 5a, 5b for five-body case, which are used to identify
each diagram in the analysis. In Fig. 3, we also show the
diagrams, which are omitted in the calculation because of the
duplicated condition associated with other diagrams shown in
Figs. 1 and 2.

We explain the variational parameters in New-TOAMD. In
the AMD wave function �AMD, the range parameter ν and
the centroid position D in Eq. (2) are determined to mini-
mize the total energy. For correlation functions with Gaussian
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FIG. 4. Total energy E of 3H with the AV6′ potential by suc-
cessively adding the correlation terms. Dashed horizontal line is the
value of GFMC.
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FIG. 5. Components of the kinetic energy (K), central force (C),
and tensor force (T) in 3H with the AV6′ potential. We plot the half
value of the kinetic energy as K/2.

expansion in Eqs. (10) and (11), NG is a number of expansion
with ranges and coefficients of Gaussians. Hence, we have the
Gaussian bases of 4NG for FS and 2NG for FD with spin-isospin
dependence, which determine the number of variational pa-
rameters. For double products of FSFS , considering three-body
and four-body correlations omitting two-body ladder diagram
in the cluster expansion, number of bases becomes 2(4NG)2,
and 2(2NG)2 for FDFD. In a similar way, we prepare the basis
states of New-TOAMD with the Gaussian expansions of the
multiple products consisting of FS and FD.

We have three categories of the correlation terms of F
(single), F 2 (double), and F 3 (triple) in the TOAMD wave
function in Eq. (7), and we can use the different numbers
of NG in each category, namely, NG1 for F , NG2 for F 2, and
NG3 for F 3. In the present calculation, we use the set of
(NG1, NG2, NG3) = (9, 7, 3) at maximum, which gives the to-
tal basis number of around 104 for 4He in Eq. (12) considering
the spin-isospin dependence of the correlation functions and
the independent diagrams of the cluster expansion. We deter-
mine the weights of the basis states by solving the generalized
eigenvalue problem given in Eq. (15).

III. RESULTS

A. AV6′

We show the results of the s-shell nuclei, 3H and 4He,
with New-TOAMD using the AV6′ potential not including the

TABLE II. Comparison of TOAMD and New-TOAMD for 3H
with AV6′ potential in units of MeV. ν = 0.10 fm−2. We successively
add the correlation diagrams to the lower rows.

TOAMD New-TOAMD

+FF −7.92 − 7.92
+DSS,3a − − 7.93
+DSS,3b −7.93 − 7.93
+DDS,3a − − 7.95
+DDS,3b −7.95 − 7.95

TABLE III. Total energy E and Hamiltonian components of the
kinetic energy (K), central force (C), and tensor force (T) for 4He
in New-TOAMD with the AV6′ potential in units of MeV. ν = 0.22
fm−2. We successively add the correlation terms.

AMD +S +D +SS +DS +DD +DSS +DDS

E 52.74 6.49−16.19−19.58 −23.02 −25.27 −25.44 −25.83
K 41.06 46.41 72.80 80.58 89.15 95.83 97.2 99.52
C 10.92−40.61−44.04−52.74 −57.84 −58.18 −58.9 −60.00
T 0.00 0.00−45.69−48.17 −55.10 −63.69 −64.5 −66.14

LS force. For �AMD, we adopt the s-wave configurations with
the centroid parameters D = 0 for all nucleons. This state
is preferred in the energy minimization of each nucleus [6].
Similarly, we also determine the Gaussian range parameter
ν = 0.10 fm−2 for 3H and ν = 0.22 fm−2 for 4He.

For 3H, we show the results of total energy E in Table I, by
successively adding the correlation terms in Eq. (7). In the no-
tation, the labels of S and D represent FS and FD, respectively,
and +S indicates the wave function of (1 + FS ) �AMD and
+DDS is the final one with FDFDFS . It is found that the final
energy is −7.95 MeV, which agrees with the GFMC value
of 7.95(1) [24,25]. At the level of second order of TOAMD
with up to F 2, we obtain −7.92 MeV, which is already close
to the converging energy and the triple correlation functions
contribute by 0.03 MeV. In Fig. 4, we confirm the behavior of
the energy convergence. In Table I, we show the Hamiltonian
components of the kinetic energy (K), central force (C), and
tensor force (T). Similar to the total energy, each Hamiltonian
component almost converges at the level of second order of
F 2, and the triple correlation functions give the the last contri-
butions by a few hundred keV. In Fig. 5, we show the behavior
of the convergence of the Hamiltonian components.

We compare the previous TOAMD and the present New-
TOAMD, which are different on the treatment of the cluster
expansion diagrams in the F 2 and F 3 terms in the wave

-30

-20

-10

0

10

20

30

40

50

60

AMD +S +D +SS +DS +DD +DSS+DDS

GFMC

E

E
n

er
g

y
 [

M
eV

]

Correlation functions

New-TOAMD

FIG. 6. Total energy E of the ground state of 4He with the
AV6′ potential by successively adding the correlation terms. Dashed
horizontal line is the value of GFMC.
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function. In the previous TOAMD, the weights of the cluster
expansion diagrams of F 2 and F 3 are fixed by the symmetry
factors, while in New-TOAMD, we omit this condition of the
weights and we can determine the weights of each diagram
independently. For 3H, there is only one diagram of [12:13]
in F 2 and then no difference in the F 2 terms. The difference
comes from F 3 terms which have two kinds of three-body
diagram of 3a and 3b as shown in Fig. 2. In Table II, we
compare the TOAMD and New-TOAMD for 3H, and we can-
not see the difference between their energies. This indicates
that the form of F 3 can be kept with the symmetry factors in
the wave function of 3H. It is an advantage of New-TOAMD
that we can evaluate the effects of the FDFSFS (DSS) and
FDFDFS (DDS) individually. It is found that both terms almost
equally contribute to the total energy of 3H in a few hundred
keV. Among the three-body diagrams of F 3 shown in Fig. 2,
contribution of 3a is important and 3b gives a minor effect.

Next, we discuss 4He with AV6′ potential in the same
manner as done for 3H. In Table III, we show the total energy
E of 4He by successively adding the correlation terms up to
DDS. The final energy is −25.83 MeV, which is very close to
the GFMC value of −26.15(2) [24,25] by about 0.3 MeV. This
result indicates the reliability of the present New-TOAMD.
It is found that the energy contribution from the F 3 terms
is about 0.6 MeV, which is larger than the case of 3H. We

TABLE IV. Comparison of TOAMD and New-TOAMD for the
Hamiltonian components of 4He with AV6′ potential in units of MeV.
Radius is in units of fm. ν = 0.22 fm−2.

TOAMD New-TOAMD

Energy −25.63 −25.83
Kinetic 98.79 99.52
Central −59.60 −60.00
Tensor −65.60 −66.14
Coulomb 0.79 0.79
Radius 1.46 1.46

TABLE V. Comparison of TOAMD and New-TOAMD for the
total energy of 4He with AV6′ potential in units of MeV. ν = 0.22
fm−2. We successively add the correlation diagrams to the lower
rows.

TOAMD New-TOAMD

+FF,3 − −22.33
+FF,4 −25.21 −25.24

+DSS,3a − −25.28
+DSS,3b − −25.28
+DSS,4a − −25.34
+DSS,4b − −25.40
+DSS,4c − −25.44
+DSS,4d −25.40 −25.44

+DDS,3a − −24.48
+DDS,3b − −25.48
+DDS,4a − −25.52
+DDS,4b − −25.65
+DDS,4c − −25.79
+DDS,4d −25.63 −25.83

also show the Hamiltonian components of 4He except for the
Coulomb interaction, which gives the almost constant repul-
sion of 0.8 MeV at any step of the TOAMD wave function.
The F 3 terms enhance each of Hamiltonian components by
about a few MeV from those with up to F 2.

In Figs. 6 and 7, we show the convergence behavior
of the total energy E and the Hamiltonian components
for 4He. It is found again that the total energy E is ap-
proaching to the GFMC by adding the correlation terms.
We obtain nice results with convergence at the level of
second order of TOAMD and the last third order terms
make the small change. In Table IV, we compare the re-
sults of 4He between the previous TOAMD and the present
New-TOAMD. In this case, we confirm the difference of 0.2
MeV in the total energy, which comes from the independent
optimization of the cluster expansion diagrams in F 2 and F 3

in New-TOAMD. We can also see the small difference in all
of the Hamiltonian components.

In Table V, we compare the results of 4He between the pre-
vious TOAMD and the present New-TOAMD at the level of
each diagram. The F 2 terms provide the three-body diagram
of [12:13] and four-body one [12:34], which are denoted by
+FF,3 and +FF,4, respectively. It is found at the F 2 level, two

TABLE VI. Total energy E and Hamiltonian components of the
kinetic energy (K), central force (C), tensor force (T), and LS force
(LS) for 3H in New-TOAMD with the AV8′ potential in units of MeV.
ν = 0.10 fm−2. We successively add the correlation terms.

AMD +S +D +SS +DS +DD +DSS +DDS

E 11.37 2.60 −4.98 −6.12 −7.27 −7.68 −7.75 −7.76
K 11.82 11.80 31.64 37.69 45.22 47.27 47.70 47.80
C −0.45−9.20−14.19−17.83 −21.93 −22.47 −22.58 −22.62
T 0.00 0.00−21.22−24.56 −28.81 −30.61 −30.87 −30.93
LS 0.00 0.00 −1.21 −1.34 −1.75 −1.86 −2.00 −2.00
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FIG. 8. Total energy E of the ground state of 3H with the AV8′

potential by successively adding the correlation terms. Dashed hori-
zontal line is the value of GFMC.

methods give the difference of 0.03 MeV. Until the addition of
DSS, the difference is still 0.04 MeV, but finally, it becomes
0.2 MeV by adding DDS. This means the importance of the
independent treatment of the diagrams including more tensor
correlations with FD.

B. AV8′

We show the results of the s-shell nuclei, 3H and 4He using
the AV8′ potential including the LS force. We use the centroid
parameters D = 0 in the AMD wave function �AMD for all
nucleons and the Gaussian range parameters are ν = 0.10
fm−2 for 3H and ν = 0.22 fm−2 for 4He. They are the same
conditions as obtained in the case of the AV6′ potential.

We show the results of total energy E of 3H in Table VI.
The final value is −7.76 MeV, which agrees with the GFMC
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FIG. 9. Components of the kinetic energy (K), central force (C),
tensor force (T), LS force in the ground state of 3H with the AV8′

potential. We plot the half-value of the kinetic energy as K/2. Dashed
horizontal lines are the values of the few-body calculation (FB) taken
from Ref. [26].

TABLE VII. Comparison of TOAMD and New-TOAMD for 3H
with AV8′ potential in units of MeV. ν = 0.10 fm−2. We successively
add the correlation diagrams to the lower rows.

TOAMD New-TOAMD

+FF −7.68 − 7.68
+DSS,3a − − 7.75
+DSS,3b −7.75 − 7.75
+DDS,3a − − 7.76
+DDS,3b −7.76 − 7.76

value of 7.76(1) [24,25]. At the second order of TOAMD
within F 2, we obtain −7.68 MeV, which gives the difference
of 0.08 MeV and is already very close to the converging
energy. The F 3 terms contribute to 0.08 MeV in the energy,
and this value is similar to the results using the AV6′ potential
as shown in Table I. In Fig. 8, we confirm the behavior of the
energy convergence. In Table VI, we show the Hamiltonian
components in the same notation used for the AV6′ potential
and the LS component is added. Similar to the total energy,
each Hamiltonian component almost converges at the level
of second order of F 2. It is found that the F 3 terms work to
enhance every component. In Fig. 9, we show the behavior
of the convergence of the Hamiltonian components. From the
table, in the effect of the F 3 terms, the tensor force changes
by 0.3 MeV, which is larger than that of the central force by
0.1 MeV. This indicates the importance of tensor correlation
in the third order of TOAMD.

We compare the previous TOAMD and the present
New-TOAMD. In Table VII, we compare the TOAMD and
New-TOAMD for 3H, and we cannot see the difference be-
tween their energies. This is the same conclusion as obtained
with the AV6′ potential. We evaluate the effects of DSS and
DDS successively, and both terms contribute to the total en-
ergy of 3H. It is noted that when we consider the DDS term
only in F 3, the energy is obtained as −7.75 MeV, which is
the same value of the DSS case. Hence, these two terms are
considered to equally contribute to the 3H solutions.

Ne xt, we discuss 4He with the AV8′ potential. In
Table VIII, we show the total energy E of 4He by successively
adding the correlation terms up to DDS. The final value is
−24.83 MeV, which is close to the GFMC value of −25.14(2)
by about 0.3 MeV [24,25]. This accuracy is the same as
obtained in the AV6′ potential and we confirm the reliabil-

TABLE VIII. Total energy E and Hamiltonian components of the
kinetic energy (K), central force (C), tensor force (T), and LS force
(LS) for 4He in New-TOAMD with the AV8′ potential in units of
MeV. ν = 0.22 fm−2. We successively add the correlation terms.

AMD +S +D +SS +DS +DD +DSS +DDS

E 57.18 8.56−14.02−17.40−21.72 −24.02 −24.46 −24.83
K 41.06 45.35 73.22 80.01 88.97 96.29 98.65 100.70
C 15.37−37.48−40.07−48.25−52.36 −52.74 −53.42 −54.35
T 0.0 0.0 −46.16−48.11−55.85 −64.51 −65.99 −67.36
LS 0.0 0.0 −1.74 − 1.80 −3.23 − 3.82 −4.47 − 4.58
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FIG. 10. Total energy E of the ground state of 4He with the
AV8′ potential by successively adding the correlation terms. Dashed
horizontal line is the value of GFMC.

ity of the present New-TOAMD. In the table, we also show
the Hamiltonian components of 4He except for the Coulomb
interaction, which gives the repulsion energy of 0.8 MeV.

In Figs. 10 and 11, we show the convergence behavior
of the total energy E and the Hamiltonian components. It is
found again that the total energy E approaches the GFMC
by adding the correlation terms. We obtain nice results with
convergence at the level of second order of TOAMD and the
last third order terms make a small change. For the effect
of the third order by adding the F 3 terms, in the interaction
energy, the tensor force changes by 2.9 MeV, which is larger
than that of the central force by 1.6 MeV. This trend is similar
to the results of 3H, and indicates the importance of tensor
correlation.

In Table IX, we compare the results of 4He between the
previous TOAMD and the present New-TOAMD. The energy
difference is obtained as 0.23 MeV,which is a similar value
to the AV6′ case. This difference is due to the independent
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FIG. 11. Components of the kinetic energy (K), central force (C),
tensor force (T), LS force in the ground state of 4He with the AV8′

potential. We plot the half-value of the kinetic energy as K/2.

TABLE IX. Comparison of TOAMD and New-TOAMD for 4He
with AV8′ potential in units of MeV. ν = 0.22 fm−2.

TOAMD New-TOAMD

Energy −24.60 −24.83
Kinetic 99.54 100.70
Central −53.89 −54.35
Tensor −66.62 −67.36
LS −4.40 −4.58
Coulomb 0.78 0.77

treatment of the diagrams in F 2 and F 3 in New-TOAMD. We
can also see the difference in the Hamiltonian components.
For central and tensor forces, both components increase in
New-TOAMD.

In Table X, we compare the total energies of 4He be-
tween the previous TOAMD and the present New-TOAMD
at each diagram, which is successively added. It is found at
the F 2 level that the two methods give a difference of 0.01
MeV. By adding DSS, the energy difference becomes large as
0.08 MeV, and finally, it becomes 0.23 MeV. This indicates the
importance of the DDS term having more tensor correlations
by FD. This is the same tendency confirmed in the case of the
AV6′ potential.

Finally, we compare the results of 4He in New-TOAMD
with those of benchmark calculations using the AV8′ potential
without the Coulomb interaction [27]. We select two calcu-
lations of GFMC and the Faddeev-Yakubovsky (FY). The
results are shown in Table XI and in New-TOAMD, difference
of the total energy is about 0.3 MeV, which is the same value
obtained with the Coulomb interaction as shown in Table VIII.
For each Hamiltonian component we can confirm good agree-
ment between those of New-TOAMD and other calculations
within about 1 MeV. The radius also shows a very similar
value. In Figs. 12 and 13, we show the convergence of total
energy and the Hamiltonian components in New-TOAMD

TABLE X. Comparison of TOAMD and New-TOAMD for 4He
with AV8′ potential in units of MeV. ν = 0.22 fm−2. We successively
add the correlation diagrams to the lower rows.

TOAMD New-TOAMD

+FF,3 − −21.14
+FF,4 −24.01 −24.02

+DSS,3a − −24.22
+DSS,3b − −24.22
+DSS,4a − −24.29
+DSS,4b − −24.39
+DSS,4c − −24.46
+DSS,4d −24.38 −24.46

+DDS,3a − −24.49
+DDS,3b − −24.49
+DDS,4a − −24.54
+DDS,4b − −24.65
+DDS,4c − −24.79
+DDS,4d −24.60 −24.83
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TABLE XI. Comparison of TOAMD and New-TOAMD for 4He
with AV8′ potential without Coulomb interaction. Energies are in
units of MeV. Radius is in units of fm. ν = 0.22 fm−2. The values
of GFMC and FY are taken from Ref. [27].

TOAMD New-TOAMD GFMC FY

Energy −25.37 −25.61 −25.93(2) −25.94(5)
Kinetic 100.04 101.23 102.3(1.0) 102.39(5)
Central −54.15 −54.63 −55.05(70) −55.26
Tensor −66.85 −67.61 −68.05(70) −68.35
LS −4.42 −4.60 −4.75(5) −4.72
Radius 1.485 1.478 1.490(5) 1.485(3)

by successively adding the correlation terms up to the DDS
term. We can clearly confirm that the New-TOAMD solutions
approach the values of GFMC with good convergence.

From these comparisons, it is concluded that varia-
tional accuracy increases from TOAMD to New-TOAMD
to describe the NN correlations. These results indicate
that the independent treatment of the cluster expansion
diagrams works successfully. It is an interesting subject to
apply the present New-TOAMD to the calculation of the p-
shell nuclei.

IV. SUMMARY

We developed a new variational method of “tensor-
optimized antisymmetrized molecular dynamics” (TOAMD)
for finite nuclei, which is a successive approach to treat
bare nucleon-nucleon interactions directly. In TOAMD, we
introduce the two-body correlation functions with tensor
and central types and further consider the multiple prod-
ucts consisting of them. The multiple products of the
correlation functions are expressed into a series of the
many-body diagrams using cluster expansion. The forms of
the correlation functions are determined in the total-energy
variation.
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FIG. 12. Total energy E of the ground state of 4He with the AV8′
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correlation terms. Dashed horizontal line is the value of GFMC.

-80

-60

-40

-20

0

20

40

60

AMD +S +D +SS +DS +DD +DSS+DDS

GFMC

K/2

C

T

LS

E
n

er
g

y
 [

M
eV

]

Correlation functions

FIG. 13. Components of the kinetic energy (K), central force (C),
tensor force (T), LS force in the ground state of 4He with the AV8′
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In this paper, we extend TOAMD in two aspects: 1)
We include the triple correlation functions F 3 as the third
order of TOAMD. 2) We treat independently each of the
cluster expansion diagrams and determine the correlation
functions in each diagram variationally. We call this new
method New-TOAMD. From the second aspect, we can also
omit the duplicated diagrams, the physical effect of which
can be represented by other diagrams. These improvements
extend the variational space of TOAMD and increase the
variational accuracy using bare nucleon-nucleon interaction.
We calculated the total energy and Hamiltonian components
of s-shell nuclei, and confirmed that the present improve-
ments make the solutions of TOAMD get close or identical
to those of the few-body calculations. It would be interest-
ing in the future to apply the present New-TOAMD to the
p-shell and larger mass-number nuclei, in which we can de-
termine all the correlation functions based on the variational
principle.

Three-nucleon force is also an interesting subject to be
investigated in nuclear structure. In the three-nucleon force,
the multipion exchange process is an important component,
which results in the multiples of the central and tensor opera-
tors. This property has an analogy with the cluster expansion
of the products of the correlation functions in TOAMD, as
is shown in the three-body diagram of [12:13] in Fig. 1.
Hence, the framework of TOAMD is straightforward to treat
the three-nucleon force and some useful formulas are given
in Ref. [5]. It is interesting to investigate the three-body force
effect in nuclei in TOAMD.
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