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The zirconium isotopes with A = 92-110 have one of the most complicated evolution of structure in the
nuclear chart. In order to understand the structural evolution of these isotopes, we carry a detailed calculation in
a definite symmetry-based framework, the interacting boson model with configuration mixing (IBM-CM). We
compare our calculation to a large range of experimental data, such as energy levels, two-neutron separation
energies, £2 and EO transition rates, isotope shifts, and magnetic moments. The structural evolution of the low
lying spectra of these isotopes is explained using the notion of intertwined quantum phase transitions (IQPTs),
for which a QPT involving a crossing of two configurations (Type II) is accompanied by a QPT involving a
shape evolution of each configuration separately (Type I). In our study, we find the occurrence of Type I QPT
within the intruder configuration, changing from weakly deformed to prolate deformed and finally to y-unstable,
associated with the U(5), SU(3) and SO(6) dynamical symmetry limits of the IBM, respectively. Alongside the
Type I QPT, we also find the occurrence of Type II QPT between the normal and intruder configurations, where
both Types I and II have a critical point near A & 100. The good agreement of our calculation with the vast
empirical data along the chain of isotopes demonstrates the relevance of IQPTs to the zirconium isotopes, and
can serve as a case study to set path for new investigations of IQPTs in other nuclei and other physical systems.

DOI: 10.1103/PhysRevC.105.014305

I. INTRODUCTION

A. Intertwined quantum phase transitions (IQPTs)

Quantum phase transitions (QPTs) [1,2] have been the
subject of great interest for many years in atomic nuclei [3]
and in other fields [4]. These are structural changes in a system
induced by variations of coupling constants in its quantum
Hamiltonian. In atomic nuclei, two types of QPTs are mainly
encountered. The first describes shape phase transitions in
a single configuration as the number of nucleons is varied.
We denote this QPT as Type I. One common approach for
investigating Type I QPTs is by using Hamiltonians composed
of two different parts,

H=(-&H +&H,. (1

As the control parameter £ varies from 0 to 1, the equilibrium
shape and symmetry of the Hamiltonian vary from those of
H, to those of H,. Type I QPT has been established in the
neutron number 90 region for Nd-Sm-Gd-Dy isotopes, where
the shape of the nuclei evolves from spherical to deformed.
Such an evolution in deformation is portrayed schematically
in Fig. 1(a), where the size of the circles depicts the amount
of deformation. From a shell-model perspective, when few nu-
cleons interact within a single configuration, low-lying levels
of nuclei exhibit characteristics of single-particle excitations,
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with a seniority-like structure and weak collectivity. This is
denoted by small circles in Fig. 1(a). As nucleons are added,
they drive collective modes of excitations and onset of defor-
mation in the ground state, which lowers its energy. This is
denoted by large circles in Fig. 1(a).

A different type of phase transitions occurs when two (or
more) configurations coexist [5]. We denote this QPT as Type
IL. In this case, the quantum Hamiltonian has a matrix form [6]

I_AI:[H:A@A) i:V(a)):|’ @)
W(w) Hp(p)

given here for two configurations, where the indices A and
B denote the two configurations and W denotes their cou-
pling. In such cases, the wave function of the ground state is
composed of mixed configurations and evolves from having
a dominant component of one configuration to another. Type
II QPT has been established in nuclei near shell closure,
e.g., in the light Pb-Hg isotopes, with strong mixing between
the configurations. Such QPT is depicted schematically for
two configurations in Fig. 1(b). The ground state starts with
having a single dominant configuration in its wave function.
As nucleons are added, it becomes more mixed with an ex-
cited configuration and at some point the latter dominates the
ground state.

Such a scenario follows when protons and neutrons, oc-
cupying spin-orbit partner orbitals, interact via the residual
isoscalar proton-neutron interaction, V,, [7], where the result-
ing gain in n-p interaction energy can compensate the loss
in single-particle and pairing energy. Consequently, a mutual

©2022 American Physical Society
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| (a)

Nucleon number

FIG. 1. Schematic illustration for the evolution with nucleon
number of energies (in arbitrary units) of the lowest 0T states of one
or two configurations, A and B. (a) Type I QPT: shape changes within
a single configuration (small and large circles denote weak and strong
deformation, respectively). (b) Type II QPT: coexisting and possibly
crossing of two configurations, usually, with strong mixing. The
dashed lines depict the mixing, as in a two states mixing scenario.
(c) IQPTs: abrupt crossing of two configurations, with weak mixing,
accompanied by a pronounced gradual shape evolution within each
configuration.

polarization effect is enabled and single-particle orbitals at
higher configurations are lowered near the ground state con-
figuration, effectively reversing their order.

Although the two types of QPTs are usually discussed
separately, we note that, as the control parameters (§4, &, @)
in Eq. (2) are varied, each of the Hamiltonians H, and
Hp can undergo a separate shape-phase transition of Type
I, and the combined Hamiltonian can experience a Type
II QPT in which there is a crossing of configurations A
and B.

In most cases encountered in nuclei, the separate Type
I QPTs are masked by the strong mixing between the two
configurations. In this paper, we present a situation where
the Type I QPTs are distinguished. This is achieved in a
situation where within the Type II QPT the mixing between
the configurations is weak and as a consequence one can
identify the Type I QPT within each configuration separately.
This results in an intricate interplay of intertwined quantum
phase transitions (IQPTs) [8,9], depicted schematically in
Fig. 1(c). One can see the energies of the lowest 0T state
in each configuration cross while also their individual shapes
evolve.

B. The zirconium isotopes

There are several regions in the nuclear chart that are
considered to accommodate mixed configurations. One of
them is the Z ~ 40, A ~ 100 region, with coexisting spher-
ical and deformed configurations. The spherical configuration
seems to dominate the ground state wave function for neutron
number 50-58 and the deformed configuration dominates for
neutron number larger than 58 [7,10—14] due to a sudden onset
of deformation at neutron number 60. The sudden onset of
deformation has been ascribed in the shell model to V,, be-
tween nucleons that occupy the 7 (1g9/2)-v(1g7,2) spin-orbit
partners [7,10,11,15], which induces the normal and intruder
configurations to cross. The crossing arises from promotion of
protons across the Z = 40 subshell gap, which creates 2p-2h
intruder excitations [7,16].

These dramatic structural changes have attracted consid-
erable theoretical and experimental interest in the Zr chain.
Different theoretical approaches have been used to study
them, including mean-field based methods, both nonrelativis-
tic [17,18] and relativistic [19], large-scale shell-model calcu-
lations [20,21], the Monte-Carlo shell model (MCSM) [22],
and algebraic models [8,9,23,24]. Recently, several exper-
imental investigations have also come to light [25-33],
opening the door for understanding the properties of both yrast
and non-yrast states.

In the present paper, we expand our work from [8,9] and
explain how the indication for changes in the content of
configuration and the amount of deformation suggests the
occurrence of IQPTs in the zirconium isotopes. This is done
by presenting a detailed comparison between our calculation
and the empirical data for many observables. This comparison
is further supported by analyzing the chain’s configuration
and symmetry content of the wave functions and the shape
evolution.

C. Layout

The paper is divided into the following sections. In Sec. II
we introduce the theoretical framework, which includes the
interacting boson model (IBM), its geometric interpretation
and Type I QPTs (Sec. ITA), and the IBM with configura-
tion mixing, its geometric interpretation and Type II QPTs
(Sec. II1 B). In Sec. IIT we discuss QPTs in the zirconium chain,
where we present the model space (Sec. III A), the Hamilto-
nian and its energy surface (Sec. III B), and the configuration
and symmetry assignment for the wave functions (Sec. III C).

Our results are divided into three main sections. In Sec. IV
we present our results for the individual isotopes, which in-
clude spectrum analysis and decomposition of wave functions.
This section is further partitioned into the °>*°Zr region
(Sec. IV A), the **1927r region (Sec. IV B) and the '*'107r
region (Sec. IVC). In Sec. V we present our results for the
configuration (Sec. VA) and symmetry (Sec. V B) evolu-
tion of wave functions and the evolution of order parameters
(Sec. VC). In Sec. VI we present a classical analysis for
each isotope. In Sec. VII we present our results for the
evolution of more observables. This includes energy levels
(Sec. VII A), two-neutron separation energies (Sec. VII B), E2
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transition rates (Sec. VII C), isotope shifts and EQ transitions
(Sec. VII D), and magnetic moments (Sec. VILE).

We compare our work with other works in Sec. VIIIL.
This includes a comparison for **Zr (Sec. VIII A), for '°Zr
(Sec. VIII B), for the heavier isotopes (Sec. VIII C), and some
general remarks (Sec. VIIID). The conclusions and outlook
are given in Sec. IX. The fitting procedure for determining the
Hamiltonian parameters is discussed in the Appendix.

II. THEORETICAL FRAMEWORK

We employ an algebraic approach to study QPTs in the
zirconium isotopes. In order to do so, we use the inter-
acting boson model (IBM) [34], which describes low lying
quadrupole states in even-even nuclei in terms of a system of
monopole (s) and quadrupole (d) bosons representing valence
nucleon pairs. The IBM provides a simple and tractable shell-
model-inspired framework, where global trends of structure
and symmetries can be clearly identified and a diversity of
observables calculated. Below we present a brief introduction
to the model.

A. The IBM for a single configuration

For a single configuration, the IBM Hamiltonian consists
of Hermitian and rotational-scalar interactions that conserve
the total number of s and d bosons,

N=i+hg=ss+) did,. 3)
%
The latter is fixed by the microscopic interpretation of the
IBM [35] to be N = N, + N,, where N, (N,) is the number
of proton (neutron) particle or hole pairs counted from the
nearest closed shell.
a. Basis states and dynamical symmetries. In its simplest
version, the IBM has U(6) as a spectrum generating algebra
and exhibits three dynamical symmetry (DS) limits:

U(S) o SO(S) o SO@3),
U(6) D 1SUQB) D SOQ3), “)
SO(6) D SO(5) D SOQ).

In a DS, the Hamiltonian is written in terms of Casimir
operators of the algebras of a given chain. In such a case,
the spectrum is completely solvable and resembles known
paradigms of collective motion: spherical vibrator [U(5)], ax-
ially symmetric [SU(3)] and y-soft deformed rotor [SO(6)].
In each case, the energies and eigenstates are labeled by quan-
tum numbers that are the labels of irreducible representations
(irreps) of the algebras in the chain. The corresponding basis
states for each of the chains (4) are

U®B): |N,ng, t,na,L), (5a)
SUB): [N, (A, w), K, L), (5b)
SO6): |N,o,1,na,L), (5¢)

where N, ng, (A, 1), o, t, L label the irreps of U(6), U(S5),
SU(3), SO(6), SO(5) and SO(3), respectively, and na, K are

multiplicity labels. For a general Hamiltonian, the wave func-
tions with a given boson number, N, and angular momentum,
L, can be expanded in terms of the DS bases in the following
manner:

W INLL)y = Y CND IN.ng.t.na. L), (62)

g, T,AA

(WINLL) = 7 Rk IN. G ). K. L), (6b)
(A, ). K

(W INL L) = Y CND N o, T, na, L), (60)
0,T,NA

where the coefficients C{M2), with quantum numbers «, give
the weight of each component in the wave function.

b. Geometry. A geometric visualization of the IBM is ob-
tained by a coherent (intrinsic) state [36,37],

1B.v:N) = )™2()HY 10),
bl =1+ B> [Bcosy d]
+Bsiny(d] +d)/V2+5']. 7)

and taking the expectation value of the Hamiltonian to form
an energy surface,

Ev(B,y)= (B, v;N|H|B,y;N). ®)

Here (B, y) are quadrupole shape parameters whose values,
(Beqs» Yeq) at the global minimum of Ex (8, y) define the equi-
librium shape for a given Hamiltonian. The values are (8.q =
0), (Beq = V2, Yeq = 0) and (Beq = 1, yeq arbitrary) for the
U(5), SU(3) and SO(6) DS limits, respectively. Furthermore,
for these values the ground-band intrinsic state, |Beq, Yeq; V),
becomes a lowest (or highest) weight state in the irrep of the
leading subalgebra of the DS chain, with quantum numbers
(ng = 0), (A, u) = (2N, 0) and (o = N) for the U(5), SU(3)
and SO(6) DS limits, respectively.

c. QPTs: Type I. The energy surface Ey (8, y; &), which de-
pends also on the Hamiltonian parameters [e.g. & of Eq. (1)],
serves as the Landau potential, whose topology determines
the type of phase transition (Ehrenfest classification). The
correspondence between the DS limits and shapes identifies
the DSs as possible phases of the system. QPTs involving
a single configuration (Type I) can be studied in the IBM
using a Hamiltonian A (&), as in Eq. (1), that interpolates
between different DS limits (phases) by varying its control
parameters £. Such QPTs have been studied extensively in the
IBM framework [3,37-39].

In Type I QPTs, the order parameter is taken to be the
expectation value of the d-boson number operator, 71,4, in the
ground state, with the following values for the DS limits:

UGB):  (fa)er =0, (9a)
AN(N — 1
SUB):  (fa)or = ﬁ (9b)
NN -1
SO6) :  (Aa)or = ﬁ (9¢)

The expressions of Eq. (9) converge in the large-N limit to
the geometric form of the order parameter in terms of the
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corresponding equilibrium deformation, Beq:

5 2
(fia)or ~ _Pa

N 1+ 82

(10)

d. Example: Hamiltonian for Type I QPTs. A typical
Hamiltonian frequently used for Type I QPTs, has the form
[40,41]

H(eq. k. x) = €aha+k Qy - Oy, an
where the quadrupole operator is given by
Oy =d's+s'd+ x(d" xd)®. (12)

Here d,, = (—1)"d_,, and standard notation of angular mo-
mentum coupling is used. The control parameters (€4, k', x)
in Eq. (11), with values (k = 0), (¢, = 0, x = —+/7/2) and
(€4 =0, x =0), interpolate between the respective U(S),
SU@3) and SO(6) DS limits. The U(5)-SU(3) transition is
found to be first-order, the U(5)-SO(6) transition is second-
order, and the SU(3)-SO(6) transition is a crossover. For the
Hamiltonian (11), the associated Landau potential (8) reads

EN(ﬂ? V§€d,’f, X)
N2 )
=5k N+ ——leq +x(x" —4)]

1+ B2
NN — 1)p?
ﬁxm _4gBTHPF (13)

where ¥ = \/g)( and I' = cos3y.

B. The IBM for configuration mixing

An extension of the IBM to include intruder exci-
tations is based on associating the different shell-model
spaces of Op-Oh, 2p-2h, 4p-4h, ... particle-hole excitations,
with the corresponding boson spaces comprising N, N +
2, N +4,... bosons, respectively, which are subsequently
mixed. In this case, the resulting interacting boson model
with configuration mixing (IBM-CM) [42,43] Hamiltonian
has the form as in Eq. (2). In the present work, we
write it not in matrix form, but rather in the equivalent
form

A=0"+8] 4+ woNe, (14)

Here, O™ = }3;, OPy and OWVN) — I%@ISN/, for an operator
O, with Py a prcp}ection operator onto the N boson space. The
Hamiltonian ﬂf(‘ ) represents the normal A configuration (N
boson space) and ﬁ;N +2) represents the intruder B configura-
tion (N + 2 boson space).

The E2 operator for the two configurations is expanded
accordingly:

f(EZ) — e(A)Qg(N) _i_e(B)Q&N-&-Z)’ (15)

with QA&N ) = PQ, Py and 0, defined in Eq. (12), is the same
quadrupole operator appearing in the Hamiltonian (11). In
Eq. (15), e and e'® are the boson effective charges for the
configurations A and B, respectively. No mixing term appears

in Eq. (15), since we assume that the E2 operator is a one-
body operator and therefore cannot change the boson number
by 2.

a. Wave functions. The resulting eigenstates |W; L) of the
Hamiltonian (14) with angular momentum L, are linear com-
binations of the wave functions, W4 and Wpg, in the two spaces
[N]and [N + 2]:

|W;L) = a|Wa; [N], L) + b|Wg; [N + 2], L), (16)

with a*> + b> = 1. We note that each of the components in
Eq. (16), |W4; [N], L) and |Wg; [N + 2], L), can be expanded
in terms of the different DS limits of Eq. (6) with its corre-
sponding boson number.

b. Geometry. A geometric interpretation [44] is obtained by
means of the matrix E(S, y),

Ex(B.y:8a) QB yio)
QB,y;w)  Ep(B,v:8s)
whose entries are the matrix elements of the corresponding

terms in the Hamiltonian (2), between the intrinsic states (7)
of the two configurations, with appropriate boson numbers,

E(ﬁ,y)=[ } a7

Ex(B,y) = (B, y:NIHslB, v;N), (18a)
Ep(B,y) = (B, y:N +2|Hp|B, y;N +2), (18b)
QB,y)= (B, ¥;NIWIB,y;N +2). (18c)

Diagonalization of this two-by-two matrix produces the so-
called eigenpotentials, E+ (8, y).

c. QPTs: Type 1. E(B,y) of Eq. (17), which depends
also on the Hamiltonian parameters, serves as the Landau
potential matrix [6]. QPTs involving multiple configurations
(Type 1) can be studied in the IBM-CM using a Hamiltonian
H (&4, £5, @) asin Eq. (2), that interpolates between the differ-
ent configurations by varying its control parameters &4, &5, w.
Configuration-mixed QPTs and coexistence phenomena in
nuclei have been studied extensively in the IBM-CM frame-
work [6,13,18,42,43,45-52].

In Type II QPTs, the order parameters are taken to be the
expectation value of 7i; in the ground state wave function,
|V L = Of), and in its W4 and Wy components, Eq. (16),
denoted by (ﬁd)o,*’ (ng)4 and () p, respectively. As can be
inferred from Eq. (10), the shape evolution in each of the
configurations A and B, is depicted by (7,), and (7i4)p, re-
spectively. Their sum weighted by the probabilities of the Wy
and and Wy components,

(Aa)or = a® (Ra)a + b (Ra)p (19)

portrays the evolution of the normal-intruder mixing.

III. QPTs IN THE Zr CHAIN

A. Model space

To describe the 49Zr isotopes in the IBM-CM framework,
we consider j0Zr as a core and valence neutrons in the 50—
82 major shell, similarly to a calculation done for the s5,Mo
isotopes in [13]. The normal A configuration corresponds to
having no active protons above Z = 40 subshell gap, and the
intruder B configuration corresponds to two-proton excitation
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FIG. 2. Schematic representation of the two coexisting shell-
model configurations (A and B) for ZSZr58. The corresponding
numbers of proton bosons (/) and neutron bosons (N,), relevant
to the IBM-CM, are listed for each configuration.

from below to above this gap, creating 2p-2h states. Accord-
ing to the usual boson-counting, the corresponding bosonic
configurations have proton bosons N, = 0 for configuration
A and N, = 2 for configuration B. Both configurations have
neutron bosons N, = 1, 2, ..., 8 for neutron numbers 52—-66,
and N, =7, 6 for neutron numbers 68—70, where the bar
over a number indicates that these are hole bosons. These
two configurations are shown schematically in Fig. 2 for **Zr.
Altogether, the IBM-CM model space employed in the current
study consists of [N] & [N + 2] boson spaces with total boson
number N = 1,2, ...8 for *>'%Zrand N = 7, 6 for %1107,
respectively.

B. Hamiltonian and energy surface

For two configurations, the Hamiltonian has a form as in
Eq. (2) or Eq. (14), with a typical choice

Ay =H(e, k™, x), (202)
Ay =P kP, x) +cPL-L+A,  (20b)

where H is given in Eq. (11). The Hamiltonian Hp of
Eq. (20b), contains an additional rotational term, L - L
with parameter «'®, where L = /10(d'd)" is the angular
momentum operator. A, is the off-set energy between config-
urations A and B, and the index p denotes the fact that this
is a proton excitation. The mixing term in Eq. (14) between
configurations A and B has the form [34,42,43]

W= [ws(d" xdHO +w,(s'sH+He., (1)

where primed (unprimed) bosons denote hole (particle)
bosons with respect to the proton shell gap at Z = 40. We
take in this paper w;, = wy = w and §',d’ = s, d in order to
avoid proliferation of parameters and as done in all previous
IBM-CM calculations [42,43]. The mixing term has then the

form
W=wl[d xd)”+"H]1+Hec., (22)

where H.c. stands for Hermitian conjugate.

For the energy surface matrix (17), we calculate the expec-
tation values of the Hamiltonians H, (20a) and Hp (20b), in
the intrinsic state (7), with N and N 4 2 bosons respectively,
and a nondiagonal matrix element of the mixing term W (22)
between them. The explicit expressions are found to be

Ex(B.v) =En(B.vies". k™, x).

Ez(B.y) = Evia(B.vi€” . k® . x)

3y N + 2)p?
1+ p?

NOEICESY .
T a)(1+—5,3 ) (23c)

(23a)

+ 6k +A,, (23b)

QB.yv)=

NG

where the surfaces on the right-hand side of Eqgs. (23a)
and (23b) are obtained from Eq. (13).

C. Configuration and symmetry assignment

Given an eigenstate of the form as in Eq. (16), one can
calculate for either the A or B part its decomposition in the DS
bases, Eq. (6). This defines the probability of having definite
quantum numbers of a given symmetry:

UG PN =3 [eh T (24a)
g f 2

SUG): ALY =2 lCain] @)
K

S06): PN =Y [cb (24c)
T,nA

so): PMP =[G 4
ng,na

Here the subscripts i = A, B denote the different configura-
tions, i.e., Ny = N and Np = N + 2. Furthermore, for each
eigenstate, Eq. (16), one can also examine its coefficients a
and b, which portray the probability of the normal-intruder
mixing:

P;NA,L) =,

PR = b2, (25)

a* and b’ can be evaluated from the sum of the squared
coefficients of an IBM basis [U(5), SU(3), or SO(6)] in their
respective boson space, N and N + 2. For the U(5) basis, we

have
2 Ny,L) |2
a= Y lchh I, (26a)
ng,T,NA
2 Ng,L) |2
b = Z |cWe) |, (26b)
ng,T,NA

where the sum goes over all possible values of (ng4, T, na) in
the (V;, L) space, i = A, B, and A +b=1.

014305-5



N. GAVRIELOV, A. LEVIATAN, AND F. IACHELLO

PHYSICAL REVIEW C 105, 014305 (2022)

Configuration (A) e--e Configuration (B) ‘

2 o (oot
10
€d
' ° ° o"."o ° — _88; .
e -0 @--®, 1-0.
of - Cveeel[ e 003
o03f I . """ (d)]20
k! 0.02 s . I
001} eee-e. 0% AN
0.0 o.0-0-000]08
oaf T T T T (ej """"" (f) {05

w 01 10
0.06 105 X
002 Seeeeees I

50 54 58 62 66 70 50 54 58 62 66 70
Neutron number

FIG. 3. Parameters of the IBM-CM Hamiltonians, Egs. (20a),
(20b), (22), are in MeV and the parameter x of Eq. (12) is
dimensionless.

IV. RESULTS: DETAILED QUANTUM ANALYSIS
OF INDIVIDUAL ISOTOPES

The quantum analysis for *>''°Zr entails a detailed com-
parison of the experimental energies and E2 transition rates
with the results of our calculation. The Hamiltonian param-
eters used are shown in Fig. 3 and Table V. The fitting
procedure employed to obtain them and their trends are dis-
cussed in the Appendix.

We now discuss our calculation for individual isotopes,
dividing them into different regions. Each region is defined
by the symmetry properties of the intruder B configu-
ration. The first region °>°Zr, with coexistence of two
U(5)-configurations, the second region **-1%Zr, with Type I
[U(5)-SU(3)] and Type I QPTs, and the third region %4107,
with SU(3)-SO(6) crossover. For each region, we also discuss
the configuration and symmetry content of selected eigen-
states. Information on the symmetry structure within each
configuration is obtained by examining the decomposition
of the wave functions defined in Eq. (24). Information on
the configuration content of each eigenstate is obtained from
Eq. (26).

A. The > *Zr region: U(5)-coexistence

We begin by comparing our calculation to the experimental
values for the region of ***°Zr, shown in Fig. 4. For each of
these isotopes, the spectrum exhibits coexistence of two spher-
ical configurations with weak mixing between them and is
divided into sectors of configuration A, normal states (in blue,
left), and configuration B, intruder states (in black, right).

For ?2%4Zr the experimental energies are reproduced well,
while the E2 transition rates are reproduced more qualitatively
than quantitatively, due to the small boson number (N = 1, 2,

respectively). We note that in configuration B some of the
proposed U(5) multiplets are incomplete (see Table VI in
the Appendix for more details). For both °*%*Zr, there is
no experimental O state to correspond to the calculated 0
(ng ~ 2) state. For **Zr, there is no experimental 0% state
to correspond to the calculated 0" (n; =~ 3) state and for
%7r there is no experimental 3% state to correspond to the
calculated 3% (n; &~ 3) state.

For *°Zr, the boson number is increased (N = 3) and
configuration B becomes more collective. The B(E2; ZT —
07) =2.3(3) W.u. is reproduced well, suggesting single-
particle characteristics for the O and 2| states. The
transitions within configuration B states, B(E2; 2; — 0; )=
36(11), B(E2;47 — 2J) =563, B(E2;27 — 2)<400
and B(E2;0] — 27) = 34(9) W.u. are all reproduced well by
the calculation and conform with the IBM-CM interpretation
of quasiphonon structure for configuration B. The experimen-
tal transitions between the configurations, B(E2; 41+ — 2?) =
1673, and B(E2;2§ — 07) = 0.26(8) W.u., do not conform
well to the calculated values of 3 (which is within the error
rage) and 0.001 W.u. This suggests that perhaps a larger value
for the w-mixing term in Eq. (22) could be used. Such an
increase in @ (from 0.02 to 0.04 MeV), with only a minute
variation to A, results in a significant increase of the calcu-
lated values, placing them within the experimental error range,
while keeping the rest of the calculated transitions approxi-
mately the same. Nevertheless, in such a scenario, the mixing
between configuration A and B 0 and 0 states, respectively,
is still very weak. Above the energy of the experimental states
that correspond to the n; & 2 multiplet, it is more difficult to
assign states to a certain phonon-multiplet due to the lack of
data. Specifically, the experimental 8] has a dominant branch
to the 6, which in turn has a dominant branch to the 4] [56]
and therefore are assigned to configuration B. Accordingly,
they correspond to the calculated states with dominant n; ~
3 (67) and ny ~ 4 (8]) components.

Wave functions. For °>°%Zr, the calculated ground state
(07) has b* =3.9%,7.7%, 0.4% and the 2] state has b* =
4.2%, 11.6%, 6.8%, respectively, hence they are assigned to
the A configuration. The 0 state is almost purely config-
uration B lowest state with b?> = 96.3%, 91.8% and 99.6%,
respectively. Fig. 5 depicts the n; decompositions for the A
and B configuration of each eigenstate. We observe a clear sin-
gle dominant n, component for each of the states, with weak
mixing between the different configurations, suggesting a
spherical structure for both of them. The o, 2? states belong
to configuration A. For configuration B, which has collective
attributes, the calculation suggests that the states are almost
purely spherical, as is clearly seen in Fig. 5, with large ny; ~
0,1,2,3 components for the states (03), (27), (4], 27, 0])
and (67,47, 37,2],0;), respectively. For 947r, it is the cal-
culated 2} and 47 instead of the 2§ and 4] states. As seen
in the middle panel of Fig. 5, larger mixing is observed in
947Zr for the calculated ny ~ 2 triplet, 41, 2, 0, with b* =
84%, 75%, T1%, respectively. The reason is that these states
have a smaller energy difference from the normal 47, 2§, 07
states (0.4 MeV) and thus mix with them more strongly,
compared to *°Zr (1 MeV). The stronger mixing scenario
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FIG. 4. Experimental and calculated energy levels in MeV and E2 transition rates in W.u. Levels in blue (black) belong to the A (B)
configuration. Transitions between different configurations are denoted in red. For the configuration A experimental levels that have no
corresponding calculated levels; see the Appendix. Data are taken from [53] for *>Zr, [25,54] for **Zr and [28,55] for *°Zr.

could be reduced by adding an #i,4(77; — 1) interaction to the
normal Hamiltonian (20a) (see the Appendix for more de-
tails). For °*Zr, such normal states are not generated due to
the small boson number (N = 1) of configuration A.

B. The **1Zr region: IQPT

The spectrum of *®Zr, shown in Figs. 6(a) and 6(b),
exhibits coexistence of two configurations with weak mixing
between them. Here the spectrum is divided into sectors
of configuration A normal states (in blue, left), which are
considered to be spherical, and configuration B intruder
states (in black, right), which are considered to be weakly
deformed (or quasispherical). The experimental strong E2
rates B(E2;07 — 2) =51(5), B(E2;2f — 2)=4617),
B(E2;47 — 21)=25T15) B(E2;0] — 2)=44(4) and
B(E2;6] — 41) =103.0(357) W.u. and weak B(E2;0; —
2{)=0.107(14), B(E2;2§ — 0f) = 1.87;* W.u. conform

with the quasispherical interpretation for configuration B.
The experimental E2 rates with B(E2;2] — 07) = 1.773,
B(E2;2] — 07)=1.173, B(E2;25 — 07) = 0.2613
and B(E2;2{ — 27)=7.6"5; Wu. conform with the
interpretation of 0f and 27 as normal A configuration
states with seniority-like single-particle character, weakly
mixed with intruder B configuration states. The experimental
E2 rates B(E2;27 — 2/)=7.6"5; W.u. deviates from
the calculated value of 1.8 W.u.; however, a merely 1%
decrease of the parameter e(gA) in the Hamiltonian (20a)
results in a calculated value of 6.1 Wu. for this
transition, without affecting significantly the remaining
transitions in Figs. 6(a) and 6(b). As mentioned in the
Appendix, the experimental 4] state is excluded from
the IBM model space; however, the observed transition
rates involving it, B(E2;45 — 2{)=0.6"01] W.u. and
B(E2;4f — 27)=4.6"1] W.u., support its assignment as
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a configuration A single-particle state, weakly mixed with
configuration B.

For the spectrum of 1007y shown in Figs. 6(c) and 6(d),
the spherical configuration A has now become excited and
includes the calculated 0] and 27 states. The ground state
band is associated with configuration B. The close proximity
of O;’ (A configuration) and OT (B configuration) suggests that
1007 is near the critical-point of the Type II QPT. Never-
theless, our description of energy levels and B(E?2) values is
excellent. One recognizes different ground, 8, and y bands
for configuration B, with bandheads 0}, 0F, 27 respectively.
The transition B(E2;05 — 2[) =67(7) W.u. between the
two configurations is described by the calculation (70 W.u.)
to a very good agreement. For the calculated configuration
A spherical 27 state, one needs more experimental data such
as E2 transitions to determine its exact location. We stress
that the parameters employed were not optimized for this
particular isotope, but rather were determined from a com-
bined fit on the data of all the isotopes in the chain and were
varied smoothly (except A,) in a well defined manner (see the
Appendix for more details).

The spectrum of '°>Zr, shown in Figs. 6(e) and 6(f),
exhibits clear ground, 8, and y-rotational bands for configu-
ration B, while the spherical states of configuration A seem to
lie higher in energy. The measured E2 transition, B(E?2; 2;r —
07) = 105(14) W.u., is reproduced reasonably well by the
calculation (128 W.u.). This isotope appears to have features
of the so-called X(5) critical-point symmetry [60], similar to
the case encountered for neutron number 90 [61-65] for the
Nd-Sm-Gd-Dy isotopes, where the symmetry changes from
U(5) to SU(3). As seen in Table I, the normalized energies
and E?2 transition rates agree well with those of X(5). For the
B(E?2) ratio involving the 4] — 2 transition, the empirical

TABLE I. Energies and B(E2) values normalized to E(2]) =
1 and B(E2;2f — 0f) =1, respectively, for the X(5) critical-
point symmetry [60] and for the experimental values of '®Zr. The
0+,, 2% ,, 47, states correspond to the 0F, 27, 45 states of the X(5)
model and to the experimental 05 , 27, 47 states of 1027y

X(5) 1027y expt.
E@4)) 2.91 3.15
E(6}) 5.45 6.36
E@8}) 8.51 10.51
E(10}) 12.07 15.49
E(0L,) 5.67 5.89
EQL,) 7.48 7.98
E@4L,) 10.72 10.13
B(E2;41 — 21) 1.58 1.59

value for 'Zr is in perfect agreement with the X(5) value
1.58.

Wave functions. For *Zr, the 0/ state belongs to config-
uration A and has a small configuration B component, with
b?* = 1.8%. For 'Zr, the 0 state changes its configuration B
content and has b*> = 87.2%. The latter configuration-change
is a clear evidence of Type I QPT, where '%Zr lies near the
critical point. For '%>Zr, the 0 is almost pure configuration
B with b* = 98.4%. The 2} state changed to configuration B
already in B7r, with b2 = 97.1%, as was pointed out in [31].
For '92Zr, it is a pure configuration B state with > = 99.9%.
The 0F state is almost purely configuration B lowest state
n BZr, with b* = 98.2%. For 'Zr, the 0 becomes the
lowest A configuration state with 5> = 19.8% and for 'Zr
it becomes the first excited state within configuration B with
b ~ 100%.

The U(5) ny decomposition for *3Zr is given in panel (a) of
Fig. 7. We see that the 07, 2] states have a single dominant
ng component (ny =~ 0, 1, respectively) in the configuration
A side, which identifies them as spherical. For states that
belong to configuration B, one can still see dominant single-
ng components, with large ny =~ 0, 1,2,3 components for
the states (05), (21), (4],27,07) and (67,45, 37,2],07),
respectively. These components, however, are less dominant
compared to the °>~*%Zr case, Fig. 5. The calculation therefore
suggests these states are weakly deformed or quasispherical.
For '%9Zr, one observes dominant U(5) ny = 0, 1 components
for the configuration A 05 and 27 states in Fig. 7(b), while
the configuration B states are spread amongst several n, val-
ues on the right side of the panel. An SU(3) decomposition
in Fig. 7(c) exhibits (A, u) components for configuration B
states that become more dominant as L increases. The rea-
son for the latter is the decrease in the number of possible
states to mix with in the IBM-CM model space. For '©Zr,
Fig. 7(d) shows only the decomposition of configuration B,
since all the indicated states belong to it. One sees that most
states have a single dominant SU(3) component. Specifically,
the ground-band states 0, 27, 47, 67, 8/, 10], 12] have
about 90% dominant (A, ) = (2N + 4 0) = (16, 0) compo-
nent. Altogether, the calculated decompositions, shown in
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FIG. 6. Experimental and calculated energy levels in MeV and E2 transition rates in W.u. Notation as in Fig. 4. Data are taken from [33,57]

for *Zr, from [29,58] for '°Zr and from [59] for '2Zr.

Fig. 7, suggest the occurrence of IQPTs in this region. This
involves a U(5) to SU(3) Type I QPT within configuration B,
along with a Type II QPT driving a change in structure of yrast
states from configuration A to configuration B.

C. The *11°Zr region: SU(3)-SO(6) crossover

For the isotope '%Zr the deformation is expected to in-
crease, since it is near mid-shell. This is reflected in the
experimental value 134.24(6.88) W.u. for the 2] — 0 tran-
sition rates, as seen in Fig. 8(a). The calculated spectrum,
shown in Fig. 8(b) suggests the existence of additional g and

y bands with strong intraband and weak interband transitions.
For '%Zr, considered in Figs. 8(c) and 8(d), a weaker exper-
imental B(E2;2] — 0) = 104.025(3.355) W.u. indicates a
decrease in deformation. Furthermore, a low 25 state at energy
607 keV, close to the 41+ at 476 keV, suggests a crossover from
SU(3) to SO(6) symmetry (axial to nonaxial). A 27 state close
in energy to the 4;“ is not observed in the spectrum of '%®Zr,
shown in Fig. 8(e). However, such 2; state is seen in ''°Zr at
energy 485 keV, next to the 4]L at 565 keV [see Figs. 8(g)
and 8(h)]. Consequently, the calculation for these isotopes
suggests these low-lying states are part of an SO(6) multiplet.

014305-9



N. GAVRIELOV, A. LEVIATAN, AND F. IACHELLO

PHYSICAL REVIEW C 105, 014305 (2022)

Conf. (A)

—_
(=3
(=

w
S

(=)

Contf. (B)

1 23 456

Contf. (B)

—_
(=3
S

W
(=

(=}

Probability (%) Probability (%)

nq

/

(=1
=

W
=

Probability (%)
(=)

Z

2 -4;t 8T+
-31+ -61+ -101+
. 4 6, mmm 12,
w4

A 2
e (s (@ (z (0 (7
qgej,a,@,d)a

Y
(.w)

‘e 2 (v (O
%9~ %0, %,

FIG. 7. U(5) ny decomposition for (a) *Zr and (b) '°Zr, within configurations A and B. SU(3) (A, i) decomposition for (c) 'Zr, within
configurations A and B and for (d) '2Zr, only within configuration B. For each isotope, the order of the histograms is as in Fig. 5.

E (MeV)

E (MeV)

0,

(

(4
2

1047y exp

(a)

12/

3.21

10

__ 2315

61

0.926

+
41 0.452

+
2 1 0139
()rr $134.24(6.88)
0.0

187y exp

(e)

+

1 )_(1521
1)

1 0.174
0+ 0.0

127

1 3504

1_ 42482

_‘¢631

+
61 0.955

+211
1_Jo4s6
¥
2 2010137
0+

127

1_ 346

_y2481

163

g 1658

174
0.993

+175
4 0.49

+ 162
140155

4

2+_|_

1047y calc

(b)

I.

1087y calc

(f)

+
2 0903 3+

2 $0.514

0.741 0

4+

1293 65 ...JL34 2

+ 13&, Lis 37
1 1'4'4“' 91002

86 25

0.0

0.67

|
35 131
v

[
3
v

+_gl15
01 0.0

127

(8
L (67)

(4
(2

1067y exp

() |

+
1 )_1.571

0.947 L
+) (2; ) 0.607
1 0476 T
e

l) 0.152
0f" $704.025(3.355) L
0.0

HOZyr exp

(g) |

+
41 0.565

n
21 __ 0185
0+ 0.0 L

0.485

1067y calc

(d)

4

1006 o+ +
ot o 31 osw 0;
2 *0501

| 165
35

|
3
v )

0.802

.

+ 138
4 0.557

¥
21 113205

107y calc

(h)

0.836 3 0756 0+

ot 72 _'_98 0.636

230417 v 138
v127 $0.48

+ {93
01_‘?0

FIG. 8. Experimental and calculated energy levels in MeV and E2 transition rates in W.u. All levels belong to configuration B. Data are

taken from [27,66] (\*Zr), [27,67] ("°Zr), [68] (***Zr) and [30,69] (''°Zr).

014305-10



Zr ISOTOPES AS A REGION OF INTERTWINED ...

PHYSICAL REVIEW C 105, 014305 (2022)

s Conf. ( S Conf. (B)
100] 0F 2 47 g+ <100 ; ; - oF 3+ P
0/ 3 Y3 1 ' . 106 Y - 1
z 104Zr 0 o 0| by [z ===
£ ( : — S —ty 6 mm 12| 5 % : : ; - -2
S ) |2 -4 63 8 ‘ ‘ ‘ ‘ 2, = 6
o 0
& & 10 8 6 4 2 0
/ o
(hon)
S Conf. (B) < Conf. (B)
/100 : 0F 3F g+ | =100 1 : o 3T e
g : 108 i Bl 1 NG . 110 - -
2 (©) 0 i mam ]| 2 (@) | TAr S e 10
z : 3 — 12| F 50 3 ; - -2
= ‘ ‘ : 2, 6] 3 ' ' 2, mmm 0
S 0 g 0 =
~ 9 7 5 3 1 A~ 8 6 4 2 0
o o

FIG. 9. SU(3) (A, ) and SO(6) o decomposition of eigenstates of the Hamiltonian (14) for '*Zr and for 1°-11%Zr, respectively. Each panel
represents a single isotope and is divided into two parts: the decomposition within configuration A (left) and within configuration B (right). For
1047y, only probabilities larger than 5% are shown. For each isotope, the order of the histograms is as in Fig. 5.

Wave functions. For %1107y all states shown in Fig. 8
are almost pure configuration B states, with b> > 99%.
Therefore, we concentrate on decompositions of the B con-
figuration part of the wave function, Eq. (16). For '%Zr,
we show in Fig. 9(a) the SU3) (A, u) decomposition,
Eq. (24b). The 0, 2, 47, 6], 8F, 10], 12] states have
about 93% dominant (A, u) = (2N +4,0) = (18,0) com-
ponent. For '119Zr  Figs. 9(b)-9(d) depict the SO(6)
o decomposition, Eq. (24c¢), for which a single dominant com-
ponent (o = N + 2) is apparent for all isotopes. These states
also have good SO(5) symmetry (see Sec. V B below for more
details). The change in configuration B from dominant (A, )
components in *Zr to dominant ¢ components in %117y,
suggests that a crossover from SU(3) to SO(6) occurs in this
region.

V. RESULTS: EVOLUTION OF WAVE FUNCTIONS
AND ORDER PARAMETERS

A. Evolution of configuration content

Information on configuration changes for each isotope can
be inferred from the evolution of the probabilities a? or b2,
Eq. (26), of the states considered. Figure 10 shows the per-
centage of the wave function within the B configuration for
the ground state (0;") and first-excited state (2]) as a function
of neutron number across the Zr chain. The rapid change in
structure of the 0] state from the normal A configuration in
92987y (small b? probability) to the intruder B configuration

1007 o
80 2+
—— <]

D
(=

N
(=]

Probability (%)
S

O,
50 52 54 56 58 60 62 64 66 68 70
Neutron number

FIG. 10. Percentage of the wave functions within the intruder B
configuration [the &? probability in Eq. (16)], for the ground (0;) and
excited (2;) states in *>~'1Zr.

n 190-1107y (large b* probability) is clearly evident, signaling
a Type II QPT, mentioned in Sec. IV B. The configuration
change appears sooner in the 2] state, which changes to
configuration B already in *®Zr, in line with [31]. Outside a
narrow region near neutron number 60, where the crossing
occurs, the two configurations are weakly mixed and the states
retain a high level of purity, especially for neutron number
larger than 60.

B. Evolution of symmetry content

It is also interesting to see the changes in symmetry of
the lowest 07 and 2% states within configuration B, which
undergoes a Type I QPT. Fig. 11 depicts such evolution along
the Zr chain. For the 01 state (bottom panel), the red dots
represent the percentage of the U(5) n; = 0 component in
the wave function, Eq. (24a). For neutron number 52-60, this
component is large (*90%) and at 60 it drops drastically
(A30%). This drop implies that additional n; components
are present in the wave function, hence this state becomes
deformed. For neutron number larger than 60, the ny = 0
component drops to zero almost and slightly rises again at 70,
indicating the state is strongly deformed. For neutron numbers
60-66, we also depict in blue diamonds the percentage of
the SU3) (A, u) = (2N + 4,0) component, Eq. (24b). For
neutron number 60, it is moderately small (*35%). At neu-
tron number 62 this (A, u) component jumps (*=85%), and
it increases at 64 (~92%), where deformation is maximal.
This serves a clear evidence for a U(5)-SU(3) Type I QPT. At
neutron number 66, the indicated (A, ;) component is lowered
and one sees in Fig. 11, by the green triangles, the percentage
of the SO(6) 0 = N + 2 component, Eq. (24c). This com-
ponent becomes dominant for 6670 (x99%), suggesting a
crossover from SU(3) to SO(6).

In order to further understand the phase transition from
spherical [U(5)] to axially deformed [SU(3)] and the sub-
sequent crossover to y-unstable deformed [SO(6)], it is
instructive to examine also the evolution of SO(5) symmetry
in comparison with U(5), along the Zr chain. To recall, the
SO(5) quantum number 7 is valid in both the U(5) and SO(6)
DS limits, but is broken in SU(3) DS. On the other hand, the
U(5) quantum number 7, is valid in the U(5) DS, but is broken
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FIG. 11. Evolution of symmetries for the lowest 0" and 2" states of configuration B along the Zr chain. Shown are the probabilities of

selected components of U(5) (@), SU(3) (#), SO(6) (a) and SO(5) (

), obtained from Eq. (24). For neutron numbers 52-58 (60-70), 0}

corresponds to the experimental 05 (07) state. For neutron numbers 52-56 (58-70), 2 is the experimental 25 (2{) state.

in both the SU(3) and SO(6) DS limits. Accordingly, for a
given L-state at the U(5) limit, both the n; and 7 probabilities,
PN+2D) and PINTED) - are maximal (100%). In the U(5) to
SU(3) transition, both probabilities decrease, while, in the
SU(3) to SO(6) crossover, P> remains small, but PNV +21)
increases towards its maximal value at the SO(6) limit. This is
precisely the pattern exhibited by the n; = 0 probability (red
dots) and t = 0 probability (gray histograms) in Fig. 11, for
the lowest 0T and 2 states within configuration B.
Considering the 0} state. For neutron numbers 52-56,

N+2,L=0 N 2L 0
P( + i) A P( + B), meaning that the state is com-

posed mainly of a single (n; =0, 7t = 0) component, ap-

propriate for a spherical state. For neutron number 58,

N+2,L=0} N+2,L=0}) . . .
151:0’ 5) o pNE2L=0p ), implying the presence of addi-

tional componentg with (ny # 0, T = 0). For neutron numbers
60—-64, both n; = 0 and 7 = 0 probabilities decrease, satisfy-

gP,ZV’LOZL o) < P(N+2L %) - 100%, implying admixtures
of components w1th (nd # 0,7t #0), appropriate for an

axially deformed state. For neutron numbers above 64,

N+2,L=0} . N+2,L=0}) .
151:0 5) remains small but Pr(:0 5) increases towards

its maximum value at 70, appropriate for a crossover to y-
unstable structure with good SO(5) symmetry.

A very similar trend is observed for the 2} state. For
neutron numbers 52-58, it is dominated by a single (n; =

—7+t
1, T = 1) component. For neutron number 60, P(NH'L_zB) <

P(N+2L =2}) . for 62-64, PVEN_JrOZL =2}) < P(N+2L 2) < 100%,

unplylng admlxtures of components w1th (nd #1,t#1), and

pN+21=2))
ng= 0
increases towards its maximum value at 70.

The similarity between the trends of the 0} and 2} states

is particularly interesting since, as shown in Fig. 10, the 2]“

changes its configuration content from A to B already at neu-

for neutron numbers 66-70, remains small but

P(N+2 L=2}) .

tron number 58, rather than 60 for the OT state. This is a good
example of how the two types of QPTs, I and II, progress
simultaneously without interrupting one another, and support
the occurrence of intertwined QPTs.

C. Evolution of order parameters

Figures 10 and 11 above, exemplify in a clear manner the
simultaneous occurrence of Type II and I QPTs, respectively.
However, in order to encapsulate both types, it is instructive to
examine the behavior of the order parameters, Eq. (19). Fig-
ure 12 shows the evolution along the Zr chain of the individual
order parameters, (7i;)4 and (74) 5 (in dashed lines) and (ﬁd>01+
(in solid line), normalized by the respective boson numbers,
(Mg =N, (N)g =N +2, (N)g: = a’N +b*(N +2). (Ra)o:

SUG3) — SO(6) |

Order parameters

50 52 54 56 58 60 62 64 66 68 70
Neutron number

FIG. 12. Evolution of order parameters along the Zr chain. The
latter are the calculated expectation values of 71, in the total ground
state wave function |W; L = 07), Eq. (16) (solid line) and in its A
and B components (dotted lines), normalized by the respective boson
numbers (N)OT =a®N + PN +2), (N), =N, (N)g =N +2.
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FIG. 13. Contour plots in the (8, y) plane of the lowest eigenpotential surface, E_(8, y), for the *>'1°Zr isotopes.

is close to (i), for neutron numbers 52-58 and coincides
with (7i4)p at 60 and above, consistent with a high degree of
purity with respect to configuration-mixing. Configuration A
appears to be spherical for all neutron numbers considered.
In contrast, configuration B is weakly deformed for neutron
number 52-58 and becomes more deformed above 58. One
can see a clear jump in (7g)o+ between neutron numbers 58
and 60, changing from configuration A to configuration B, in-
dicating a first-order configuration-changing phase transition
(Type I QPT). A further increase in (ﬁd)of at neutron numbers
6064 indicates a U(5)-SU(3) shape-phase transition within
configuration B (Type I QPT), and, finally, there is a decrease
at neutron number 66, due in part to the crossover from SU(3)
to SO(6) and in part to the shift in configuration B from boson
particles to boson holes after the middle of the major shell
50-82. These findings further support the occurrence of two
configurations that are weakly mixed and interchange their
roles in the ground state while their individual shapes evolve
gradually with neutron number, i.e., intertwined Type I and II
QPTs.

VI. RESULTS: CLASSICAL ANALYSIS

In addition to the quantum analysis, the algebraic method
can perform also a classical analysis. In Fig. 13, we show the
calculated lowest eigenpotential E_ (8, y ), which is the lowest
eigenvalue of the two-by-two matrix (17), with elements given
in Eq. (23) for the entire chain of isotopes. These classical
potentials confirm the quantum results, as they show a tran-
sition from spherical (*>**Zr), to a double-minima potential
at '%Zr, to prolate axially deformed ('°71%Zr), and finally to
y-unstable ("%119Zr). At 1%Zr, E_(B, y) exhibits two min-
ima, one at (8, y) = (0,0) and one at (8, y) = (0.5617, 0),
separated by a saddle point at (8, y) = (0.3127, 0) that serves
as a barrier. In the limit of (8 — oo, y = 0) the lowest
eigenpotential has the value of 2.9 MeV, while the height
of the barrier is 0.3 MeV, i.e., the potential is flat bottomed.
We further note that in the classical calculation the global
minimum is the spherical one, rather than the deformed one
as in the quantum analysis [see Figs. 6(c) and 6(d)]. This
demonstrates the difficulties in describing the dynamics near
the critical-point by mean field methods.

The classical analysis above and the quantum analysis of
Secs. IV and V suggest coexisting Type I and Type II QPTs,
which is the defining property of IQPTs.

VII. RESULTS: EVOLUTION OF OBSERVABLES
ALONG THE Zr CHAIN

In order to understand the change in structure of the Zr
isotopes, it is insightful to examine the evolution of observ-
ables along the chain. The observables include energy levels,
two-neutron separation energies, E2 and EQ transition rates,
isotope shifts, and magnetic moments.

A. Energy levels

In Fig. 14, we show a comparison between experimental
and calculated levels, along with assignments to configura-
tions based on Eq. (26) and to the closest dynamical symmetry
based on the decompositions of Eq. (24), for each state. One
can see here a rather complex structure. In the region between
neutron numbers 50 and 58, there appear to be two config-
urations, one spherical (seniority-like), A, and one weakly
deformed, B, as evidenced by the ratio R4/, in each config-
uration, R} = 1.6, 1.6,1.76,1.2 and R}, = 2.2,2.8,2,2.7,
for neutron numbers 52, 54, 56, and 58, respectively. The
value Ri% = 2.8 for **Zr is somewhat larger, possibly as a
consequence of fluctuations due to the subshell closure at neu-
tron number 56. At neutron number 58, there is a pronounced
drop in energy for the states of configuration B, suggesting
a slight increase in deformation, where the 21+ becomes al-
ready a configuration B state. At neutron number 60, the two
configurations exchange their roles, indicating a Type I QPT.
This is evident from Fig. 10, showing the exchange in the
decomposition of the ground state 0] from the A configuration
(a® = 98.2%) in *Zr to the B configuration (b> = 87.2%) in
1007 At this stage, configuration B appears also to be close
to the critical point of a U(5)-SU(3) QPT, as evidenced by
the low value of the excitation energy of the 07 state in 1007
[see Fig. 6(c)], which is the first excited 0" state of the B
configuration (b> = 92.9%). As pointed out in Sec. IV B, the
spectrum of states of the next isotope, 1027 resembles that of
the X(5) critical-point symmetry [60].
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FIG. 14. Comparison between (a) experimental and (b) calcu-
lated energy levels 0f, 2], 4], 05,25, 45. Empty (filled) symbols
indicate a state dominated by the normal A configuration (intruder
B configuration), with assignments based on Eq. (26). The shape
of the symbol [o, A, <], indicates the closest dynamical symmetry
[U(5), SU@3), SO(6)] to the level considered, based on Eq. (24).
Note that the calculated values start at neutron number 52, while
the experimental values include the closed shell at 50. Data are
taken from [53] (°*Zr), [54] (**Zr), [55] (°%Zr), [57] (*®Zr), [58]
(197r), [59] (1%Zr), [66] (***Zr), [67] (*%Zr), [68] (*®Zr), [30,69]
(107,

Beyond neutron number 60, the intruder configuration B
becomes progressively strongly deformed. This is evidenced
for neutron number 62, by the small value of the excitation
energy of the state 2|, E(2]) = 151.78 keV, and by the ratio
Rﬁ% = 3.15, where the first excited 0" state within configu-
ration B is now the 05 state and serves as the bandhead of
a B band [see Fig. 6(e)]. For neutron number 64, the energy
of the 2 state is even smaller, E(2]) = 139.3 keV, and the
ratio ng; = 3.24 larger, suggesting further increase in defor-
mation. At still larger neutron numbers 66-70, the ground

state band becomes y-unstable (or triaxial) as evidenced by
the close energy of the 25 and 4] states in 106,107, " discussed
in Sec. IV C, a signature of the SO(6) symmetry. In this region,
the ground state configuration undergoes a crossover from
SU(3) to SO(6).

The trend in energies of configuration B for neutron num-
bers 5670 is in part similar to the case of ¢ Sm and ¢, Gd
isotopes [34,71], as depicted in Fig. 15. One can see a lower-
ing of the 4], 2], 0 states while the 05 state rises up again
at neutron number 90 to become a S-bandhead member, a
situation very similar to the trend of the states within configu-
ration B of Zr isotopes. One minor difference is in the second
excited 2% state within configuration B, 2;;2, which becomes
degenerate with the 4fr state at neutron numbers 6670, due
to the discussed SU(3)-SO(6) crossover. However, a major
difference occurs in the onset of deformation. While for Type
I QPT (single configuration in Sm-Gd) the onset is gradual
and the behavior smooth, for Type IT QPT (two configurations
in Zr) the onset is abrupt.

B. Two neutron separation energy

In the IBM, two-neutron separation energies Sz, can be
written as [34]

Sy, = —A — BN, £ 55 — A, (27)

where N, is half the number of valence particles and S3¢' is the
contribution of the deformation, obtained by the expectation
value of the Hamiltonian in the ground state 0. The + sign
applies to particles and the — sign to holes. A, takes into
account the neutron subshell closure at 56, A,, = 0 for 50-56,
and A, =2 MeV for 58-70. The value of A, is adapted
from Table XII of [73] and A = —16.5, B = 0.758 MeV are
determined by a fit to the binding energies of >°+6Zr. The
calculated S,,, shown in Fig. 16, is in agreement with the
empirical results and displays a complex behavior. Between
neutron numbers 52 and 56 it is a straight line, as the ground
state is spherical (seniority-like) configuration A. After 56,

2.57

56 60 64 68
Neutron number

84 86 88 90 92 94
Neutron number

84 86 88 90 92 94
Neutron number

FIG. 15. Experimental energy levels in MeV, comparing the evolution with neutron number of states L,;i of the B configuration in the Zr
isotopes to the situation encountered in the Sm and Gd isotopes. Note that the energy of states in the B configuration of Zr are with respect to
the lowest state (L = O;; 1) in that configuration. Data are taken from [70].
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FIG. 16. Evolution of two-neutron separation energies, S,,, in
MeV along the Zr chain. Data are taken from AME2016 [72].

it first goes down due to the subshell closure at 56, then it
flattens as expected from a first-order QPT (see, for example
the same situation in the ¢;Sm isotopes [71]). After 62, it goes
down again due to the increase of deformation and finally it
flattens as expected from a crossover from SU(3) to SO(6).

C. E2 transition rates

The above conclusions are stressed by an analysis of other
observables, in particular B(E?2) values. As shown in Fig. 17,
the calculated B(E2)’s agree with the empirical values and
follow the same trends as the respective order parameters (see
Fig. 12). The calculated 2} — 0 transition rates coincide
with the empirical 2] — 07 rates for neutron numbers 52-56.
The calculated 2 — 0} transition rates coincide with the
empirical 22+ — 0; rates for neutron numbers 52-56, with
the empirical 2 — 05 rates at neutron number 58 and with
the empirical ZT — OT rates at neutron numbers 60—64. The

| u(s) | U(S) —~SUB) | SUG) — SO(6) |
NS N
- 1250 |
S 100 & 27 —05|
£ sl 4 2o
g 50} |
B psl % Hogl
0 t—#’—_ﬁ.; ............................................

Neutron number

FIG. 17. B(E?2) values in W.u. for 27 — 07 transitions in the Zr
chain. The solid line (symbols @, W, A, ¢) denote calculated results
(experimental results). Dotted lines denote calculated E£2 transitions
within a configuration. The data for **Zr, *Zr, '°7r, %2Zr and
(1%zr, 197r) are taken from [25], [28], [29], [59], [27], respectively.
For %Zr (neutron number 58), the experimental values are from [33]
(®), from [32] (A), and the upper and lower limits (black bars) are
from [29,31].

large jump in B(E2;2] — 0]) between neutron numbers 58
and 60 reflects the passing through a critical point, common
to a Type II QPT involving a crossing of two configurations
and a spherical to deformed U(5)-SU(3) Type I QPT within
configuration B. The further increase in B(E2;2{ — 0}) for
neutron numbers 60—64 is as expected for a U(5)-SU(3) QPT
(see Fig. 2.20 in [34]) and reflects an increase in the deforma-
tion in a spherical to deformed shape-phase transition within
configuration B. The subsequent decrease from the peak at
neutron number 64 towards 70 is in accord with the afore-
mentioned SU(3) to SO(6) crossover (see Fig. 2.22 in [34]).

D. Isotope shift and E0 transitions

Further evidence for the indicated structural changes oc-
curring in the Zr chain can be obtained from analyzing the
isotope shift A <?2>o,+ = <?2)0]+;A = (?2>01+.A, where (?2)0]+ is
the expectation value of 72 in the ground state, 0f. In the
IBM-CM, the charge radius operator can be written as

T(rz) = rc2 +aN + niy, (28)

where rC2 is the square radius of the closed shell, N () is to-
tal boson (d-boson) number operator [34,75,76]. The isotope
shift depends on two parameters, « and 7, given in units of
fm?. o represents the smooth behavior in A (?2>ol+ due to the

A'/73 increase of the nuclear radius, while n takes into account
the effect of deformation. Their values are fitted to the data
and yield o = 0.235 fm? and = 0.12 fm?.

As seen in Fig. 18(a), the calculated A (?2)01+ increases
at the transition point and decreases afterwards, which is in
accord with the expected behavior of a first-order QPT and the
experimental values, although the error bars are large and no
data are available beyond neutron number 60. (In the large N
limit, this quantity, proportional to the derivative of the order
parameter (i), diverges at the critical point).

The current calculated result is different from our previous
one [8]. The reason is that in Eq. (28) we use the boson
number operator, where in [8] we used N,. The difference
is at the transition point, where the expectation value of the
boson operator in the ground state becomes approximately 7
for '7Zr (and 8, 9, 10 for '0>-1%7;, respectively) while for N,
it is 5 (and 6, 7, 8 for 102-1067,. respectively). Therefore, the
use of the boson number operator results in a peak at neutron
number 58 rather at 60 (when using N,,).

The monopole strength for EO transitions between initial
|i) and final | f) states,

(AT EO)i)
P(EO) = iy (29)
eR
can be evaluated using the EQ transition operator:
T(EO0) = (e,N + e,Z)T (). (30)

The latter is constructed from the charge radius operator,
Eq. (28), in the manner suggested in [75,76]. We note that in
such a case the values of « and 7 that are used for the isotope
shift operator are the same for the EO transitions operator.
Similarly to E2 transition rates, the quantity in Eq. (29) can
also highlight the underlying structure of the wave functions.
Figure 18(b) depicts two calculations of the square of the
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FIG. 18. Evolution of isotope shifts and E0 transitions along the
Zr chain. Symbols (solid lines) denote experimental data (calculated
results). (a) Isotope shift A (}72)01+ in fm?. Data are taken from [74].
The horizontal dashed line at 0.235 fm? represents the smooth be-
havior in A (’A"Z>0]+ due to the A'/? increase of the nuclear radius.
(b) EO strength squared for 05 — 07 and 07 — 07 transitions. The
gray dashed line denotes the calculated sum of both transitions and
is approximately constant for neutron numbers 62-70.

monopole strength, for O; — OT (black line), compared to
experimental values (red dots), and for Ogr — OT (blue line).
One can see an intricate behavior of the data. At neutron num-
bers 52-58, the transitions are weak since the wave function
of the 0] (05 and 07) state has a dominant component of con-
figuration A (B), in accord with the discussion in Figs. 5, 7, 10.
At neutron number 60, there is an increase in strength of both
transitions, reflecting the occurrence of both types of QPTs.
The increase in 05 — 0 occurs as a consequence of the
increase in mixing between the configurations: the 05 state
(which was the spherical OT state in *>°%Zr) is more mixed
with the 0] state. This is similar to the process presented in
Ref. [77], in which large mixing induces large EO transitions.
The increase in 03 — 0 (with values 0.029, 14.308, 1.609
for %1927y, respectively) occurs since for '°Zr the 05 state
is now the first excited 0" within configuration B alongside
the ground state 07, and both are deformed. As shown in [78],
in a single configuration, an increase in deformation can give
rise to an increase in the monopole strength. At neutron num-
bers 62—-64 there is a decrease in 0; — OT since these states
are pure configuration B, with no mixing. Nevertheless, the
transition value is still large, again since they are deformed,
consistent with the view of [78]. At neutron numbers 66—70
there is an SU(3)-SO(6) crossover and thus the 0 — 0 and
07 — O strengths interchange, large 0] — O} transitions
emerge, while 07 — 0} transitions are weak. Such a behavior
arises from the fact that the E£0 operator of Eq. (30) is an SO(5)
scalar. In the SO(6)-DS limit, 0;, 05 are T = 0 states while
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FIG. 19. Evolution of magnetic moments Mot in units of wy,
along the Zr chain. Symbols denote experimental data, taken
from [79]. The solid line denotes calculated results, based on
Eq. (33).

0 has v = 3. Finally, as noted in [78], the sum of 0 — 0
and 03 — O strengths remains nearly constant for neutron
numbers 60—70 (as shown by a dashed line in Fig. 18).

E. Magnetic moments

For a single configuration, the magnetic dipole operator
can be written in its simplest, one-body form as

. 3 .
T(Ml):,/EgL, 31

where L is the angular momentum operator and g is the ef-
fective boson g-factor [34]. For two mixed configurations, the
magnetic dipole operator reads

,IA,(MI) — l%(g(A)l’:(N) +g(3)£(N+2))’ (32)
v

where L™ = P} LBy is the angular momentum operator pro-
jected onto the N boson space and g and g are the
coefficients. The magnetic moment ; of a state as in Eq. (16)
is then given by

nr = (a*g® + b*g®)L, (33)

with a® 4+ b*> = 1. Similarly to the case of T(E2) in Eq. (15),
also here we do not include two-body terms in Eq. (31).
Experimental and calculated magnetic moments for the
2] state in Zr isotopes are shown in Fig. 19. The calculated
values are based on Eq. (33), with g and g'® taken as con-
stants for simplicity. g4’ = —0.04/y is determined from the
average of the experimental lower value of **Zr and upper
value of *Zr. g® = +0.2575uy is determined from the av-
erage of the experimental lower value of '°°Zr and the upper
value of '%>Zr. One can see an interesting trend. The empirical
and calculated values are close to zero (or negative values) for
neutron numbers 52-56 and are close to +0.5uy for neutron
numbers 58—70. The latter is close to the collective g-factor for
a rigid rotor [80], & = Z/A. In general, values of Mot close
to zero (or negative) reflect single-particle structures, while
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TABLE II. Experimental transition probabilities in W.u. for **Zr from [33] (unless stated otherwise) compared to different theoretical

calculations. The present calculation is denoted by IBM-CM.

B(E2) (W.u.)

Transition Experiment IBM-CM  IBM-CM-2[23,24] MCSM-1[22]* MCSM-2[22]" EXVAM [21]
B(E2;2] — 0)) 11193, 2.9(6)° 1.35 9.6 0.0 0.0 42.5
B(E2;2 — 07) 1113,28.3(6.0)¢, <71.3%, >11.5¢ 43.39 32 70 70 7.38
B(E2;25 — 0)) 0.267039 0.34 2.5 0.0 0.0

B(E2;2 — 07) 1.8%0¢ 0.06 47 2.0 2.0 1.043
B(E2;2 — 0) 6.54 3.2 49 49 48
B(E2;2f — 2)) 4613 47.22 0.55 8.7 8.7 70
B(E2;2] — 0)) 0.147003 2.33 0.01

B(E2;2{ — 0)) 1743 2.28 0.56

B(E2;2{ — 2)) 76153 1.81 46

B(E2;47 — 21) 2571, 43.3(8.7)° 68.0 59 103 0.6 77
B(E2;47 — 2) 38738, 67.5(13.5)° 1.68 67 0.7 76 23
B(E2;4 — 21) 0.6%01] f 0.05 0.6 103 59
B(E2;4 — 2) 4.6%17 f 0.11 76 0.7 2.1
B(E2;6] — 4]) 103.0(35.7)¢ 76.9 143 102 87

B(E2;0{ — 2]) 58(8)2 37 53 30
B(E2;0] — 27) 42(3)2 46 42

B(E2;0] — 2]) 0.103(8)2 0.045 0.33 0.074

#Level assignments as in [29].

Level assignments as in [32].

‘From [32].

dFrom [31].

¢From [29].

fOutside of the IBM-CM model space. See text.
gFrom [57].

large positive values reflect collective structures. The approx-
imately constant trend for neutron numbers 52—-56 and 58-70
suggests that the amount of mixing in the 2 state is also
approximately constant for each set of neutron numbers. This
is inline with our calculations reported in Sec. V, that suggest
the same amount of weak mixing, approximately (see Fig. 10).
The mixing in the wave function of the 2] state, Eq. (16),
along the chain of isotopes is a? = 96%, 88%, 93%, 3%, 1%
for neutron numbers 52—-60 and a® ~ 0% for neutron numbers
62-70. Consequently, for neutron numbers 52-56 (58-70)
mainly the g (¢®®) part dominates in Eq. (33). The sharp
increase when going from neutron number 56 to 58 reflects
the fact that the calculated 2] wave function changes its
structure from being a dominant A to B configuration, respec-
tively. Thus, magnetic moments can be used as a signature for
identifying the amount of collectivity, the amount of mixing
between different configurations, and for Type II QPTs. Some
of these ideas were previously suggested in [81] and are
inline with the more recent work of Ref. [82]. Other known
experimental magnetic moment values are jt,+ = +1.52(10)
for *Zr [53] and py; = +1.76(54) py for **Zr [54]. The
calculated values are 0.495uy and 0.421uy, respectively. The
large positive values reflect the fact that the 27 state is part of
the collective B configuration; however, the calculated values
are too low, possibly due to the fact that for neutron numbers
52 and 54 the boson numbers are small (N = 1, 2).

VIII. COMPARISON WITH OTHER WORKS

The Zr isotopes have been investigated by several theoret-
ical approaches mentioned in the Introduction. Here we com-
pare our results with representative large-scale shell-model
calculations: the Monte Carlo shell model (MCSM) [22] and
the complex excited VAMPIR model (EXVAM) [21] and with
other IBM-CM calculations: mean-field based (IBM-MF) [18]
and an independent calculation [23,24] similar to ours, but
with a different fitting protocol, denoted henceforth by IBM-
CM-2. We focus the comparison on the **!%Zr isotopes,
which lie near the critical point of both Type I and Type II
QPTs.

A. The **Zr isotope

Recently, absolute transition rates in *®Zr were measured
in Refs. [32,33]. The results, adapted from [33], are presented
in Table II, with an added comparison with the EXVAM
calculation. In Table II, MCSM-1 and MCSM-2 are the same
MCSM calculation employing different assignment of levels
(see Ref. [33] for more details). The IBM-CM in boldface
and IBM-CM-2 are the current IBM-CM calculation and that
of [23,24], respectively.

Both IBM-CM calculations consider two configurations,
normal and intruder composed of Op-Oh and 2p-2h states,
respectively. For *8Zr, the resulting 0 state is spherical and
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FIG. 20. B(E2) values in ¢*fm* for 2 — 0 in Zr isotopes and
2fr — OT in Xe isotopes, as a function of N; N,. Shown are calculated
values (black dots connected by a line) and experimental values (blue
and red dots) with errors in shaded areas. For %Zr (N, N, = 8), the

experimental upper and lower limits are from [29,31] and the explicit
values, A and ¢, are from [32] and [33], respectively.

the 05 state is weakly deformed or quasispherical (see the
discussion in Sec. IV B). In contrast, the MCSM calculation
considers three configurations dominated by different np-rh
proton excitations. Specifically, for *®Zr the ground state Of
is spherical, the 0] state is weakly deformed and the 03
state is strongly deformed. The EXVAM calculation finds the
lowest bandhead 0" states to be prolate-oblate mixed (Of),
spherical (03), and prolate (07). The assignment of the 0}
state as prolate-oblate is at variance with the MCSM and IBM-
CM calculations and contrasts with the experimental data of
Refs. [31,33].

The current IBM-CM calculation describes well most of
the experimental transitions shown in Table II and Fig. 6(a)
(for a detailed discussion, see [33]). However, some of
the newly measured transitions, within the intruder B con-
figuration, exhibit marked differences from the calculation
and one another. Specifically, the recently measured value
B(E2;2 — 0F) = 1175 W.u. [33] is significantly lower than
the value 28.3(60) W.u. measured in Ref. [32] and con-
forms only with the lower (11.5 W.u.) and upper (71.3 W.u.)
limits obtained in Refs. [29] and [31], respectively. Our cal-
culated value is 43 W.u., which is considerably larger than
both explicitly measured values yet it lies in-between the
lower and upper limits. The calculated values of the MCSM
(70 W.u.) and EXVAM (7.38 W.u.) deviate considerably from
the explicit experimental values. The IBM-CM-2 calcula-
tion [23,24] can reproduce the measured value of [32], since
the effective charge in the E2 operator was fixed by this
transition. However, the calculated 2fr state is found to have
a large intruder component [b*> = 0.45 in Eq. (16)], compared
to a small mixing (b* = 0.97) in the current calculation, which
conforms with [31].

These deviations are somewhat surprising, as we now dis-
cuss. Figure 20 displays the experimental B(E2;2} — 03)
value for transitions within the B configuration in the Zr iso-
topes, as a function of N, N,.. The values for the latter product
of proton and neutron boson numbers, appropriate to the Zr
isotopes, are given in Table III. As seen, our calculated values
agree with the measured values for all Zr isotopes, except for
%7r. Furthermore, as seen in Fig. 20, the calculated trend is
similar to that of the experimental B(E2;2] — 07) values
for the Xe isotopes, which have the same N, N, values as the
Zr isotopes (see Table III). Since deformation increases with
the value of NN, [83,84], we expect the B(E2) values to
increase when going from NN, = 6 to 10 (neutron numbers
56 to 60 for Zr). Such a trend is present in both the MCSM
and IBM-CM calculations for Zr isotopes, both giving values
higher than the measured ones for Bzr reported in [32,33]. It
should be noted that the indicated transitions in 49Zr isotopes
involve intruder (2p-2h) states while those in 54 Xe isotopes in-
volve normal (Op-Oh) states. The comparison between *>~8Zr
and 13+128Xe is therefore kept only up to *3Zr. The Xe iso-
topes do not involve proton-neutron partner-orbitals, as in
100-1107,.

Additional discrepancies between calculated and mea-
sured values occur in *8Zr for transitions involving the
47 state. Specifically, the experimental transition rates
B(E2;47 — 21) = 2545;5 W.u. [33] (43.3(8.7) W.u. in [32])
and B(E2;47 — 27) =38 Wu. [33] (67.5(13.5) W.u
in [32]) are strong, a situation that cannot be accom-
modated by the current calculation, which yields 68 and
2 W.u., respectively. The calculated values reflect the fact
that both the 4] and 25 are members of the n; ~ 2 triplet
of configuration B and are weakly mixed with states of con-
figuration A. In such circumstances, these states cannot be
connected by strong E2 transitions, which follow the se-
lection rules Any; = %1 [for small x in the E2 operator
Eq. (15)]. As shown in Table II, both the MCSM-1 and
MCSM-2 encounter a similar problem and cannot accom-
modate simultaneously two strong transitions from the 47
state. In the IBM-CM-2 [23,24], the structure of the 4T
state is similar to that of the current IBM-CM calculation;
however, the 27 and 27 states exhibit strong normal-
intruder mixing with > = 0.45 and »* = 0.55 respectively.
Consequently, the IBM-CM-2 can describe adequately the
empirical B(E2;4] — 2[) and B(E2;4] — 27) rates. How-
ever, this structure leads to other noticeable discrepancies.
In particular, the calculated values B(E2;2; — 07) =47,
B(E2;27 — 2) =46 and B(E2;2] — 2) = 0.55 W.u. are

at variance with the experimental values of 1.87)¢, 7.6753

and 46*_’?2 W.u., respectively. The EXVAM calculation seems
to encounter a similar problem: while it produces two

TABLE III. N, N, values of the intruder B (normal) configuration for Zr and (Xe) isotopes.

NN, 2 4 6 8 10 12 14 16 14 12
7r 92Zr 94Zr 962r 9SZr ]0()Zr 1()ZZr ]()4Zr 1()6Zr IOSZr IIOZr
Xe 134)(e 132Xe 130Xe 128Xe
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TABLE IV. Experimental transition probabilities in W.u. for '®Zr [58] compared to different theoretical calculations. The column of the

present work is denoted by IBM-CM.

B(E2) (W.u.)

Transition Experiment IBM-CM IBM-CM-2 [23,24] IBM-MF [18] MCSM [22]
B(E2;2{ — 0}) 75(4) 72 70 74 91
B(E2: 4 — 2}) 103(9) 121 120 102 130
B(E2;6} — 41) 140(30) 129 128 112

B(E2;8} — 61) 124(13) 123 122 123

B(E2;10] — 8}) 124(15) 106 105

B(E2; 12} — 10}) 131(15) 79 79

B(E2;0F — 2}) 67(7) 70 64 0.9

B(E2;2F — 0}) 1.52 1.58 4
B(E2:4} — 23) 56 14 92 59
B(E2;2¢ — 0}) 23 19 83
B(E2;4 — 2}) 50 6 67 118

strong transitions from the 4] state, it exhibits major dis-
crepancies for B(E2;2 — 0]) =425 W, B(E2;2] —
0F) =7.38 W.u. and B(E2;4; — 2]) =59 W.u., which are

measured to be 1.1%)3, between 11.5. and 71.3 and

0.67017 W.u, respectively.

Additional notable discrepancies of the MCSM with the
experimental data are for the calculated values B(E2;27 —
25) =87, B(E2;4 — 27) =76 W.u. (for MCSM-1), and
B(E2; 4‘2* — 2f) = 103 W.u. (for MCSM-2), which are mea-
sured to be 46733, 4.6%17 and 0.67)17 W.u., respectively.
Another interesting aspect to compare between the different
calculations is the transition 2 — 0, which has not been
measured. In both IBM-CM calculations, this transition is
weak, where in the MCSM and EXVAM calculations it is
strong. The reason for the difference is that in both IBM-CM
calculations the 25 and 07 states are part of the same n; ~ 2
multiplet (see Sec. IV A for more details), whereas in the
MCSM and EXVAM calculations these states are part of the
same deformed band.

B. The "Zr isotope

For 197r, a comparison between the present work,
IBM-CM-2 [23,24], mean-field based IBM calculation (IBM-
MF) [18], MCSM [22] and the experimental B(E2) values is
given in Table IV. One sees a considerable similarity between
the present work and that of [23,24], except for the values
of B(E2;4] — 27), B(E2;2] — 07) and B(E2;47 — 27),
which are strong in the present work but weak in [23,24]
and have no experimental data. The IBM-MF calculation [18]
reproduces well the yrast band transitions, however, it does
not reproduce the important B(E2;05 — 2{) transition (see
Sec. IV B for more details). The MCSM calculation offers a
more qualitative rather than quantitative agreement with the
experimental data, where not many transitions were calcu-
lated.

The spherical state in '“Zr is identified in the present
work and in [23,24] as the 0; state. However, the present

work calculated the spherical 2% state to be 2;, while it
is 27 in [23,24]. The main source of the difference is the
large value for the x4 parameter of the normal quadrupole
operator, Eq. (20a), that is used in [23,24] (—0.02326 MeV)
compared to the present work (—0.006 MeV). The MCSM
has identified the spherical state as the OI, in contrast to the
experimental data that exhibits only three 0" states. The rest
of the calculated lower three 0" states serve as bandheads
of prolate-, oblate-, and another prolate-deformed bands. The
IBM-MF calculation [18], has identified only oblate and pro-
late configurations for the lowest O states, without spherical
states.

The two IBM-CM calculations and MCSM all show a large
jump in B(E2;2] — 0]), between *Zr and '®Zr, typical of
a first-order QPT. This is in contrast with the IBM-MF and
other mean-field based calculations [17-19], which due to
their character smooth out the phase transitional behavior, and
show no such jump at the critical-point of the QPT (see Fig. 2
of [32]).

C. Heavier isotopes

The observed peak in B(E2;2] — 0F) for '™Zr (see
Fig. 17), is reproduced by the present work and IBM-CM-
2 [23,24] but not by the MCSM [22] nor the IBM-MF [18]
calculations. For the region of 106-11077,.  the IBM-CM-2 cal-
culates a prolate-deformed band where in the current work
it is y-unstable deformed. For 1107;  the MCSM calculates
a proton 6p-6h (approximately) intruder prolate-deformed
ground-band and another proton 4p-4h (approximately)
triaxial-deformed band.

D. General remarks

In general, the results of the present IBM-CM calculation
resemble those obtained in the MCSM (which focuses on
spectra and E?2 rates) and the IBM-CM-2. However, there
are some noticeable differences. Specifically, the inclusion of
more than two configurations in the MCSM in which their
deformation evolves differently from the present work and the
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IBM-CM-2. The underlying physics in our and IBM-CM-2
study is similar to that of Refs. [7,10,11,20], with a shell-
model interpretation of Op-Oh and 2p-2h proton excitation,
which use a different formal language, where the lowering in
energy and developed collectivity of the intruder configuration
are governed by the relative magnitude of V), (especially its
monopole and quadrupole components) and the energy gaps
between spherical shell-model states near shell and subshell
closures. A more direct relation between the two approaches
necessitates a proton-neutron version of the IBM.

IX. CONCLUSIONS AND OUTLOOK

We have performed a quantum and classical analysis for
the entire chain of 4yZr isotopes, from neutron number 52 to
70, within the framework of the IBM-CM. The quantum anal-
ysis examined the spectra and properties of individual isotopes
as well as the evolution of energy levels and other observables
(two-neutron separation energies, £2 and EQ transition rates,
isotope shifts and magnetic moments) along the chain. Special
attention has been devoted to changes in the configuration-
content and symmetry-content of wave functions, and their
impact on relevant order parameters. A classical analysis,
based on coherent states, examined individual shapes and
their evolution with neutron number. In general, the calcu-
lated results, obtained by a fitting procedure described in the
Appendix, are found to be in excellent agreement with the
empirical data.

The results of the comprehensive analysis suggest a
complex phase structure in these isotopes, involving two con-
figurations. The normal A configuration remains spherical in
all isotopes considered. The intruder B configuration under-
goes first a spherical to axially deformed U(5)-SU(3) QPT,
with a critical point near A & 100, and then an axially de-
formed to y-unstable SU(3)-SO(6) crossover. In parallel to
the gradual shape evolution within configuration B, the two
configurations cross near neutron number 60, and the ground
state changes from configuration A to configuration B. The
two configurations are weakly mixed and retain their purity
before and after the crossing, which are the defining ingredi-
ents of intertwined QPTs (IQPTs).

There are several further observables that would be worth-
while to measure. Specifically, measuring in *Zr the E2
transition rates for the 2 — 0 will shed light on the
deviations between experiment and theory, discussed in
Sec. VIIIA. Measuring the 2 — 07 transition is also of
interest, in order to determine the structure of these states,
either as part of an ny; & 2 triplet or a deformed band. It
would also be insightful to employ a more microscopic IBM
calculation, such as IBM-2, to further determine the structure
of the enigmatic 2", 2] and 4] states. For '%Zr, it would be
interesting to measure E2 transitions from different 2% states
to the O; state in order to identify the spherical 27" state. For
102-1047r measuring the 0 — 0] and 07 — 0] EO transi-
tion rates would help verify the evolution of deformation and
choice of parameters for the E0 transition operator, Eq. (30).

The present work on the Zr isotopes provides evidence of
intertwined quantum phase transitions (IQPTs) in nuclei. It
sets the path for new investigations of IQPTs in other nuclei

and other physical systems. In particular, our method of calcu-
lation could also be applied to the 3gSr isotopes, which show
similar features [14], as opposed to s,Mo isotopes, where
IQPTs appear to be less pronounced.
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APPENDIX: FITTING PROCEDURE

The parameters of the Hamiltonian Egs. (20) and (22) and
E?2 transition operator (15) are determined from a combined
fit to the data on spectra and E?2 transitions. Typically, in each
nucleus there are about 10 known energy levels and between
2-15 E?2 transitions. For those nuclei where there are fewer
levels and E2 transitions known, the parameters have been
extrapolated using continuity criteria and results from other
IBM calculations such as those of Sambataro and Molnar [13]
for the Mo isotopes (Z = 42). We allow a gradual change
between adjacent isotopes, but take into account the proposed
shell-model interpretation for the structure evolution in this
region [7,10,11]. The derived Hamiltonian parameters, given
in Table V and Fig. 3, are consistent with those of previous
calculations in this mass region [13,45,46].

For configuration A, the states are associated with
seniority-like neutron single-particle excitations [7]. They
comprise the experimental 0, 2], 4] states of *>*Zr, the
0F, 27, 37, 47 states of *°Zr and the 0], 27, 47 states of
%7r. Due to the fact that the IBM-CM describes collective
low-lying states rather than single-particle excitations, we
only include in the fit the corresponding 0" and 2% states and
exclude the others. These 0T and 2% states are generated by
the configuration A Hamiltonian (20a), Hj. It is possible to
introduce an additional term, #i;(7i; — 1), to H, to raise the
other configuration A states higher in energy, while keeping
the 0T, 21 states at the same energy. We choose, however, not
to do so for simplicity.

In Table VI we give the states of each isotope that were
used to fit the parameters of the configuration (B) Hamilto-
nian (20b). For °>%%Zr, the values of E;B ) and «® follow
the trend of the lowest configuration B 0%, 2% and 4™ states,
which is approximately constant for neutron numbers 52 and
54,ie., E(0F) = 1.38, 1.30 MeV, E(2]) = 1.85, 1.67 MeV
and E(4;r ) = 2.40, 2.33 MeV, respectively. Then, at neutron
number 56, a large jump occurs due to the closure of the
neutron 2ds,, subshell [85]. The «"® parameter is fitted to
reproduce the energy difference between the 27, 4;” states in
92947y and 2§, 4; states in *°Zr. For ®*'%Zr, we expand the
B configuration parameters as a function of the boson number
N [34]:

9P
e (V) = €' (No) + 1 (N—No)+--~ e — 6N,
N=N,
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TABLE V. Parameters of the IBM-CM Hamiltonian, Eq. (14), are in MeV and x is dimensionless. The first row of the table lists the number
of neutrons and the number of particle bosons (¥, N + 2) or hole bosons (N, N + 2) in the (A, B) configurations.

52(1,3) 54(2,4) 56(3,5) 58(4,6) 60(5,7) 62(6,8) 64(7,9) 66(8,10) 68(7,9) 70(6, 8)
eV 0.9 0.8 1.82 1.75 1.2 1.2 12 1.2 12 1.2
K@ —0.005 —0.005 —0.005 —0.007 —0.006 —0.006 —0.006 —0.006 —0.006 —0.006
e 0.35 0.37 0.6 0.45 0.3 0.15 0 0 0 0.15
Kk® —0.02 —0.02 —0.015 —0.02 —0.02 —0.025 —0.0275 —0.03 —0.0275 —0.025
K'® 0.01 0.01 0.01 0.01 0.0075 0.01 0.0125 0.0125 0.0125 0.01
X —06 —0.6 —0.6 —0.6 -1.0 -1.0 —0.75 —0.25 —0.25 0
A® 1.6 1.6 1.84 1.43 0.8 0.8 0.8 0.8 0.8 0.8
w 0.1 0.1 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

3K(B)
Kk P(N) = k® (Ny) + (N —No) + - -+ ~ ko,
N |n=p
=iNo
o’'®
KON = k" B(Ny) + N—Ny)+ ...
N=N,
A /(6. (A1)

As valence neutrons are added to the higher shell orbitals,
deformation is increased [7]. This is taken care of by the
reduction of the value of e;B ). while «® and «'® are
kept approximately constant. For '%Zr, in the vicinity of
mid-shell, deformation is maximal and we set 6((18 ) = 0. Con-
sequently, we fit the rest of the B configuration parameters
to (€, k® k'®)) = (0, —0.0275,0.0125) MeV to repro-
duce the experimental 0, 2, 4F, 6f, 8, 10], 12} states,
which are assumed to be part of configuration (B). To obtain
a gradual increase in deformation (and decrease in 6;3)), from
neutron number 56 to 66, we determine in Eq. (A1) €9 = 1.35
and O = 0.15 MeV. For %1107 e use neutron holes and
impose a symmetry about mid-shell on all parameters (except
X ), in accord with microscopic aspects of the IBM [35]. That

TABLE VI. Experimental levels of >!19Zr that are assigned
to configuration B and used to fit the parameters of Hp (20b).
For *>8Zr, the indicated levels correspond to calculated states
dominated by U(5) components with n; ~ 0, 1, 2, 3 within the B
configuration part of the wave function |Wg; [N + 2], L), Eq. (16)
(see Sec. V for more details).

27r 07, 25, (47, 27, 0)), (6], 4T, 31, 2)
%7y 05, 27, (45, 29). (6], 41, 31, 20)

%7r 07, 25, (4, 27, O)), (6], 47, 27, OF)
BZr 07, 27, (07, 27, 4, (6], 47, 37, 27, 0F)
1007y 0f, 21, 4, 07, 27, 6/, 2F

1027y 07, 27, 45, 0F, 6/, 25, 21, 3

1047y of, 2f, 4}, 6}

1067y of, 2f, 4f, 2F, 6F

1087y of, 2f, 4}, 6}

107y of, 2f, 4f, 2F

is, we use the same parameters for '®Zr and '™Zr and for
107 and 1927r.

For ?>71%7r the parameter k) of configuration (A) was
determined from the relation x® = 3k, reflecting the fact
that configuration (A) is more spherical. The parameter efiA)
was fitted accordingly to approximately reproduce the ex-
perimental energy difference between the first 2+ and 0"
states in configuration A. The parameter A, is determined
so as to reproduce approximately the offset energy between
the two configurations. The parameter of the mixing term in
Eq. (22), w, is determined from transitions between states
from different configurations. This parameter is kept con-
stant, except for °>*Zr, where the A configuration space
is small (N = 1, 2, respectively). For 21197 there are not
enough data to determine configuration A states and therefore
e k™, A, and w are set to have the same values as for
1007,

The parameter y of Eq. (12) is taken, for simplicity, to be
the same for both configurations A and B and constant for
92-987; where deformation is weaker. It was determined for
100-1027 from the energy of the first excited 0 state in con-
figuration B. For '%119Zr it was determined from the energies
of the 2] and 4 states, which are close in energy. The boson
E?2 effective charges were determined to be ¢ = 0.9 and
e® =2.24 (W.u.)!/? for the entire chain of isotopes from the
2% — 07 transition within each configuration. Fine tuning the
parameters for individual isotopes can improve the fit; how-
ever, the main conclusions of the analysis are not changed.

Apart from some fluctuations due to the subshell closure
at neutron number 56, filling the 2ds,, orbital, the values
of the parameters are a smooth function of neutron number
and, in some cases, a constant, as can be seen in Fig. 3.
A notable exception is the sharp decrease by 1 MeV of the
energy offset parameter A, beyond neutron number 56. Such
a behavior was observed for the Mo and Ge chains [13,45,46]
and, as noted in [13], it reflects the effects of the isoscalar
residual interaction, V,,, between protons and neutrons oc-
cupying the partner orbitals 1g9,» and 1g7,,, which is the
established mechanism for descending cross-shell-gap ex-
citations and onset of deformation in this region [7,10].
This trend in A, agrees with shell-model estimates for the
monopole correction of V), [11]. It is interesting though
that A, retains a positive value for the entire chain, as op-
posed to previous works [13,45,46]. This suggests that the
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change in the ground state configuration near the Type II
critical point, A &~ 100, is driven less from the change in

A, and more from the increase in deformation within the B
configuration.

[1] R. Gilmore and D. H. Feng, Phys. Lett. B 76, 26 (1978).

[2] R. Gilmore, J. Math. Phys. 20, 891 (1979).

[3] P. Cejnar, J. Jolie, and R. F. Casten, Rev. Mod. Phys. 82, 2155
(2010).

[4] L. D. Carr, Understanding Quantum Phase Transitions, edited
by L. D. Carr (CRC, Boca Raton, FL, 2010).

[5] K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011).

[6] A. Frank, P. Van Isacker, and F. Iachello, Phys. Rev. C 73,
061302(R) (2006).

[7] P. Federman and S. Pittel, Phys. Rev. C 20, 820 (1979).

[8] N. Gavrielov, A. Leviatan, and F. Iachello, Phys. Rev. C 99,
064324 (2019).

[9] N. Gavrielov, A. Leviatan, and F. Iachello, Phys. Scr. 95,
024001 (2020).

[10] K. Heyde, P. Van Isacker, R. F. Casten, and J. L. Wood, Phys.
Lett. B 155, 303 (1985).

[11] K. Heyde, J. Jolie, J. Moreau, J. Ryckebusch, M. Waroquier,
P. V. Duppen, M. Huyse, and J. L. Wood, Nucl. Phys. A 466,
189 (1987).

[12] E. Cheifetz, R. C. Jared, S. G. Thompson, and J. B. Wilhelmy,
Phys. Rev. Lett. 25, 38 (1970).

[13] M. Sambataro and G. Molndr, Nucl. Phys. A 376, 201
(1982).

[14] H. Mach, M. Moszynnski, R. Gill, F. Wohn, J. Winger, J.
C. Hill, G. Molnér, and K. Sistemich, Phys. Lett. B 230, 21
(1989).

[15] P. Federman and S. Pittel, Phys. Lett. B 69, 385 (1977).

[16] P. Federman, S. Pittel, and R. Campos, Phys. Lett. B 82, 9
(1979).

[17] J. P. Delaroche, M. Girod, J. Libert, H. Goutte, S. Hilaire, S.
Péru, N. Pillet, and G. F. Bertsch, Phys. Rev. C 81, 014303
(2010).

[18] K. Nomura, R. Rodriguez-Guzman, and L. M. Robledo, Phys.
Rev. C 94, 044314 (2016).

[19] H. Mei, J. Xiang, J. M. Yao, Z. P. Li, and J. Meng, Phys. Rev. C
85, 034321 (2012).

[20] K. Sieja, F. Nowacki, K. Langanke, and G. Martinez-Pinedo,
Phys. Rev. C 79, 064310 (2009).

[21] A. Petrovici, Phys. Rev. C 85, 034337 (2012).

[22] T. Togashi, Y. Tsunoda, T. Otsuka, and N. Shimizu, Phys. Rev.
Lett. 117, 172502 (2016).

[23] J. E. Garcia-Ramos and K. Heyde, Phys. Rev. C 100, 044315
(2019).

[24] J. E. Garcia-Ramos and K. Heyde, Phys. Rev. C 102, 054333
(2020).

[25] A. Chakraborty, E. E. Peters, B. P. Crider, C. Andreoiu, P. C.
Bender, D. S. Cross, G. A. Demand, A. B. Garnsworthy, P. E.
Garrett, G. Hackman, B. Hadinia, S. Ketelhut, A. Kumar, K. G.
Leach, M. T. McEllistrem, J. Pore, F. M. Prados-Estévez, E. T.
Rand, B. Singh, E. R. Tardiff et al., Phys. Rev. Lett. 110, 022504
(2013).

[26] F. Browne, A. M. Bruce, T. Sumikama, I. Nishizuka, S.
Nishimura, P. Doornenbal, G. Lorusso, Z. Patel, S. Rice, L.
Sinclair, P.-A. Soderstrom, H. Watanabe, J. Wu, Z. Y. Xu, H.
Baba, N. Chiga, R. Carroll, R. Daido, F. Didierjean, Y. Fang
et al., Acta Phys. Pol. B 4620, 721 (2015).

[27] F. Browne, A. Bruce, T. Sumikama, I. Nishizuka, S. Nishimura,
P. Doornenbal, G. Lorusso, P.-A. S6derstrom, H. Watanabe, R.
Daido, Z. Patel, S. Rice, L. Sinclair, J. Wu, Z. Xu, A. Yagi, H.
Baba, N. Chiga, R. Carroll, F. Didierjean et al., Phys. Lett. B
750, 448 (2015).

[28] C. Kremer, S. Aslanidou, S. Bassauer, M. Hilcker, A.
Krugmann, P. von Neumann-Cosel, T. Otsuka, N. Pietralla, V. Y.
Ponomarev, N. Shimizu, M. Singer, G. Steinhilber, T. Togashi,
Y. Tsunoda, V. Werner, and M. Zweidinger, Phys. Rev. Lett.
117, 172503 (2016).

[29] S. Ansari, J.-M. Régis, J. Jolie, N. Saed-Samii, N. Warr, W.
Korten, M. Zielifiska, M.-D. Salsac, A. Blanc, M. Jentschel,
U. Koster, P. Mutti, T. Soldner, G. S. Simpson, F. Drouet, A.
Vancraeyenest, G. de France, E. Clément, O. Stezowski, C. A.
Ur et al., Phys. Rev. C 96, 054323 (2017).

[30] N. Paul, A. Corsi, A. Obertelli, P. Doornenbal, G. Authelet, H.
Baba, B. Bally, M. Bender, D. Calvet, F. Chateau, S. Chen, J. P.
Delaroche, A. Delbart, J.-M. Gheller, A. Giganon, A. Gillibert,
M. Girod, P--H. Heenen, V. Lapoux, J. Libert et al., Phys. Rev.
Lett. 118, 032501 (2017).

[31] W. Witt, V. Werner, N. Pietralla, M. Albers, A. D. Ayangeakaa,
B. Bucher, M. P. Carpenter, D. Cline, H. M. David, A. Hayes,
C. Hoffman, R. V. FE. Janssens, B. P. Kay, F. G. Kondev, W.
Korten, T. Lauritsen, O. Moller, G. Rainovski, G. Savard, D.
Seweryniak et al., Phys. Rev. C 98, 041302(R) (2018).

[32] P. Singh, W. Korten, T. W. Hagen, A. Gorgen, L. Grente, M.-D.
Salsac, F. Farget, E. Clément, G. de France, T. Braunroth, B.
Bruyneel, I. Celikovic, O. Delaune, A. Dewald, A. Dijon, J. P.
Delaroche, M. Girod, M. Hackstein, B. Jacquot, J. Libert et al.,
Phys. Rev. Lett. 121, 192501 (2018).

[33] V. Karayonchev, . J. Jolie, A. Blazhev, A. Dewald, A.
Esmaylzadeh, C. Fransen, G. Hifner, L. Knafla, J. Litzinger,
C. Miiller-Gatermann, J.-M. Régis, K. Schomacker, A. Vogt, N.
Warr, A. Leviatan, and N. Gavrielov, Phys. Rev. C 102, 064314
(2020).

[34] F. Iachello and A. Arima, The Interacting Boson Model (Cam-
bridge University Press, Cambridge, 1987).

[35] F. Iachello and I. Talmi, Rev. Mod. Phys. 59, 339 (1987).

[36] J. N. Ginocchio and M. W. Kirson, Phys. Rev. Lett. 44, 1744
(1980).

[37] A.E.L. Dieperink, O. Scholten, and F. Iachello, Phys. Rev. Lett.
44, 1747 (1980).

[38] P. Cejnar and J. Jolie, Prog. Part. Nucl. Phys. 62, 210
(2009).

[39] F. Iachello, Rivista del Nuovo Cim. 34, 617 (2011).

[40] D. D. Warner and R. F. Casten, Phys. Rev. C 28, 1798 (1983).

[41] P. Lipas, P. Toivonen, and D. D. Warner, Phys. Lett. B 155, 295
(1985).

[42] P. D. Duval and B. R. Barrett, Phys. Lett. B 100, 223
(1981).

[43] P. D. Duval and B. R. Barrett, Nucl. Phys. A 376, 213
(1982).

[44] A. Frank, P. Van Isacker, and C. E. Vargas, Phys. Rev. C 69,
034323 (2004).

[45] P. D. Duval, D. Goutte, and M. Vergnes, Phys. Lett. B 124, 297
(1983).

014305-22


https://doi.org/10.1016/0370-2693(78)90090-4
https://doi.org/10.1063/1.524137
https://doi.org/10.1103/RevModPhys.82.2155
https://doi.org/10.1103/RevModPhys.83.1467
https://doi.org/10.1103/PhysRevC.73.061302
https://doi.org/10.1103/PhysRevC.20.820
https://doi.org/10.1103/PhysRevC.99.064324
https://doi.org/10.1088/1402-4896/ab456b
https://doi.org/10.1016/0370-2693(85)91575-8
https://doi.org/10.1016/0375-9474(87)90439-8
https://doi.org/10.1103/PhysRevLett.25.38
https://doi.org/10.1016/0375-9474(82)90060-4
https://doi.org/10.1016/0370-2693(89)91646-8
https://doi.org/10.1016/0370-2693(77)90825-5
https://doi.org/10.1016/0370-2693(79)90412-X
https://doi.org/10.1103/PhysRevC.81.014303
https://doi.org/10.1103/PhysRevC.94.044314
https://doi.org/10.1103/PhysRevC.85.034321
https://doi.org/10.1103/PhysRevC.79.064310
https://doi.org/10.1103/PhysRevC.85.034337
https://doi.org/10.1103/PhysRevLett.117.172502
https://doi.org/10.1103/PhysRevC.100.044315
https://doi.org/10.1103/PhysRevC.102.054333
https://doi.org/10.1103/PhysRevLett.110.022504
https://doi.org/10.5506/APhysPolB.46.721
https://doi.org/10.1016/j.physletb.2015.09.043
https://doi.org/10.1103/PhysRevLett.117.172503
https://doi.org/10.1103/PhysRevC.96.054323
https://doi.org/10.1103/PhysRevLett.118.032501
https://doi.org/10.1103/PhysRevC.98.041302
https://doi.org/10.1103/PhysRevLett.121.192501
https://doi.org/10.1103/PhysRevC.102.064314
https://doi.org/10.1103/RevModPhys.59.339
https://doi.org/10.1103/PhysRevLett.44.1744
https://doi.org/10.1103/PhysRevLett.44.1747
https://doi.org/10.1016/j.ppnp.2008.08.001
https://doi.org/10.1103/PhysRevC.28.1798
https://doi.org/10.1016/0370-2693(85)91573-4
https://doi.org/10.1016/0370-2693(81)90321-X
https://doi.org/10.1016/0375-9474(82)90061-6
https://doi.org/10.1103/PhysRevC.69.034323
https://doi.org/10.1016/0370-2693(83)91457-0

Zr ISOTOPES AS A REGION OF INTERTWINED ...

PHYSICAL REVIEW C 105, 014305 (2022)

[46] E. Padilla-Rodal, O. Castafios, R. Bijker, and A. Galindo-
Uribarri, Rev. Mex. Fis. 52, 57 (2006).

[47] R. Fossion, K. Heyde, G. Thiamova, and P. Van Isacker, Phys.
Rev. C 67, 024306 (2003).

[48] J. E. Garcia-Ramos, V. Hellemans, and K. Heyde, Phys. Rev. C
84, 014331 (2011).

[49] J. E. Garcia-Ramos and K. Heyde, Phys. Rev. C 89, 014306
(2014).

[50] J. E. Garcia-Ramos, K. Heyde, L. M. Robledo, and R.
Rodriguez-Guzman, Phys. Rev. C 89, 034313 (2014).

[51] J. E. Garcia-Ramos and K. Heyde, Phys. Rev. C 92, 034309
(2015).

[52] A. Leviatan, N. Gavrielov, J. E. Garcia-Ramos, and P. Van
Isacker, Phys. Rev. C 98, 031302(R) (2018).

[53] C. M. Baglin, Nucl. Data Sheets 113, 2187 (2012).

[54] D. Abriola and A. Sonzogni, Nucl. Data Sheets 107, 2423
(2006).

[55] D. Abriola and A. A. Sonzogni, Nucl. Data Sheets 109, 2501
(2008).

[56] W. Witt, N. Pietralla, V. Werner, and T. Beck, Eur. Phys. J. A
55,79 (2019).

[57] J. Chen and B. Singh, Nucl. Data Sheets 164, 1 (2020).

[58] B. Singh, Nucl. Data Sheets 109, 297 (2008).

[59] D. De Frenne, Nucl. Data Sheets 110, 1745 (2009).

[60] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).

[61] R. Kriicken, B. Albanna, C. Bialik, R. F. Casten, J. R. Cooper,
A. Dewald, N. V. Zamfir, C. J. Barton, C. W. Beausang, M. A.
Caprio, A. A. Hecht, T. Klug, J. R. Novak, N. Pietralla, and P.
von Brentano, Phys. Rev. Lett. 88, 232501 (2002).

[62] R. F. Casten and N. V. Zamfir, Phys. Rev. Lett. 87, 052503
(2001).

[63] A. Dewald, O. Moller, D. Tonev, A. Fitzler, B. Saha, K. Jessen,
S. Heinze, A. Linnemann, J. Jolie, K. O. Zell, P. von Brentano,
P. Petkov, R. F. Casten, M. A. Caprio, J. R. Cooper, R. Kriicken,
N. V. Zamfir, D. Bazzacco, S. Lunardi, C. Rossi-Alvarez et al.,
Eur. Phys. J. A 20, 173 (2003).

[64] D. Tonev, A. Dewald, T. Klug, P. Petkov, J. Jolie, A. Fitzler, O.
Moller, S. Heinze, P. von Brentano, and R. F. Casten, Phys. Rev.
C 69, 034334 (2004).

[65] M. A. Caprio, N. V. Zamfir, R. F. Casten, C. J. Barton, C. W.
Beausang, J. R. Cooper, A. A. Hecht, R. Kriicken, H. Newman,
J. R. Novak, N. Pietralla, A. Wolf, and K. E. Zyromski, Phys.
Rev. C 66, 054310 (2002).

[66] J. Blachot, Nucl. Data Sheets 108, 2035 (2007).

[67] D. De Frenne and A. Negret, Nucl. Data Sheets 109, 943 (2008).

[68] J. Blachot, Nucl. Data Sheets 91, 135 (2000).

[69] G. Giirdal and F. Kondev, Nucl. Data Sheets 113, 1315
(2012).

[70] Evaluated Nuclear Structure Data File (ENSDF), https:/www.
nndc.bnl.gov/ensdf.

[71] O. Scholten, F. Iachello, and A. Arima, Ann. Phys. (NY) 115,
325 (1978).

[72] M. Wang, G. Audi, F. G. Kondev, W. Huang, S. Naimi, and
X. Xu, Chin. Phys. C 41, 030003 (2017).

[73] J. Barea and F. Iachello, Phys. Rev. C 79, 044301 (2009).

[74] 1. Angeli and K. P. Marinova, At. Data Nucl. Data Tables 99, 69
(2013).

[75] S. Zerguine, P. Van Isacker, A. Bouldjedri, and S. Heinze, Phys.
Rev. Lett. 101, 022502 (2008).

[76] S. Zerguine, P. Van Isacker, and A. Bouldjedri, Phys. Rev. C 85,
034331 (2012).

[77] J. L. Wood, E. Zganjar, C. De Coster, and K. Heyde, Nucl. Phys.
A 651, 323 (1999).

[78] P. von Brentano, V. Werner, R. F. Casten, C. Scholl, E. A.
McCutchan, R. Kriicken, and J. Jolie, Phys. Rev. Lett. 93,
152502 (2004).

[79] N. Stone, At. Data Nucl. Data Tables 90, 75 (2005).

[80] A. Bohr and B. R. Mottelson, Nuclear Structure (World
Scientific, Singapore, 1998), Vol. 2.

[81] A. De-Shalit and M. Goldhaber, Phys. Rev. 92, 1211 (1953).

[82] G. J. Kumbartzki, K.-H. Speidel, N. Benczer-Koller, D. A.
Torres, Y. Y. Sharon, L. Zamick, S. J. Q. Robinson, P. Maier-
Komor, T. Ahn, V. Anagnostatou, C. Bernards, M. Elvers, P.
Goddard, A. Heinz, G. Ilie, D. Radeck, D. Savran, V. Werner,
and E. Williams, Phys. Rev. C 85, 044322 (2012).

[83] R. F. Casten, Phys. Rev. Lett. 54, 1991 (1985).

[84] R. F. Casten, Nucl. Phys. A 443, 1 (1985).

[85] N. Auerbach and I. Talmi, Nucl. Phys. 64, 458 (1965).

014305-23


https://doi.org/10.1103/PhysRevC.67.024306
https://doi.org/10.1103/PhysRevC.84.014331
https://doi.org/10.1103/PhysRevC.89.014306
https://doi.org/10.1103/PhysRevC.89.034313
https://doi.org/10.1103/PhysRevC.92.034309
https://doi.org/10.1103/PhysRevC.98.031302
https://doi.org/10.1016/j.nds.2012.10.001
https://doi.org/10.1016/j.nds.2006.08.001
https://doi.org/10.1016/j.nds.2008.10.002
https://doi.org/10.1140/epja/i2019-12754-x
https://doi.org/10.1016/j.nds.2020.01.001
https://doi.org/10.1016/j.nds.2008.01.001
https://doi.org/10.1016/j.nds.2009.06.002
https://doi.org/10.1103/PhysRevLett.87.052502
https://doi.org/10.1103/PhysRevLett.88.232501
https://doi.org/10.1103/PhysRevLett.87.052503
https://doi.org/10.1140/epja/i2002-10347-6
https://doi.org/10.1103/PhysRevC.69.034334
https://doi.org/10.1103/PhysRevC.66.054310
https://doi.org/10.1016/j.nds.2007.09.001
https://doi.org/10.1016/j.nds.2008.03.002
https://doi.org/10.1006/ndsh.2000.0017
https://doi.org/10.1016/j.nds.2012.05.002
https://www.nndc.bnl.gov/ensdf
https://doi.org/10.1016/0003-4916(78)90159-8
https://doi.org/10.1088/1674-1137/41/3/030003
https://doi.org/10.1103/PhysRevC.79.044301
https://doi.org/10.1016/j.adt.2011.12.006
https://doi.org/10.1103/PhysRevLett.101.022502
https://doi.org/10.1103/PhysRevC.85.034331
https://doi.org/10.1016/S0375-9474(99)00143-8
https://doi.org/10.1103/PhysRevLett.93.152502
https://doi.org/10.1016/j.adt.2005.04.001
https://doi.org/10.1103/PhysRev.92.1211
https://doi.org/10.1103/PhysRevC.85.044322
https://doi.org/10.1103/PhysRevLett.54.1991
https://doi.org/10.1016/0375-9474(85)90318-5
https://doi.org/10.1016/0029-5582(65)90571-7

