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Converged ab initio calculations of heavy nuclei
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We propose a novel storage scheme for three-nucleon (3N) interaction matrix elements relevant for the
normal-ordered two-body approximation used extensively in ab initio calculations of atomic nuclei. This scheme
reduces the required memory by approximately two orders of magnitude, which allows the generation of 3N
interaction matrix elements with the standard truncation of E3max = 28, well beyond the previous limit of 18.
We demonstrate that this is sufficient to obtain the ground-state energy of 132Sn converged to within a few MeV
with respect to the E3max truncation. In addition, we study the asymptotic convergence behavior and perform
extrapolations to the un-truncated limit. Finally, we investigate the impact of truncations made when evolving
free-space 3N interactions with the similarity renormalization group. We find that the contribution of blocks
with angular momentum Jrel > 9/2 to the ground-state energy is dominated by a basis-truncation artifact, which
vanishes in the large-space limit, so these computationally expensive components can be neglected. For the
two sets of nuclear interactions employed in this work, the resulting binding energy of 132Sn agrees with the
experimental value within theoretical uncertainties. This work enables converged ab initio calculations of heavy
nuclei.
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I. INTRODUCTION

With recent progress in constructing two-nucleon (NN)
and three-nucleon (3N) interactions [1,2], solving the nu-
clear many-body problem [3–9], and rapid increases in
computational power, the range of applicability of ab ini-
tio calculations of atomic nuclei has exploded over the past
decade [10]. On the side of nuclear interactions, it has become
clear that a consistent treatment of NN scattering and finite nu-
clei requires the inclusion of 3N forces [11–15], where chiral
effective field theory [1,2,16] provides a path to a consistent
and systematic treatment.

On the many-body side, polynomially scaling methods,
such as coupled-cluster theory [6], self-consistent Green’s
functions [7], and in-medium similarity renormalization
group (IMSRG) [8] have been used to treat systems of up
to A ≈ 100 particles [17–19]. In all of these calculations,
the wave function is expanded on a set of basis functions—
typically the eigenstates of the harmonic oscillator—and the
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NN and 3N matrix elements in that basis are needed as an
input. The number of single-particle basis states in a calcu-
lation is given by the truncation e = 2n + � � emax, with the
radial quantum number n and angular momentum l . Achiev-
ing convergence in both the infrared (IR) and ultraviolet (UV)
for medium-mass nuclei typically requires emax � 12. At even
emax = 12, however, storing the full set of 3N matrix elements
would require approximately 10 TB of memory with single-
precision floating point numbers, which considerably exceeds
the available RAM per node on a typical supercomputer. It
is therefore necessary to impose some additional truncation
on the 3N matrix elements, typically taken as e1 + e2 + e3 �
E3max. Ideally, the value of E3max is increased until conver-
gence is achieved for a given observable.

The current limit of E3max � 18 is the primary bottleneck
preventing ab initio calculations from reaching much beyond
A ≈ 100 [18,20–22]. Overcoming this limit would signifi-
cantly increase the reach of ab initio theory, e.g., to searches
for physics beyond the standard model using heavy isotopes of
xenon, tellurium, cesium, or mercury [23–29]. Furthermore,
potential controlled calculations of 208Pb would provide the
best experimentally accessible link between finite nuclei and
nuclear matter, particularly in light of recently reported parity-
violating electron scattering experiments [30–32]. Ab initio
predictions would even be possible for the astrophysically rel-
evant, but experimentally challenging, N = 126 region below
208Pb [33–35].
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FIG. 1. File size of the three-body matrix elements with the
single-precision floating point numbers. The horizontal dashed line
indicates 100 GB, which is a typical limit of the memory per node in
usual work stations.

One way to overcome this limitation is to apply an im-
portance truncation and/or tensor factorization [36,37] to the
3N matrix elements, which would dramatically reduce the
required RAM while retaining sufficient accuracy. Before
resorting to these techniques, however, we observe that the
most of today’s practical calculations are based on the normal-
ordered two-body (NO2B) approximation [38]. This means
we do not need the full set of 3N matrix elements in actual
applications, particularly in the heavy-mass region. In this
work, we demonstrate the efficiency of generating and storing
only those combinations of 3N matrix elements involved in
the NO2B approximation and discuss the E3max convergence
of heavy nuclei around 132Sn.

The structure of this paper is as follows. In Sec. II, we
introduce a novel procedure to store the 3N matrix elements
relevant to the NO2B approximation. In Sec. III, the asymp-
totic behavior with respect to E3max is discussed. In Sec. IV,
we demonstrate large E3max calculations around 132Sn, using
the well-established NN+3N 1.8/2.0 (EM) interaction [39].
We also discuss the uncertainty from free-space 3N similarity
renormalization group (SRG) evolution and present results for
132Sn with the chiral NN+3N(lnl) interaction [40]. Finally, we
conclude in Sec. V.

II. CALCULATION OF 3N MATRIX ELEMENTS

In Fig. 1 we show the estimated file size of the 3N matrix
elements as a function of E3max for a fixed emax = 16. The
curve “full” illustrates that the typical basis-size limit is ap-
proximately E3max = 16–18 for a memory limit of about 100
GB. This limit, however, is typically not sufficient to obtain
converged results for nuclei beyond A = 100 as discussed in
Refs. [18,20–22,41], and which we also demonstrate below.
Towards heavier systems, the contributions of the residual
3N interactions is expected to be comparable to the trunca-
tion error of the many-body method [42]. Since the memory
requirement for storing the full set of 3N matrix elements
is prohibitive, we instead aim to exploit the simplifications

offered by the NO approximation. In order to identify the min-
imal subset of 3N matrix elements for the NO2B Hamiltonian,
we begin by reviewing the normal-ordering procedure.

A. NO2B 3N matrix elements

Our starting Hamiltonian in second-quantized form is

H =
∑
p′ p

tp′ pa†
p′ap + 1

4

∑
pp′qq′

V NN
p′q′ pqa†

p′a
†
q′aqap

+ 1

36

∑
pp′qq′rr′

V 3N
p′q′r′ pqra†

p′a
†
q′a

†
r′araqap, (1)

where tp′ p, V NN
p′q′ pq, and V 3N

p′q′r′ pqr are the one-, two-, and
three-body matrix elements, respectively. The index p
labels the single-particle orbit with quantum numbers
{np, �p, jp, mp, tzp} corresponding to the radial quantum num-
ber, orbital angular momentum, total angular momentum,
total angular momentum projection, and isospin projection,
respectively. Performing normal ordering with respect to a
reference state characterized by a one-body density matrix
ρp′ p = 〈a†

p′ap〉 and discarding the residual 3N part, we obtain
the NO2B Hamiltonian:

H (NO2B) = E0 +
∑
p′ p

fp′ p{a†
p′ap}

+ 1

4

∑
pp′qq′

�p′q′ pq{a†
p′a

†
q′aqap}, (2)

where the braces {. . .} indicate that the enclosed string of
creation and annihilation operators are normal ordered with
respect to the used reference state. The Hamiltonian is now
expressed in terms of a zero-body part

E0 =
∑
p′ p

ρp′ ptp′ p + 1

2

∑
pp′qq′

ρp′ pρq′qV NN
p′q′ pq

+ 1

6

∑
pp′qq′rr′

ρp′ pρq′qρr′rV
3N
p′q′r′ pqr, (3)

a normal-ordered one-body part

fp′ p = tp′ p +
∑
q′q

ρq′qV NN
p′q′ pq + 1

2

∑
qq′rr′

ρq′qρr′rV
3N

q′r′ p′qr p, (4)

and a normal-ordered two-body part

�p′q′ pq = V NN
p′q′ pq +

∑
r′r

ρr′rV
3N
p′q′r′ pqr . (5)

The accuracy of the NO2B approximation has been investi-
gated for ground-state energies [38,42,43], where it was found
that by 16O the error is at the level of 1% of the binding energy.
With increasing mass number, this error should decrease as a
fraction of the total binding energy.1

1The approximation also breaks translational invariance [43], but
this is only important for light nuclei (i.e., A � 16), where the NO2B
truncation is not necessary and convergence in E3max can be obtained
by conventional methods.
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If the one-body density matrix ρpp′ is rotationally invariant
and conserves parity and isospin projection, it must satisfy
(�p′ , jp′ , mp′ , tzp′ ) = (�p, jp, mp, tzp ), and the number of re-
quired 3N matrix elements is drastically smaller than that
of the original full set. This condition is satisfied for single-
reference calculations (e.g., coupled cluster, self-consistent
Green’s function, IMSRG, HF-MBPT) with a closed-shell ref-
erence, as well as for particle-attached and particle-removed
methods [6], and the ensemble normal ordering reference
used in the valence-space IMSRG [44]. On the other hand,
for broken-symmetry [45,46] or multiconfigurational [47,48]
references necessary to describe, e.g., well-deformed nuclei,
this would constitute an additional approximation.

Furthermore, in the practically used JT -coupled repre-
sentation, we can sum up the 3N total angular momentum
dependence. This can be seen in the J-coupled expression for
the normal-ordered matrix element, the full expressions for
which are provided in Appendix A. Here we show only the
contributions from the three-nucleon interactions V 3N (with
the notation [x] ≡ 2x + 1, and using unnormalized matrix
elements):

E0 [3N] = 1

6

∑
p′q′r′
pqr

ρp′ pρq′qρr′r

∑
JpqJ

[J] V
JpqJpqJ
p′q′r′ pqr (6a)

fp′ p [3N] = 1

2

∑
qq′rr′

ρq′qρr′r

∑
Jqr J

[J]

[ jp]
V

Jqr Jqr J
q′r′ p′qr p (6b)

�
Jpq

p′q′ pq [3N] =
∑
rr′

ρr′r

∑
J

[J]

[Jpq]
V

JpqJpqJ
p′q′r′ pqr . (6c)

We can see that in Eq. (6) all terms depend on V 3N through
the quantity

VJpq

p′q′r′ pqr ≡
∑

J

[J]V JpqJpqJ
p′q′r′ pqr δ̃r′r, (7)

where the symbol δ̃r′r is shorthand for all the quantum num-
bers, which are conserved by the one-body density matrix ρr′r .
If, instead of the full V 3N, we only store the quantity (7), we
obtain the curve “NO2B” in Fig. 1, allowing us to access
E3max = 26 (28) using single- (half-)precision floating point
numbers.

Note that for a Hartree-Fock (HF) calculation, we only
need the combination

V p′q′r′ pqr ≡
∑
Jpq

VJpq

p′q′r′ pqr δ̃p′ pδ̃q′q. (8)

The number of matrix elements (8) is sufficiently low that
we can store the full V p′q′r′ pqr without any E3max truncation.
However, we find that the HF part of the calculation converges
at lower E3max than the beyond-mean-field corrections, which
is why we store the quantity VJpq

p′q′r′ pqr .
A similar idea was employed in Ref. [20]. However, in

that work an iterative procedure was adopted in which a HF
calculation was performed at a manageable E3max = 14, and
then the laboratory-frame matrix elements necessary for the
NO2B approximation for larger E3max were computed from
the relative-basis matrix elements, and the procedure was

iterated until self consistency was attained. In our approach,
the transformation to the laboratory frame is performed once,
and the resulting matrix elements V are written to disk and can
be used for future calculations of any desired nucleus, without
the need for iteration.

B. Transformation to single-particle coordinate

Although we can compress the file size by calculating
only the NO2B relevant matrix elements via Eq. (7), we still
need an efficient way to perform the transformation from the
three-body Jacobi basis to single-particle basis. Originally,
this transformation was derived for the three-nucleon single-
particle m-scheme basis [12,49]. Memory requirements for
the m-scheme storage limited calculations to E3max=9. Later,
a j-coupled storage scheme was introduced [50,51] that al-
lowed calculations with E3max � 18 as discussed in Sec. I with
file size requirements illustrated in Fig. 1. Here, we specify the
angular momentum coupling in detail. The antisymmetrized
three-body states in the laboratory frame are defined as

|pqr : JpqTpqJT 〉 =
√

6A
∑
{tz}

CtptqTpq

tzptzq Tzpq
CTpqtr T

Tzpq tzr Tz

×
∑
{m}

C jp jqJpq

mpmqMpq
CJpq jr J

Mpqmr M |p〉|q〉|r〉 (9)

with the antisymmetrizer

A = 1

3!
(1 + P13P12 + P12P23 − P12 − P13 − P23), (10)

defined in terms of the permutation operator Pi j . In Eq. (9),
the symbol C indicate a Clebsch-Gordan coefficient. A state
in the antisymmetrized Jacobi basis is denoted |NiJrel〉, with
total oscillator quanta N , total angular momentum Jrel, and
an additional quantum number i to distinguish the states. The
transformation from the Jacobi basis to the laboratory frame
may be expressed as

〈p′q′r′ : Jp′q′Tp′q′JT |V 3N|pqr : JpqTpqJT 〉
= 6

∑
NiN ′i′

NcmLcmJrel

〈p′q′r′ : Jp′q′Tp′q′JT |NcmLcmN ′i′Jrel : JT 〉

× 〈N ′i′Jrel|V 3N|NiJrel〉
× 〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉. (11)

The quantity 〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉 denotes the
transformation coefficient. The quantum numbers Ncm and
Lcm are the radial nodes and orbital angular momentum
of the center-of-mass (c.m.) motion. The summations over
N, i, N ′, i′ can be performed efficiently by matrix-matrix mul-
tiplication, and the remaining summations over Ncm, Lcm and
Jrel can be computed manually.

The transformation coefficient can be calculated through
the nonantisymmetrized Jacobi state:

〈NcmLcmNiJrel : JT |pqr : JpqTpqJT 〉
=

∑
α

〈NiJrel|NαJrel〉

× 〈NcmLcmNαJrel : JT |pqr : JpqTpqJT 〉. (12)
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The index α labels the set of Jacobi quantum numbers
α = {n12, l12, s12, j12, t12, n3, l3, j3}. The quantum numbers
{n12, l12, s12, j12, t12} are used for the relative motion of nucle-
ons 1 and 2, i.e., the nodal, orbital angular momentum, spin,
total angular momentum, and total isospin quantum numbers,
respectively. Similarly, the quantum numbers {n3, l3, j3} cor-
respond to the motion of nucleon 3 with respect to the c.m.
of nucleons 1 and 2. Since the antisymmetrized state |NiJrel〉

is an eigenstate of the antisymmetrizer A, the coefficient
〈NiJrel|NαJrel〉 is also known as the coefficient of fractional
parentage [52,53]. The coefficient 〈NcmLcmNαJrel : JT |pqr :
JpqTpqJT 〉 is known as the T coefficient [49,51], and is the
bottleneck of the calculation. It turns out one can sum up
three of the angular momentum sums in Eq. (B11) in Ref. [49]
(S3, L3,L) and obtain a significantly more efficient expression
for the T coefficient:

〈NcmLcmNα : JT |pqr : JpqTpqJT 〉
= δt12Tpq (−1)s12+l12+Lcm+Jpq+ j3+3/2

√
[ jp][ jq][ jr][Jpq][s12][ j12][ j3][Jrel]

×
∑
lpq

[lpq]

⎧⎨
⎩

lp sp jp

lq sq jq
lpq s12 Jpq

⎫⎬
⎭

∑
N12L12

(−1)L12

{
L12 l12 lpq

s12 Jpq j12

}
〈N12L12, n12l12 : lpq|nplp, nqlq : lpq〉1

×
∑

λ

(−1)λ[λ]〈NcmLcm, n3l3 : λ|N12L12, nrlr : λ〉2

⎧⎨
⎩

j12 L12 λ Lcm

Jpq lr l3 Jrel

J jr sr j3

⎫⎬
⎭. (13)

Here, as above, we use the notation [x] ≡ 2x + 1 and the
usual 6- j and 9- j symbols are used. In addition, we use a
12- j symbol of the first kind [54], and 〈. . . | . . .〉d is Talmi-
Moshinsky bracket with mass ratio d [55]. For efficiency, 12- j
symbols are calculated on the fly from cached 6- j symbols
[54]. We have also used sp = sq = sr = 1/2. While (13) is
a complicated expression, it involves four nested summations
(including the expansion of the 12- j symbol; the sum over N12

is trivial by energy conservation), rather than the six needed
for the expression in Refs. [49,51].

Our implementation of the above expressions allows us to
generate all the laboratory-frame three-body matrix elements
(with half-precision floating point numbers) needed for a cal-
culation employing the NO2B approximation with a spherical
reference state up to E3max = 28 using ≈105 CPU hours with
187 GB RAM per node. Importantly, this step only needs to
be done once for a given interaction. Subsequent many-body
calculations for different nuclei, or using different methods
can be performed using the same file.

III. CONVERGENCE BEHAVIOR

Before presenting results for heavy nuclei, we consider the
expected convergence behavior of ground-state energies with
increasing E3max. Knowing the asymptotic behavior enables
a controlled extrapolation to E3max → 3emax. Convergence in
E3max is distinct from the convergence in emax (or Nmax in
the no-core shell model) discussed in Refs. [56,57], in that
the latter deals with a truncation of the Hilbert space, while
the former is a truncation on the Hamiltonian. This means
we do not even have an approximate variational principle
to rely on. To simplify the analysis, we assume that for the
soft interactions we consider here, the main contribution to
the correlation energy comes from second-order perturbation
theory. Also we assume that E3max is sufficiently large that
the HF wave function is converged. The second-order energy

correction is

E [2] = 1
4

∑
abi j

|�abi j |2
εi + ε j − εa − εb

, (14)

where �abi j contains both two-body and three-body contri-
butions, cf. (5). Here i, j and a, b run over hole and particle
states, respectively. We can simplify the evaluation by ap-
proximating the single-particle energies by the harmonic
oscillator energy with the proper energy scale: εp = eph̄ω

with ep = 2np + lp and h̄ω the optimal oscillator frequency.
The subscript p indicates either hole or particle state. We have
confirmed that this replacement does not affect the asymptotic
behavior. By increasing the value of E3max by one unit the
second-order energy changes by


E [2] ≈ 1
2

∑
abi jk

V NN
abi jV

3N
i jkabk

(ei + e j + ek − E3max)h̄ω
δE3max,ea+eb+ek ,

(15)
where we have assumed ||V NN|| 
 ||V 3N|| and retained only
the term linear in V 3N. The interactions we are interested in are
regularized by cutoff functions of the form exp(−Q2n/�2n),
where Q is a momentum scale, � the cutoff scale and n
some positive power n. Depending on the nature of the 3N
interaction, Q can be the momentum transfer or the sum of the
Jacobi momenta of the form Q2 = k2

1 + 3k2
2/4 + k′2

1 + 3k′2
2 /4,

where ki/k′
i are the Jacobi momenta of the initial/final state

(see Ref. [15] for details). Then, it is reasonable to assume
that the off-diagonal matrix elements are suppressed as:

V NN
abi j ≈ V̄ NN exp

[
−

(
ea + eb − ei − e j

�2
NN/mε0

)nNN
]
, (16)

and

V 3N
abki jk ≈ V̄ 3N exp

[
−

(
ea + eb + ek − ei − e j − ek

�2
3N/mε0

)n3N
]
,

(17)
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with the cutoff for NN (3N) interaction �NN (�3N) and the
scale of the NN (3N) interaction V̄ NN (V̄ 3N).2 For the sake
of simplicity, we also assume nNN = n3N ≡ n in the follow-
ing. The above suppression is also found in SRG-evolved
potentials [58]. To further simplify, we take the most relevant
excitations, i.e., excitations from the Fermi level (with energy
eF ) to the unoccupied orbits. In this case the numerator in
both (16) and (17) become, when combined with the δ in
(15), equal to E3max − 3eF . Introducing the new scale fac-
tor 1/σ n = mnεn

0 (1/�2n
NN + 1/�2n

3N) and taking the summation
explicitly, we obtain the form


E [2] ≈ (A1 + A2X + A3X 2) exp

[
−X n

σ n

]
, (18)

with X = (E3max − μ), μ ≈ 3eF. We expect the correction
E [2] to be a smooth function of E3max in the asymptotic limit,
and so we treat the difference 
E [2] as a derivative and inte-
grate to obtain the form of E [2]:

E [2] ≈ A1γ 1
n
(x) + A2γ 2

n
(x) + A3γ 3

n
(x) + C, (19)

with x = [(E3max − μ)/σ ]n. Here, γs(x) is the incomplete γ

function:

γs(x) =
∫ x

0
t s−1e−t dt . (20)

It turns out that the functions γ 1
n
(x), γ 2

n
(x), γ 3

n
(x) show the

same asymptotic behavior, and are therefore redundant for our
purposes, so we may simply retain one of the γ functions in
(19), and we choose γ 2

n
(x). Assuming that the HF energy is

well converged with respect to E3max, the formula for the E3max

extrapolation is

E ≈ Aγ 2
n

[(E3max − μ

σ

)n]
+ C. (21)

It remains to select a reasonable value of the power n
entering in (21). An SRG-evolved interaction will go as
exp[−s(k2 − k′2)2] [58] with relative momenta k and k′,
which suggests a value n = 2. For the interaction under con-
sideration, 1.8/2.0 (EM), the 3N force is not SRG evolved,
but instead comes with a regulator ≈ exp[−(Q2/�2)4] [39],
suggesting n = 4. We deal with this ambiguity by checking
n = 2, 4, 6 to explore the sensitivity to the choice.

Furthermore, from the perturbative expansion of one-body
density matrix, we can expect the same E3max asymptotic
behavior for the expectation value of the mean-squared radius
operator 〈r2〉, or any other predominantly one-body operator.

2Another possible choice would be

V NN
abi j ≈ V̄ NN exp

[
−

(
ea + eb + ei + e j

�2
NN/mε0

)nNN
]
,

and

V 3N
abki jk ≈ V̄ 3N exp

[
−

(
ea + eb + ek + ei + e j + ek

�2
3N/mε0

)n3N
]
.

Even with these forms, one can obtain Eq. (21) by introducing X =
E3max + μ, μ ≈ 2eF and assuming the condition E3max 
 eF.

We emphasize that all the discussions are based on the soft-
ness of the employed nuclear interaction enabling us to derive
the expression through the MBPT. For a harder interaction,
where the MBPT breaks down, we may observe a different
convergence pattern with respect to E3max.

IV. NUMERICAL RESULTS

The many-body calculation methods used in the following
are HF basis many-body perturbation theory (HF-MBPT) and
IMSRG. For open-shell systems, we use the valence-space
IMSRG (VS-IMSRG). For all the many-body methods, we
store the usual NN and NO2B 3N matrix elements in RAM,
perform the HF calculation to optimize the single-particle
basis, and obtain the normal ordered matrix elements (A12),
(A13), and (A14). For open-shell systems, we use an en-
semble reference for the normal ordering to capture the 3N
interaction effect of valence nucleons as much as possible
within the spherical basis framework [44,59]. In addition to
the HF calculation, we evaluate the correlation energy with
MBPT. Based on a soft nuclear interaction, it was shown
that the computationally cheap second- or third-order MBPT
can provide results comparable with those from the coupled-
cluster method [9,60,61]. We could confirm these results in
our calculations, and so we use HF-MBPT for the calculations
with a large emax space, where the IMSRG is considerably
more expensive. Our IMSRG calculations are performed with
the Magnus formulation [62], using the arctangent generator.
Details of the method may be found in recent reviews [8,59].
The IMSRG and VS-IMSRG calculations are done with the
IMSRG++ [63] code, and the subsequent shell-model di-
agonalizations are done with the NUSHELLX@MSU [64] and
KSHELL [65] codes.

A. E3max convergence around 132Sn

Here, we investigate large-E3max calculations around 132Sn
using the well-established NN+3N interaction 1.8/2.0 (EM)
[39], which accurately reproduces binding energies to A ≈
100 [17,66,67]. We employ an oscillator basis with frequency
h̄ω = 16 MeV, which is near the optimal value giving the most
rapid emax convergence for the ground-state energies and radii
of the medium-mass nuclei (converged results are independent
of h̄ω) [66].

One important feature of the 1.8/2.0 (EM) interaction for
our purposes is that, while the NN force is softened by a
free-space similarity renormalization group (SRG) evolution
to a scale λSRG = 1.8 fm−1, the corresponding 3N interactions
are not SRG evolved. Instead, the cutoff is chosen to be
�3N = 2.0 fm−1 and the short-range low-energy constants cD

and cE are refit to the triton binding energy and 4He radius.
This means that we can avoid SRG evolution of the 3N in-
teraction, which introduces additional challenges due to basis
truncations (we address these in Sec. IV B).

In Fig. 2 we show the ground-state energy of 132Sn cal-
culated with HF-MBPT and IMSRG as a function of E3max.
The nonvariational nature mentioned above is evident, and
is present even at the mean-field level. We see that trunca-
tions at E3max = 22 or 24 are sufficient to obtain convergence
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FIG. 2. Ground-state energy of 132Sn as a function of E3max, com-
puted in many-body perturbation theory to second and third order and
in IMSRG(2).

within a few MeV. For all points in Fig. 2, the 3N matrix
elements are stored and read in using half-precision float-
ing point numbers to reduce the memory footprint. Up to
E3max = 24, we can use single-precision numbers to check
the impact of this choice. At emax = 14, E3max = 24, the half-
precision calculation yields HF energies shifted by −2.14
MeV, while the second- and third-order MBPT corrections
are changed by 0.68 MeV and 0.11 MeV, respectively, yield-
ing a total difference up to third order of −1.35 MeV. This
is completely negligible compared with uncertainties arising
from many-body truncations (which we expect to be on the
order of 20 MeV here)3 and the interaction itself. We also
show in Fig. 2 the convergence with respect to emax. At
E3max = 28, the third-order energies for emax = 14, 16, 18, are
−1115.85 MeV, −1117.61 MeV, and −1118.16 MeV, respec-
tively, demonstrating convergence at the 1 MeV level.

Since the second-order correction of ≈ −300 MeV is much
larger than third-order correction of ≈ −20 MeV, the corre-
lation energy is dominated by second-order correction. This
supports the claim that the extrapolation formula Eq. (21)
based on the second-order energy correction is applicable in
the case of the HF-MBPT(3) and IMSRG, which includes
correlations beyond second order. In Fig. 3(a), we show
n = 2, 4, 6 curves of Eq. (21) fitted with the HF-MBPT(2)
and IMSRG energy results at emax = 14, indicated by the
solid symbols in the panel. We see that Eq. (21) works for
IMSRG energies as well. Figures 3(b) and 3(c) show the
extrapolated energies to E3max = 28, which is the largest value
we can calculate. Since the extrapolated point is finite, the
uncertainty of all the fitting parameters can propagate to un-

3This estimate is based on the difference between the MBPT(2),
MBPT(3), and IMSRG(2) energies, and is consistent with Ref. [60]
where the error at MBPT(3) for similarly soft interactions was found
to be 0.1–0.2 MeV per particle. We have further corroborated this
estimate with MBPT(4) calculations in a smaller emax space.

FIG. 3. (a) The ground-state energy of 132Sn computed in
MBPT(2) and IMSRG(2), as a function of E3max, and the extrapolated
energies for (b) MBPT(2) and (c) IMSRG. The points used in the
fitting procedure are indicated by the solid symbols in (a). The
dashed and solid curves are obtained by fitting the functions using
n = 2, 4, 6 in Eq. (21) with the data points of MBPT(2) (emax = 14)
and IMSRG (emax = 14) results, respectively. In (b) and (c), the
energies are extrapolated to E3max = 28. The error bars indicate the
standard deviation of the distribution, which are obtained with 104

samples drawn from the covariance matrix of the fit.

certainty of the extrapolated energies. The uncertainty of the
energy is estimated as the standard deviation of the 10000
samples generated with the covariance matrix from the fit.
Comparing the extrapolated and calculated energies, we see
that n = 2 (Gaussian) reproduces the energies for both HF-
MBPT(2) and IMSRG cases, and n = 2 is the most likely
to reproduce the convergence behavior in this case. With
n = 2 formula, we observed that the extrapolated energy to
E3max = 42 is −1110.57(2) [−1097.13(2)] MeV using the
IMSRG [HF-MBPT(2)] data 18 � E3max � 23. As already
mentioned in Sec. I, we have observed a lack of conver-
gence with respect to E3max in some calculations of heavier
systems. One particular example is 127Cd as discussed in
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FIG. 4. Excitation spectrum of 127Cd as a function of E3max,
computed in the VS-IMSRG(2) approximation.

Ref. [21]. We revisit the calculations in that work, obtained
with the VS-IMSRG, and extend them to larger E3max. Here,
our single-particle basis truncation is emax = 14, and we take
the valence space as {1p3/2, 1p1/2, 0 f5/2, 0g9/2} for protons
and {1d5/2, 2s1/2, 1d3/2, 0g7/2, 0h11/2} for neutrons above 78Ni
core. As seen in Fig 4, by E3max = 28 we obtain convergence
in excitation energies at the level of 5 keV. With the previous
limit of E3max = 18 there is no sign of convergence. This
behavior can be understood by noting that the h11/2 orbit
with e � 5, is impacted by the E3max cut differently than the
other neutron valence orbits, which have e � 4, and that the
parity of a state is driven by the occupation of the h11/2. An
analogous argument applies to the proton orbits.

In contrast, when two states have the same number of
oscillator quanta in their naive configurations, we expect
that their convergence with respect to E3max will be sim-
ilar and so the energy difference will be less sensitive
to the E3max truncation. To illustrate this, we present in
the top panel of Fig. 5 the first 2+ excitation energies of

FIG. 5. First 2+ excitation energies of the tin isotopes calculated
with the VS-IMSRG(2) approximation. The black bars indicate the
experimental data [68].

even-mass tin isotopes, obtained with the VS-IMSRG. The
valence space is {1p3/2, 1p1/2, 0 f5/2, 0g9/2} for protons and
{2s1/2, 1d3/2, 0h11/2, 1 f7/2} for neutrons above a 92Ni core, in-
dicated by the open symbols in the figure. During the IMSRG
evolution, the center-of-mass (c.m.) motions are separated
with the Glöckner-Lawson prescription [69] with the coeffi-
cient β = 3, and we observe the stability with respect to β

(see Ref. [70] for a detailed discussion). The ground-state
energies are converged within approximately 2 MeV. It is
clear from the figure that the 2+ energies show convergence
as E3max is increased and E3max = 18 is sufficient to see the
systematics of the 2+ energies. We note that the 2+ energy
of 132Sn at E3max = 18 and 24 differ by 200 keV. We suc-
cessfully reproduce the A-independent excitation energies of
the open-shell nuclei, consistent with the seniority picture. In
fact, the analysis of the calculated wave function of 126–130Sn
reveals that our valence-space wave functions of ground and
first 2+ states are dominated more than 70% by the senior-
ity v = 0 and v = 2 states, respectively.4 The relatively fast
convergence of the excitation energies with respect to E3max

reflects the fact that both the ground and excited states are
dominated by configurations with the same occupancies in the
oscillator basis. On the other hand, the excitation at N = 82 is
dominated by a single neutron excitation 0h11/2 → 1 f7/2. As
these orbits have the same naive number of oscillator quanta,
dependence on the E3max is still mild. The predicted excita-
tion energy is about 1.5 MeV above the experimental value,
which is attributed to the IMSRG(2) approximation, as seen
in earlier works [66,71]. Efforts to go beyond the IMSRG(2)
approximation are underway [72].

Finally, we consider the convergence behavior of point-
proton and point-neutron radii through the Hartree-Fock,
second-order HF-MBPT, and IMSRG(2). The diagrams taken
into account in the second-order HF-MBPT are listed in
Appendix B. The charge radii of several isotopes includ-
ing 132Sn were recently computed with the self-consistent
Green’s function method using chiral forces up to emax = 13
and E3max = 16 [18]. We compute point-proton and point-
neutron root-mean-squared radii and the neutron skin of 132Sn
as a function of E3max, and plot the result in Fig. 6. We
see that convergence is achieved by E3max ≈ 22. The corre-
sponding converged charge radii are rch = 4.43 fm and 4.42
fm with IMSRG and second-order HF-MBPT, respectively,
demonstrating that the effect of the many-body truncation is
controllable for radii. Equation (21) with n = 2 reasonably
captures the asymptotic convergence behavior of radii. Also
we note that the often-used N2LOsat interaction is harder than
the interaction employed here, and thus we would expect the
calculations with N2LOsat will show slower convergence with
respect to E3max. Our converged neutron skin with IMSRG(2)
is 0.2202(4)—where the quoted uncertainty only accounts for
the E3max truncation—consistent with the (model-dependent)
extraction [73] of 0.24(4).

4While such quantitative details about the wave function will in
general depend on the details of the IMSRG transformation, this is a
relatively simple way to understand the convergence behavior.
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FIG. 6. Root-mean-squared point-proton and point-neutron
radii, and neutron skin thickness of 132Sn as a function of E3max. We
use the EM 1.8/2.0 interaction with emax = 14 and compute the radii
in the Hartree-Fock, HF-MBPT(2), or IMSRG(2) approximations.
The dotted, dot-dashed, and dashed lines are obtained by fitting
to Eq. (21). The points indicated by the solid symbols are used
in the fitting procedure. The shaded or hatched bands show the
extrapolated radii to E3max = 3emax = 42 and the widths of the bands
are estimated with 104 samples, as in the energy extrapolation.

B. SRG evolved NN + 3N interaction

The NN and 3N contributions to the 1.8/2.0 (EM) inter-
action, used for the calculations discussed in the previous
section, are defined at different cutoff and resolution scales.
For a more systematic convergence study of the calculations
it would be desirable explore the resolution-scale and cutoff
dependence of observables. Using interactions with a higher
cutoff, observables in heavy nuclei will be impossible to
converge in the largest feasible model spaces, even with the
advances discussed in this work. Therefore, these interactions
first need to be softened via a free-space SRG evolution
[74] (or some other procedure [75–77]). For the following
calculations we evolve NN and 3N sectors consistently in
the harmonic-oscillator basis space. For the NN sector, the

FIG. 7. Ground-state energy of 132Sn as a function of N3max for
the SRG evolution, computed in third-order HF basis many-body
perturbation theory HF-MBPT(3) at h̄ω = 15 MeV, emax = 16, and
E3max = 22. The vertical dashed lines indicate the partitions of low-
J (Jrel � 13/2), middle-J (15/2 � Jrel � 21/2), and high-J (Jrel �
23/2) regions.

evolution is done within the space spanned by the principle
quantum number of the relative motion up to 200. Assuming
our typical basis frequency of a few tens MeV, the UV scale
of this space is a few GeV/c—sufficiently larger than the
typical momentum scale of ≈500 MeV/c of the bare NN
interaction from the chiral EFT, and we can safely evolve the
NN Hamiltonian.

For the 3N sector, we evolve the 3N Hamiltonian within
the space defined by the three-body principle quantum num-
ber N3max, the sum of the principle quantum numbers of the
motions for corresponding Jacobi variables. Since the 3N
evolution is computationally demanding compared to the NN
evolution, we cannot handle a value of N3max well beyond
the typical nuclear interaction scale. We therefore need to
investigate the N3max dependence as we move to heavier sys-
tems, as done in Ref. [20]. In the following, we use the chiral
N3LO NN interaction from Entem and Machleidt [78] and the
N2LO 3N interaction with both local and nonlocal regulators
developed in Ref. [40] denoted as NN+3N (lnl).

In Fig. 7 we show the ground-state energy of 132Sn as a
function of N3max. Because the Hamiltonian is block diagonal
in the relative angular momentum Jrel, we can apply a dif-
ferent N3max cut to each Jrel block. We include all channels
up to Jrel � E3max + 3/2 = 47/2, which is the highest value
that can contribute. To simplify the analysis, we divide the
Jrel blocks into low-J (Jrel � 13/2), middle-J (15/2 � Jrel �
21/2), and high-J (Jrel � 23/2) partitions, and vary N3max for
each partition. The SRG evolution is run to a scale of λSRG =
2.0 fm−1, working with a basis frequency h̄ω = 30 MeV. Af-
ter the evolution, the frequency is converted to h̄ω = 15 MeV
for the many-body calculations (see Ref. [51] for details). The
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many-body calculations are done with third-order HF-MBPT
with laboratory-frame truncations emax = 16 and E3max = 22.
In Fig. 7 we see that the low-J and high-J partitions are
converged within the level of a few MeV by N3max = 48 and
N3max = 42, respectively, while the middle-J region converges
more slowly. To our knowledge, these are the largest N3max

spaces explored in the literature. It appears that SRG evolution
of the Jrel � 15/2 blocks such that heavy nuclei are converged
with respect to N3max will not be possible in the near term
without further technical developments.

An alternative truncation scheme we can explore is the
maximum value of Jrel. Since the nuclear interaction is short
range, we naively expect that the high Jrel components are
suppressed by the angular momentum barrier. In the top panel
of Fig. 8, the ground-state energy of 132Sn is shown as a
function of the maximum Jrel included in the transformation
Eq. (11). The points labeled “Full” use a uniform N3max for all
blocks up to Jrel = 47/2. Again, energies are computed with
HF-MBPT(3) at h̄ω = 15 MeV, emax = 16, and E3max = 22.
We observe that as we increase N3max, the contribution of
channels with Jrel > 9/2 becomes essentially negligible.

In order to extrapolate to N3max → ∞, we fit the calculated
energies with an exponential function E = a exp(−bN3max) +
E∞ as shown in the middle panel. In the fitting procedure, we
used the energies at N3max = 36, 38, 40, 42, 44, and used the
N3max = 48 points to validate the assumed functional form.5

The N3max extrapolated energies are shown in the bottom
panel. The agreement of calculated and extrapolated energies
at N3max = 48 validates the fitting formula employed here.
The final energy obtained by extrapolating the full results to
N3max → ∞ is −1105.6(15) MeV, which agrees within the
error bars with the extrapolated energies from max(Jrel ) =
9/2, 11/2, 13/2 results. This reinforces the observation that
the contributions from channels with Jrel > 9/2 are negligible
in the N3max → ∞ limit.

This result is somewhat surprising as it suggests that we
can obtain a more accurate result by neglecting the high-Jrel

sector altogether than we can by evolving it in the largest
space we can manage. Evidently, the main impact of the
high-Jrel matrix elements is to introduce an artifact due to the
N3max truncation, which is removed in the limit N3max → ∞.
To investigate the origin of this artifact, in Fig. 9 we hold
fixed N3max = 48 for the Jrel � 13/2 partition, and plot the
expectation values 〈T + V NN〉, 〈V 3N

ind 〉, 〈V 3N
gen 〉, and 〈H〉 as a

function of the N3max cut applied to the Jrel � 15/2 partition.
Here T is the relative kinetic energy, V NN is the evolved NN
potential, V 3N

ind is the induced 3N potential, V 3N
gen is the evolved

genuine 3N potential, and H is the transformed Hamiltonian
obtained by summing all of the kinetic and potential terms.
The expectation values are taken in a naive harmonic oscilla-
tor ground state of 132Sn.

At N3max = 0, corresponding to the J = 13/2 point in
Fig. 8, we obtain a bound energy. With increasing N3max the

5We also tried fitting with the Gaussian function E =
a exp(−bN2

3max) + E∞, and found this does not provide consistent
results with the computed N3max = 48 energies.

FIG. 8. Ground-state energy of 132Sn computed in HF-MBPT(3)
at h̄ω = 15 MeV, emax = 16, and E3max = 22. In the top panel, the en-
ergies are shown as a function of maximum Jrel for the transformation
to the laboratory frame. The middle panel shows the extrapolation
of N3max to the infinity. The extrapolated energies are shown as a
function of maximum Jrel in the bottom panel.

energy shoots up to 15 GeV, driven by the 〈V 3N
ind 〉 compo-

nent, before converging back towards the N3max = 0 value.
It appears that the impact the high-Jrel matrix elements are
negligible. Similar behavior is found in 78Ni, where the fully
converged and N3max = 0 HF energies differ by 0.3 MeV.

To further investigate the enormous contributions from
induced 3N interactions, we decompose 〈V 3N

ind 〉 into terms
induced by transforming the one-pion exchange, two-pion ex-
change, and contact parts of VNN, as well as the kinetic energy.
We find that at N3max = 16, all four of these induced terms
contribute several GeV to the energy in Fig. 9, indicating that
this behavior is generic and not tied to the detailed structure of
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FIG. 9. Harmonic-oscillator basis energy components of 132Sn as
a function of the cut N3max applied to the SRG basis for states with
Jrel � 15/2. For details regarding each component, see main text.

the NN interaction. Further understanding of the mechanism
of this large induced component should be pursued, as it may
point the way to a more efficient treatment.

Through this analysis, we conclude that one can perform
a more accurate 3N SRG evolution with a truncation in
Jrel, rather than using all possible Jrel channels without fully
achieving the convergence with respect to N3max. We leave
for future work the question of whether this holds for other
operators.

Finally, we demonstrate that the asymptotic convergence
in E3max discussed in Sec. III is also observed for a consis-
tently SRG-evolved NN+3N interaction. In Fig. 10, we show
the third-order HF-MBPT ground-state energy of 132Sn as a

FIG. 10. Ground-state energy of 132Sn obtained in third-order
HF-MBPT, as a function of E3max for several values of N3max. We
retain relative angular momenta Jrel � 13/2 in the transformation
to the single-particle coordinate. The gray squares are extrapolated
to N3max → ∞ with an exponential, and then fit with a Gaussian
(dashed line) to extrapolate in E3max.

function of E3max, at multiple values of N3max for the case
Jrel � 13/2 (similar behavior is observed for Jrel � 9/2). In
contrast to the unevolved case, we observe an increase in the
energy for large E3max. This bump diminishes with increasing
N3max, indicating that the truncation artifact shows up most
significantly in the large E3max matrix elements, as would be
expected. For each E3max, we extrapolate to N3max → ∞ using
an exponential form, and we obtain the gray squares in Fig. 10
(the extrapolation uncertainties are smaller than the markers).

The extrapolated points still display a minimum as a func-
tion of E3max before converging to the final answer from
below. The decreasing trend below E3max = 20 is driven by
the convergence of the HF energy, while the increase above
E3max = 20 is driven by the second-order MBPT correction.
The fact that the energy converges from below in this case
supports the assumption in Sec. III that the asymptotic con-
vergence in E3max is driven by the VNN -V3N cross term, which
can be either positive or negative. The asymptotic behavior is
fit well with a Gaussian with similar parameters (aside from
the overall sign) to those in the unevolved case.

The extrapolated ground-state energy for 132Sn is then
−1099.502(3) MeV, where this tiny uncertainty only accounts
for the fit uncertainty in the E3max and N3max extrapola-
tions. This uncertainty is clearly negligible compared with the
many-body uncertainty (we only use third-order MBPT), the
emax truncation uncertainty, effects of induced 4N forces, con-
tributions from higher orders in the EFT expansion, and the
fact that we use a half-precision floating point representation
for storing the 3N matrix elements. We note that the effect
of the SRG induced many-body interactions can be accessed
by checking the λSRG dependence. Our almost-converged
132Sn calculations at emax = 16 and E3max = 22 show that the
ground-state energy changes about 20 MeV within λSRG =
1.8–2.2 fm−1 range, which is at the 2% level of the total
ground-state energy. As the other sources of uncertainty likely
contribute at the level of a few tens of MeV, the NN+3N(lnl)
interaction is in excellent agreement with the experimental
value of −1102.8 MeV [79], especially considering that it was
fit to the properties of A � 4 nuclei.

V. CONCLUSION

In this work we introduce a framework in which only
3N matrix elements relevant for the NO2B approximation
are stored in memory, which reduces the memory require-
ment by approximately two orders of magnitude. This enables
us to generate laboratory-frame 3N matrix elements up to
E3max = 28, significantly larger than the previous limit of
E3max = 18. We further discussed the asymptotic behavior of
the ground-state energy with respect to the E3max truncation,
which allows controlled extrapolations to E3max = 3emax. To
explore the applicability of the ab initio calculation, we em-
ployed the HF-MBPT(2), HF-MBPT(3), and IMSRG(2) to
solve the many-body Schrödinger equation. Using the estab-
lished 1.8/2.0 (EM) interaction, we obtained the ground-state
energies converged at the level of 1 MeV (with respect to
the emax and E3max truncations) around 132Sn. As illustrated
in the 127Cd case, convergence in E3max is essential not just
for ground states but for spectroscopy as well. Even with
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this substantially larger laboratory-frame E3max cut, as we
move to the heavy-mass region, convergence with respect to
truncations made in the free-space 3N SRG evolution pose
an additional challenge. Using the N3LO NN + N2LO 3N
(lnl) [40] interaction, we have demonstrated that a truncation
Jrel � 13/2 is more accurate (not to mention less costly) for
calculations of ground-state energies than including larger
Jrel, if full convergence in those channels cannot be achieved.
A corresponding convergence analysis for excited states and
other observables with respect to Jrel remains future work.

This work lifts the primary limitation that has thus far
kept ab initio calculations constrained to the A � 100 region.
Among the studies that will be enabled are the neutron skin
of 208Pb [80], neutrinoless double-β decays and dark matter
searches in germanium and selenium [81], as well as xenon
[28] and tellurium [82], and investigations of nuclear matter
parameters based on the response functions of heavy nuclei
[83].
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APPENDIX A: NORMAL-ORDERED MATRIX ELEMENTS

In an uncoupled basis, the expressions for the normal-
ordered matrix elements are

E0 =
∑
p′ p

ρp′ ptp′ p + 1

4

∑
pp′qq′

ρp′q′ pqV NN
p′q′ pq

+ 1

36

∑
pp′qq′rr′

ρp′q′r′ pqrV
3N
p′q′r′ pqr (A1)

fp′ p = tp′ p +
∑
q′q

ρq′qV NN
p′q′ pq + 1

4

∑
qq′rr′

ρq′r′ prV
3N

q′r′ p′qr p (A2)

�p′q′ pq = V NN
p′q′ pq +

∑
rr′

ρr′rV
3N
p′q′r′ pqr . (A3)

In (A1) (A2), (A3), we have used the density matrices

ρp′ p ≡ 〈�|a†
p′ap|�〉

ρp′q′ pq ≡ 〈�|a†
p′a

†
q′aqap|�〉

ρp′q′r′ pqr ≡ 〈�|a†
p′a

†
q′a

†
r′araqap|�〉 (A4)

taken for some general reference state |�〉. If the reference
|�〉 is spherically symmetric, then the density matrices may
be expressed in a J-coupled form defined by

ρp′ p = ρp′ pδ jp′ jpδmp′ mp (A5)

ρp′q′ pq =
∑

J

C jp′ jq′ J
mp′ mq′ MC jp jqJ

mpmqMρJ
p′q′ pq (A6)

ρp′q′r′ pqr =
∑

JpqJp′q′ J

C jp′ jq′ Jp′q′
mp′ mq′ Mp′q′C

jp jqJpq

mpmqMpq

× CJp′q′ jr′ J
Mp′q′ mr′ M

CJpq jr J
Mpqmr Mρ

Jp′q′ JpqJ
p′q′r′ pqr, (A7)

where the C are Clebsch-Gordan coefficients. If |�〉 does
not mix proton and neutron orbits, then (A5) will contain an
additional δtzp′ ,tzp . If |�〉 has good parity, we also have δlp′ lp . For
a spherical reference, the expression for the normal-ordered
matrix elements becomes

E0 =
∑
p′ p

ρp′ ptp′ p + 1

4

∑
pp′qq′

∑
J

[J]ρJ
p′q′ pqV J

p′q′ pq

+ 1

36

∑
pp′qq′rr′

∑
JpqJ

[J]ρJpqJpqJ
p′q′r′ pqrV

JpqJpqJ
p′q′r′ pqr (A8)

fp′ p = tp′ p +
∑
q′q

∑
J

[J]

[ jp]
ρq′qV J

p′q′ pq

+ 1

4

∑
qq′rr′

∑
Jqr J

[J]

[ jp]
ρ

Jqr

q′r′qrV
Jqr Jqr J

q′r′ p′qr p (A9)

�
Jpq

p′q′ pq = V
Jpq

p′q′ pq +
∑
r′rJ

[J]

[Jpq]
ρr′rV

JpqJpqJ
p′q′r′ pqr . (A10)

Where we have used unnormalized J-coupled matrix ele-
ments. Finally, in the case where |�〉 is uncorrelated so that
ρp′q′ pq and ρp′q′r′ pqr are given by antisymmetrized products of
one-body densities (again using the index permutation opera-
tors P)

ρp′q′ pq = (1 − Ppq)ρp′ pρq′q

ρp′q′r′ pqr = (1 − Pqr )(1 − Ppq − Ppr )ρp′ pρq′qρr′r, (A11)

then the normal-ordered matrix elements become

E0 =
∑
pp′

ρp′ ptp′ p + 1

2

∑
pp′qq′

ρp′ pρq′q

∑
J

[J]V J
p′q′ pq

+ 1

6

∑
pqr

p′q′r′

ρp′ pρq′qρr′r

∑
JpqJ

[J]V JpqJpqJ
p′q′r′ pqr (A12)

fp′ p = tp′ p +
∑
qq′

ρq′q

∑
J

[J]

[ jp]
V J

p′q′ pq

+ 1

2

∑
qq′rr′

ρq′qρr′r

∑
Jqr J

[J]

[ jp]
V

Jqr Jqr J
q′r′ p′qr p (A13)

�
Jpq

p′q′ pq = V
Jpq

p′q′ pq +
∑
rr′

ρr′r

∑
J

[J]

[Jpq]
V

JpqJpqJ
p′q′r′ pqr, (A14)

where we have omitted the δs implied by (A5).
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FIG. 11. Hugenholtz diagrams for the ground-state expectation
value of a scalar operator up to the second order. The solid and open
circles indicate Hamiltonian and scalar operators, respectively. The
Hartree-Fock basis is assumed. The diagram rules are same as in
Ref. [84].

APPENDIX B: GROUND-STATE EXPECTATION VALUE
OF A SCALAR OPERATOR IN SECOND-ORDER HF-MBPT

For the ground-state expectation value of a scalar operator
in the second-order HF-MBPT, the diagrams are shown in
Fig. 11. The expectation value of the scalar operator S is given
as

〈S〉 ≈ 〈HF|S|HF〉 +
2∑

i=1

Fi +
15∑

i=1

Si. (B1)

In actual calculations, we use the efficient J-coupled scheme.
Below we provide the explicit expressions corresponding to
the diagrams. Let Spq and SJ

pqrs be the one- and J-coupled two-
body matrix elements of the scalar operator, and we use the

notation:

X̄ J
pqrs = √

(1 + δpq)(1 + δrs)X J
pqrs,

X̄ J,CC
pqrs =

∑
J ′

[J ′]
{

jp jq J ′
jr js J

}
X̄ J ′

psrq,

εab...
i j... = ( fii + f j j + · · · ) − ( faa + fbb + · · · ). (B2)

Here, X J
pqrs is the normalized antisymmetrized two-body ma-

trix element of either Hamiltonian or scalar operator. In the
following, we show the J-coupled expressions for the di-
agrams. As in the main text, we use the convention that
a, b, c, d label particle states and i, j, k, l label hole states.

F1 = 1

4

∑
abi j

∑
J

[J]
�̄J

abi j S̄
J
abi j

εab
i j

(B3)

F2 = F1 (B4)

S1 = −1

2

∑
abi jk

∑
J

[J]
�̄J

abi j�̄
J
kbi jSak

εab
i j εa

k

(B5)

S2 = 1

2

∑
abci j

∑
J

[J]
�̄J

abi j�̄
J
abc jSci

εab
i j εc

i

(B6)

S3 = 1

2

∑
abci j

∑
J

[J]
�̄J

abi j�̄
J
aci jSbc

εab
i j εac

i j

(B7)

S4 = −1

2

∑
abi jk

∑
J

[J]
�̄J

abi j�̄
J
abikS jk

εab
i j εab

ik

(B8)

S5 = S1 (B9)

S6 = S2 (B10)

S7 = 1

8

∑
abcdi j

∑
J

[J]
�̄J

abi j�̄
J
abcd S̄J

cdi j

εab
i j εcd

i j

(B11)

S8 = 1

8

∑
abi jkl

∑
J

[J]
�̄J

abi j�̄
J
jikl S̄

J
abkl

εab
i j εab

kl

(B12)

S9 = −
∑

abci jk

∑
J

[J]
�̄J,CC

a jib �̄J,CC
ibkc S̄J,CC

kca j

εab
i j εac

jk

(B13)

S10 = 1

8

∑
abcdi j

∑
J

[J]
�̄J

abi j S̄
J
abcd �̄

J
cdi j

εab
i j εcd

i j

(B14)

S11 = 1

8

∑
abi jkl

∑
J

[J]
�̄J

abi j S̄
J
jikl �̄

J
abkl

εab
i j εab

kl

(B15)

S12 = −
∑

abci jk

∑
J

[J]
�̄J,CC

a jib S̄J,CC
ibkc �̄J,CC

kca j

εab
i j εac

jk

(B16)

S13 = S7 (B17)

S14 = S8 (B18)

S15 = S9. (B19)
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