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We perform first-principle calculations of electron-nucleus scattering on 3He and 3H using the Green’s
function Monte Carlo method and two approaches based on the factorization of the final hadronic state: the
spectral-function formalism and the short-time approximation. These three methods are benchmarked among
each other and compared to the experimental data for the longitudinal and transverse electromagnetic response
functions of 3He, and the inclusive cross sections of both 3He and 3H. Since these three approaches are based
on the same description of nuclear dynamics of the initial target state, comparing their results enables a precise
quantification of the uncertainties inherent to factorization schemes. At sufficiently large values of the momentum
transfer, we find an excellent agreement of the Green’s function Monte Carlo calculation with experimental data
and with both the spectral-function formalism and the short-time approximation. We also analyze the relevance
of relativistic effects, whose inclusion becomes crucial to explain data at high momentum and energy transfer.
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I. INTRODUCTION

The spectrum of the inclusive lepton-nucleus cross section
exhibits a variety of features that are sensible to both long-
and short-range nuclear dynamics. At low energies, coherent
scattering, excitation of low-lying nuclear states, and collec-
tive modes are the dominant reaction mechanisms. At energy
transfers on the order of hundreds of MeV, the leading mecha-
nism is quasielastic (QE) scattering, where the electroweak
probe interacts primarily with individual bound nucleons.
These, after interacting with other nucleons, are ejected from
the target. Corrections to this leading one-body mechanism
arise from processes in which the lepton couples to pairs of
correlated nucleons via nuclear two-body currents [1–3].

Electron-scattering experiments play a key role in vali-
dating the nuclear shell model, as well as in exposing its
limitations. A fully quantitative description of experimental
data requires including nuclear correlations, which reduce the
occupation probability of low-momentum shell-model states
and lead to the appearance of high-momentum components in
the nuclear wave function. These are generated by the short-
range component of the nuclear interaction, also relevant for
the stability of neutron stars [4–6]. The experimental investi-
gation of short-range correlations (SRC) has flourished over
the last few years and it is realized by selecting kinematics
where the role of short-range correlated pairs of nucleons
become dominant [7–10]. The analysis of experimental data
taken in this kinematic region has unveiled the importance

of the tensor component of the nuclear potential that causes
the dominance of neutron-proton correlated pairs with respect
to the proton-proton and neutron-neutron pairs [11–13]. In
addition, the analysis of SRC pairs is relevant to improve our
understanding of the interplay between nucleonic and partonic
degrees of freedom [14,15].

Moreover, current and planned neutrino-oscillation exper-
iments rely on theoretical estimates of lepton-nucleus cross
sections required to reconstruct the energy of the incoming
neutrino [16–20]. The uncertainty associated with these calcu-
lations, often based on simplified models of nuclear dynamics,
is one of the most important sources of systematic error in
these experiments. Therefore, achieving a robust description
of all the reaction mechanisms at play in the broad kinematic
region relevant to accelerator-based oscillation experiments is
necessary to improve the accuracy of the extracted oscillation
parameters [21–23].

Microscopic calculations of lepton-nucleus scattering cross
sections use nucleons as fundamental degrees of freedom and
allow one to fully account for the important many-body effects
in both many-nucleon interactions and electroweak currents.
A microscopic approach that has been extensively used in
recent year is the quantum Monte Carlo (QMC) method [24].
The QMC method, in particular the Green’s function Monte
Carlo (GFMC), produces results for the inclusive cross sec-
tions of 4He and 12C that are in excellent agreement with
available experimental data [25–27]. In a QMC calculation,
nucleons are correlated in pairs and triplets via two- and
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three-nucleon interactions, while one- and two-nucleon elec-
tromagnetic currents are used to describe the interaction with
the external probe. Two-body currents are constructed from
the two-nucleon interactions consistently, that is, by imposing
that they satisfy charge conservation with the given two-
nucleon interaction. The growing computational cost of the
GFMC with the number of nucleons currently limits the ap-
plicability of this method to nuclei with A � 12 nucleons.
Furthermore, despite having relativistic corrections included
in the electromagnetic current operator, the GFMC method is
not applicable to lepton-nucleus scattering in the large mo-
mentum and energy transfer regime, where fully relativistic
currents and kinematics must be considered.

An alternative approach that addresses these shortcomings
relies on the spectral function (SF) of the nucleus [28–30].
This method is based on the factorization of the final hadronic
states and has the advantage of being applicable to larger nu-
clear systems. Moreover, it can accommodate both relativistic
kinematics and the meson-production mechanism [29,30].
The latter has been included in the SF formalism by using the
electroweak pion production amplitudes generated within the
dynamical coupled-channels (DCC) model [31–33]. The con-
tributions of these different reaction mechanisms have been
combined to obtain neutrino and electron scattering on 12C
for different kinematics [34,35].

Recently, the short-time approximation (STA) [36] has
been developed to calculate nuclear responses in nuclei with
A > 12 within a QMC framework. At present, this computa-
tional algorithm has been tested within the variational Monte
Carlo (VMC) method [24] to study electron scattering from
the α particle. The algorithm exploits a factorization scheme
to consistently retain two-body physics, namely two-body
currents and correlations. Despite limiting the description of
the scattering process to interactions of the probe with pairs
of correlated nucleons, the STA is found to be in good agree-
ment with both GFMC predictions and experimental data for
electron scattering from the α particle [36] and, as in the SF
formalism, can accommodate relativistic effects and meson
production reactions. In closing, we note that factorization
schemes are extensively adopted by, e.g., the high-energy
community to study lepton scattering processes and short-
range nucleonic correlations [37,38].

In this work, we compute the electromagnetic responses
and inclusive double-differential electrons-scattering cross
sections of 3H and 3He, comparing the GFMC, SF, and STA
predictions with experimental data. Besides the intrinsic inter-
est of our first-principle calculations, we gauge the accuracy
and the regime of validity of the factorization approximation
by comparing SF and STA results against virtually exact
GFMC calculations that are carried out within the same model
of nuclear dynamics for the initial state. In addition, we com-
pare the GFMC and STA nonrelativistic calculations with the
relativistic results obtained within the SF formalism (see, e.g.,
Ref. [39]), and assess the importance of including relativistic
effects at kinematics regions with higher values of energy and
momentum transfer.

This paper is structured as follows. Section II provides the
definition of the electromagnetic responses and inclusive cross
section. Section III is devoted to the description of the GFMC,

SF, and STA approaches. Our results are summarized and
discussed in Sec. IV, while in Sec. V we state our concluding
remarks.

II. ELECTRON-NUCLEUS SCATTERING CROSS SECTION

The inclusive double differential cross section for the scat-
tering of an electron with initial four-momentum k = (E , k)
on a nucleus at rest is written as(

d2σ

dE ′d�′

)
e

= α2

Q4

E ′

E
LμνRμν, (1)

where the outgoing electron has a momentum k′ = (E ′, k′),
α � 1/137 is the fine structure constant, and �′ is the scat-
tering solid angle in the direction specified by k′. The energy
and the momentum transfer are denoted by ω and q, respec-
tively, with Q2 = −q2 = q2 − ω2. The lepton tensor is fully
determined by the lepton kinematic variables. Neglecting the
electron mass, it is given by

Lμν = 1

EE ′ (kμk′
ν + k′

μkν − gμν k · k′). (2)

The hadronic tensor describes the transition between the ini-
tial and final nuclear states |�0〉 and |� f 〉 with energies EA

0
and EA

f , where A denotes the number of nucleons in the
nucleus:

Rμν (q, ω) =
∑

f

〈�0|Jμ †(q, ω)|� f 〉〈� f |Jν (q, ω)|�0〉

× δ
(
EA

0 + ω − EA
f

)
. (3)

The sum included all the possible hadronic final states, both
bound and in the continuum, and Jμ(q, ω) is the nuclear
current operator. For inclusive processes, the cross section
of Eq. (1) only depends on the longitudinal and transverse
response functions, RL(q, ω) ≡ R00(q, ω) and RT (q, ω) ≡
[Rxx(q, ω) + Ryy(q, ω)]/2, respectively:

(
d2σ

dE ′d�′

)
e

=
(

dσ

d�′

)
M

[(
q2

q2

)2

RL(|q|, ω)

+
(

tan2 θ

2
− 1

2

q2

q2

)
RT (|q|, ω)

]
. (4)

The Mott cross section(
dσ

d�′

)
M

=
[

α cos(θ/2)

2E ′ sin2(θ/2)

]2

(5)

only depends upon the scattering angle θ and on the outgoing
electron energy E ′.

Nuclear current

The GFMC, SF, and STA methods use as input a many-
body nuclear Hamiltonian that consists of non-relativistic
single-nucleon kinetic energy terms, and two- and three-
nucleon interactions:

H =
∑

i

− h̄2

2m
∇2

i +
∑
i< j

vi j +
∑

i< j<k

Vi jk, (6)
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where vi j and Vi jk are sophisticated potentials [3,24] that
model the interaction between pairs and triples of nucleons.
In this work, the Argonne v18 two-nucleon interaction [40]
is utilized in combination with the Illinois-7 three-nucleon
force [41] (used in the GFMC calculations) or the Urbana
IX three-nucleon interaction [42] (used in the STA calcula-
tions). The highly realistic Argonne v18 [40] potential reflects
the rich features of the nucleon-nucleon force. It is written
in terms of operator structures involving space, momentum,
spin, and isospin nucleonic coordinates, predominantly aris-
ing from one- and two-meson-exchange-like mechanisms.
The long-range part of the nucleon-nucleon interaction is
due to one-pion exchange; the intermediate-range component
involves operator structures arising from multipion exchange
supported by phenomenological radial functions; the short-
range part is described in terms of Woods-Saxon functions
[1,24,40]. The Argonne v18 has 40 parameters that have been
adjusted to fit the Nijmegen pn and pp scattering database
[43], consisting of ≈4300 data in the range of 0–350 MeV,
with a χ2/datum close to 1. While fitting data up to 350
MeV, the Argonne v18 reproduces the nucleon-nucleon phase
shifts up to ≈1 GeV, an indication that its regime of validity
extends beyond the energy range utilized to constrain the ad-
justable parameters. This is also an indication that relativistic
effects are (partially) embedded in the parameters entering the
nucleon-nucleon interaction.

Analogously to the nuclear potentials, electroweak currents
can also be expressed as an expansion in many-body operators
that act on nucleonic degrees of freedom:

Jμ =
∑

i

jμ(i) +
∑
i< j

jμ(i j) + · · · . (7)

The ellipsis denotes terms involving three nucleons or more,
which are found to be small [44] and will be neglected in this
work.

The electromagnetic current can be schematically
written as

Jμ
EM = Jμ

γ ,S + Jμ
γ ,z, (8)

where the first term is isoscalar and the second is isovector,
depending upon the isospin operators τz. The relativistic ex-
pression of the one-body current is

jμEM = ū(p′)
[
F1γ

μ + iσμνqν

F2

2mN

]
u(p), (9)

where p and p′ are the initial and final nucleon momentum.
The isoscalar (S) and isovector (V) form factors, F1 and F2,
are given by combinations of the Dirac and Pauli ones, F1 and
F2, as

F1,2 = 1
2

[
F S

1,2 + FV
1,2τz

]
, (10)

where τz is the isospin operator and

F S
1,2 = F p

1,2 + F n
1,2, FV

1,2 = F p
1,2 − F n

1,2. (11)

The Dirac and Pauli form factors can be expressed in terms
of the electric and magnetic form factors of the proton and

neutron as

F p,n
1 =Gp,n

E + τGp,n
M

1 + τ
, F p,n

2 = Gp,n
M − Gp,n

E

1 + τ
, (12)

with τ = Q2/4m2
N . While the SF formalism uses the rela-

tivistic expressions above, the one-body charge and current
operators employed in the GFMC and STA approaches are
obtained from the nonrelativistic reduction of the covariant
operator of Eq. (9), including all the terms up to 1/m2

N in the
expansion. The charge (0), transverse (⊥), and longitudinal
(‖) components with respect to the three-momentum q of the
nonrelativistic expansion of the current read

j0
γ ,S (i) = GS

E

2
√

1 + Q2/4m2
N

− i
2GS

M − GS
E

8m2
N

q · (σ i × pi ),

j⊥γ ,S (i) = GS
E

2mN
p⊥

i − i
GS

M

4mN
(q × σ )i,

j‖γ ,S (i) = ω

|q| j0
γ ,S. (13)

The isoscalar and isovector component of the electric and
magnetic form factors are

GS
E ,M = Gp

E ,M + Gn
E ,M ,

GV
E ,M = Gp

E ,M − Gn
E ,M . (14)

The isovector contributions to the current Jμ
γ ,z are obtained by

replacing GS
E ,M → GV

E ,Mτz.
The gauge invariance of the theory imposes that the

electromagnetic charge and current operators satisfy the con-
tinuity equation

q · JEM = [H, ρEM], (15)

where ρEM ≡ J0
EM, which provides an explicit connection

between the nuclear interactions and the longitudinal com-
ponent of the current operators. For instance, the isospin
and momentum dependence of the NN interactions leads
to nonvanishing commutators with the one-body charge op-
erator and hence to the emergence of two-body terms in
the current operator. The GFMC and STA calculations re-
ported in this work have been carried out using the two-body
currents most recently summarized in Refs. [1,3,24]. They
include both “model-independent” and “model-dependent”
terms as defined in Ref. [45]. The former are obtained from the
nucleon-nucleon interaction, and satisfy current conservation
by construction. The leading operator is the isovector “π -like”
current, with important contributions also due to ρ-like terms.
The additional two-body currents induced by the momen-
tum dependence of the nucleon-nucleon interaction have been
found to give contributions that are much smaller than those
generated by the static part of this interaction, in particular the
OPE current [46].

The transverse components of the two-body currents, i.e.,
the model-dependent components, cannot be directly linked to
the nuclear Hamiltonian. In this work, we adopt the latest for-
mulation of Refs. [25–27,36,47–49] and include the isoscalar
ρπγ transition and the isovector current associated with the
excitation of intermediate �-isobar resonances. The ρπγ
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couplings are extracted from the widths of the radiative decay
ρ → πγ [50], and the Q2 dependence of the electromagnetic
transition form factor is modeled assuming vector-meson
dominance. Among the model-dependent currents, those as-
sociated with the � isobar are the most important and enhance
the transverse electromagnetic response functions.

It is worthwhile to point out that the realistic interac-
tions and currents utilized in the present work—Argonne v18

two-nucleon [40] and Urbana IX or Illinois-7 three-nucleon
[41,42] interactions and associated currents—provide a quan-
titatively successful description of many nuclear electroweak
observables [3], including charge radii, electromagnetic mo-
ments and transition rates, charge and magnetic form factors
of nuclei with up to A = 12 nucleons [1,44,46,48,51–57], and
electromagnetic response functions [25–27,36,47,49,58,59].

III. THEORETICAL APPROACHES

A. Green’s function Monte Carlo

The Green’s function Monte Carlo method is suitable to
solve the Schrödinger equation of nuclei with up to A = 12
nucleons with percent-level accuracy. The ground state of a
given Hamiltonian H is obtained by propagating in imaginary
time a starting trial wave function |�T 〉:

|�0〉 ∝ lim
τ→∞ exp[−(H − E0)τ ]|�T 〉, (16)

where τ is the imaginary time, and E0 is a parameter used
to control the normalization. The above imaginary-time prop-
agation can also be used to extract dynamical properties of
atomic nuclei. The energy dependence of the response func-
tions can be inferred by computing their Laplace transform,
dubbed the Euclidean response function [60]:

Eα (q, τ ) =
∫ ∞

ωth

dω e−ωτ Rα (q, ω), α = L, T . (17)

Fixing the intrinsic energy dependence of the charge and
current operators to the QE peak, Jα (q) ≡ Jα (q, ωQE), with
ωQE =

√
q2 + m2

N − mN , one can express the Euclidean re-
sponses as ground-state expectation values:

Eα (q, τ ) = 〈�0|J†
α (q)e−(H−E0 )τ Jα (q)|�0〉

− |Fα (q)|2e−ωel τ , (18)

where the elastic form factor is defined as Fα (q) =
〈�0|Jα (q)|�0〉. The calculation of the imaginary-time correla-
tion operator 〈�0|J†

α (q)e−(H−E0 )τ Jα (q)|�0〉 is carried out with
GFMC methods similar to those used in projecting out the
exact ground state of H from a trial wave function. It proceeds
in two steps. First, an unconstrained imaginary-time propaga-
tion of the state |�0〉 is performed and stored. Then, the states
Jα (q)|0〉 are evolved in imaginary time following the path
previously saved. During this latter imaginary-time evolution,
estimates for Eα (q, τi ) on a uniform grid of τi values are ob-
tained by evaluating the scalar products of e−(H−E0 )τi Jα (q)|0〉
with 〈�0|J†

α (q); a complete discussion of the methods is in
Refs. [25,26,49].

The above expectation value is evaluated on a uniform
grid of nτ imaginary-time points [60,61]. A set of noisy

estimates for Eα (q, τi ) can be obtained by performing inde-
pendent imaginary-time propagations, from which the average
Euclidean response Ēα (q, τi ) and the covariance Ci j between
the data at τ = τi and τ = τ j can be readily estimated [25].
Note that, in general, the covariance matrix C is nondiagonal
because of correlations among the imaginary-time points.

Retrieving the energy dependence of the response func-
tions from their Euclidean counterparts is a nontrivial
problem. For the smooth quasiealstic responses on which this
work focuses on, we employ a version of the maximum-
entropy technique developed specifically for this type of
problem [49]. It has to be noted that machine-learning al-
gorithms have recently been developed to invert the Laplace
transform [62] and are capable of precisely reconstructing the
low-energy transfer region of the response functions.

B. Short-time approximation

In the short-time approximation [36], the response defined
in Eq. (3) is calculated performing a real-time propagation.
This scheme can be appreciated by rewriting the response as

Rα (q, ω) =
∫ ∞

−∞

dt

2π
ei(ω+E0 )t

×〈�0|J†
α (q) e−iHt Jα (q)|�0〉, (19)

where we have replaced the sum over the final states with a
real-time propagator. In the STA, we evaluate the real-time
matrix element in Eq. (19) for short times. We retain the
full QMC ground state and current operators, and final state
interactions at the two-nucleon level—specifically, those final
state interactions affecting only pairs involved at the electro-
magnetic interaction vertex. In doing so, the STA accounts for
two-nucleon interactions and currents and ensuing interfer-
ence terms, consistently, i.e., satisfying current conservation.
In practice, in the scattering process only two correlated nu-
cleons interact with the probe via both one- and two-body
currents. Schematically, the current-current correlator enter-
ing the real-time matrix elements can be written as

J† e−iHt J =
∑

i

J†
i e−iHt Ji +

∑
i �= j

J†
i e−iHt Jj

+
∑
i �= j

(
J†

i e−iHt Ji j + J†
i je

−iHt Ji + J†
i je

−iHt Ji j
)

+ · · · , (20)

where we neglected terms terms with three or more active
nucleons. In the expansion above, the Hamiltonian at the
vertex correlates nuclei in pairs; that is, it only includes the
two-nucleon interaction, which in this work is the Argonne
v18. Three-nucleon interaction effects are ignored in the fi-
nal states, although they are fully included in the ground
state. Note that only two nucleons are propagated. The equa-
tions above show how interference terms between one- and
two-nucleon currents are taken into account. While correctly
reproducing the sum rules, the STA does not reproduce the
correct threshold behavior of the response at values of mo-
mentum transfer q � 300 MeV/c. We account for threshold
effects by redistributing the strength of the response to higher
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FIG. 1. 3H elastic contribution to the total longitudinal response
density at q = 300 MeV/c.

values of energy transfer and preserving the correct value for
the sum rules. Details on how threshold effects are accounted
for can be found in Ref. [36].

After the insertion of a complete set of two nucleon states,
the response in Eq. (19) can be evaluated as an integral of
a response density, Dα (e, Ec.m.), over the relative energy, e,
and center of mass energy, Ec.m., of the interacting pair (or,
equivalently, over relative and center-of-mass momenta, p′
and P′, of the pair of struck nucleons):

Rα (q, ω) =
∫ ∞

0
de

∫ ∞

0
dEc.m. Dα (e, Ec.m.)

× δ(ω + E − e − Ec.m.). (21)

This response has contributions coming from the ground
state for which the exact elastic response is simply ∝
|〈�0|Jα (q)|�0〉|2.

Analogously to the subtraction of the elastic form factor
in Eq. (18), the contribution of the exact elastic response,
illustrated in Fig. 1, is subtracted from the total response
density, given in Fig. 2; that is,

D(e, Ec.m.) − Del(e, Ec.m.), (22)

where, for convenience, we omitted the subscript α. The elas-
tic contribution Del is calculated from the overlaps between
the ground state and intermediate states with two active nucle-
ons, here schematically denoted with �2. Assuming that the
elastic contribution is large at small momentum transfer and
that that the internal nuclear dynamics dominates the overlap
to states of given p′ and P′, the elastic contribution to the total
response density can be approximated with

Del(q, p′, P′) = |〈�0|J (q)|�0〉|2

×
∑

β

〈�0|�2(p′, P′, β )〉〈�2(p′, P′, β )|�0〉,

(23)

where the sum runs over all two body quantum numbers β.
In the limit of zero momentum transfer the response is fully

0

10050
100

150

0

1000

e [MeV]
Ec.m. [MeV]

D
(e

,E
c
.m

.)
[M

eV
−

2
]

FIG. 2. 3H total longitudinal response density at q = 300
MeV/c, as a function of relative energy and center-of-mass energy.

elastic, while at large momentum transfer the elastic response
goes to zero.

C. Spectral function

In the region of large q it is reasonable to approximate the
hadronic final state with the factorized expression

|� f 〉 = |p〉 ⊗ ∣∣�A−1
n

〉
, (24)

where |p〉 is a plane wave describing the propagation of the fi-
nal state nucleon with momentum |p|, while |�A−1

n 〉 describes
the (A − 1)-body spectator system. The incoherent contribu-
tion to the longitudinal and transverse response function is
obtained by inserting a single-nucleon completeness relation
in Eq. (3):

Rα (q, ω) =
∑

τk=p,n

∫
d3k

(2π )3
dE

[
Pτk (k, E )

× m2
N

e(k)e(k + q)

∑
i

〈k| j†
i,α|k + q〉〈p| ji,α|k〉

× δ(ω̃ + e(k) − e(k + q))
]
, (25)

where we retain only the one-body current contribution. In
the above equation we used the relations p = k + q and ω̃ =
ω − E + mN − e(k).

The spectral function Pτk (k, E ), i.e., the probability distri-
bution of removing a nucleon with momentum k and isospin
τk = p, n from the target nucleus, leaving the residual (A − 1)
system with an excitation energy E , can be written as [63]

Pτk (k, E ) =
∑

n

∣∣〈�A
0

∣∣[|k〉 ∣∣�A−1
n

〉]∣∣2

× δ
(
E + EA

0 − EA−1
n

)
. (26)

Here |�A
0 〉 is the ground state of the Hamiltonian, such

that H |�A
0 〉 = E0|�A

0 〉, whereas |�A−1
n 〉 are the eigenstates
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and energies of the (A − 1)-nucleon system: H |�A−1
n 〉 =

EA−1
n |�A−1

n 〉.
Note that in Eq. (26) the state |k〉 represents a single-

particle plane wave with momentum k and isospin τk (we
average over the spin). Using second-quantization definitions,
we introduce the annihilation and creation operators ak, a†

k , so
that the definition of the SF reads

Pτk (k, E ) =
∑

n

∣∣〈�A
0

∣∣a†
k

∣∣�A−1
n

〉∣∣2

× δ
(
E + EA

0 − EA−1
n

)
. (27)

The single-nucleon momentum distribution is obtained inte-
grating the spectral function over the removal energy:

nτk (k) = 〈
�A

0

∣∣a†
kak

∣∣�A
0

〉 =
∫

dE Pτk (k, E ). (28)

The proton and neutron spectral functions and the correspond-
ing momentum distributions are normalized as

∫
dE

d3k

(2π )3
Pp(k, E ) =

∫
d3k

(2π )3
np(k) = Z,

∫
dE

d3k

(2π )3
Pn(k, E ) =

∫
d3k

(2π )3
nn(k) = A − Z, (29)

where Z is the number of protons and A is the number of
nucleons of a given nucleus. This normalization is consistent
with that of the VMC single-nucleon momentum distributions
reported in [64].

For clarity, let us deal with the proton spectral function
first. The single-nucleon (mean-field) contribution PMF

p (k, E )
for A = 3 nuclei corresponds to identifying |�A−1

n 〉 with the
ground-state of the A − 1 system:

PMF
p (k, E ) = nMF

p (k)δ

(
E − BA + BA−1 − k2

2mA−1

)
, (30)

where BA and BA−1 are the binding energies of the initial and
the A − 1, remnant nucleus respectively and mA−1 is the mass
of the remnant. In the above equation we introduced the mean-
field proton momentum distribution

nMF
p (k) = ∣∣〈�A

0

∣∣[|k〉 ⊗ ∣∣�A−1
n

〉]∣∣2
, (31)

in which 〈�A
0 |[|k〉 ⊗ |�A−1

n 〉] is the Fourier transform of the
single-nucleon radial overlap that can be computed within
both VMC and GFMC [65].

The high removal energy and momentum component of
the spectral function arises from the contribution of correlated
pairs of nucleons, as argued in Ref. [63] and, more recently,
in the context of the contact formalism [66,67]. It amounts
to a three-body final state with a high-momentum nucleon
and a leftover pair of nucleons: |�A−1

n 〉 → |k′〉 |�A−2
n 〉 with

H |�A−2
n 〉 = EA−2

n |�A−2
n 〉. Note that we have neglected the

correlations between the struck nucleon |k′〉 and the pair of
spectator nucleons. As a consequence, the state |k′〉 |�A−2

n 〉
is not orthogonal to the ground state of |�A−1

n 〉, entering the
mean-field piece of the spectral function.

FIG. 3. Single proton momentum distribution of 3He.

The corresponding two-body (correlation) contribution to
the SF is given by

Pcorr
p (k, E ) =

∑
n

∫
d3k′

(2π )3

∣∣∣〈�A
0

∣∣[|k〉 |k′〉 ∣∣�A−2
n

〉]∣∣∣2

× δ
(
E + EA

0 − e(k′) − EA−2
n

)
. (32)

Assuming that the (A − 2)-nucleon binding energy is nar-
rowly distributed around a central value B̄A−2, we can use the
completeness of the final states |�A−2

n 〉 to get

Pcorr
p (k, E ) = Np

∑
τk′=p,n

∫
d3k′

(2π )3

[
np,τk′ (k, k′)

× δ

(
E − BA − e(k′) + B̄A−2 − (k + k′)2

2mA−2

)]
,

(33)

where mA−2 is the mass of the recoiling A − 2 system and Np

is an appropriate normalization factor. VMC estimates of the
two-nucleon momentum distribution, defined as

nτk ,τk′ (k, k′) = 〈
�A

0

∣∣a†
kaka†

k′ak′
∣∣�A

0

〉
, (34)

can be found online [68] for several nuclei with up to A = 12
nucleons. To isolate the contribution of short-range correlated
nucleons, we introduce cuts on the relative distance between
the pairs of particles in the two-body momentum distribution.
The cut is selected in such a way that the overall normaliza-
tion of the nucleon spectral function is correctly reproduced.
Selecting pairs with a given range of relative distance provides
an effective way to orthogonalize |k′〉 |�A−2

n 〉 and the ground
state of |�A−1

n 〉 by isolating the contribution of short-range
correlated nucleons in the A − 2 system.

The full SF is given by the sum of the mean-field and the
correlated parts [63]:

Pp(k, E ) = PMF
p (k, E ) + Pcorr

p (k, E ). (35)

The momentum distributions obtained integrating the total,
MF, and correlated spectral functions of 3He are displayed
in Fig. 3 and compared to the VMC momentum distribution
computed independently. As expected, the MF component
of n(k) dominates the low-momentum region, whereas the
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short-range correlated pairs entering Pcorr
p mostly contribute

to the high-momentum tails. The sum of the MF and correla-
tion components of the momentum distribution is in excellent
agreement with the VMC momentum distribution, corroborat-
ing the accuracy of our approach.

D. Cross-section calculation

The analysis of scaling properties of nuclear response
functions has been discussed in a number of works [69,70].
More recently the scaling ansatz has been successfully used
to interpolate and extrapolate electroweak response functions
for different values of the energy and momentum transfer
[27,39,59]. In the present work, we adopt the same interpo-
lation algorithm based on the scaling of the nuclear responses
presented in Ref. [39]. For the GFMC and STA calculations
which rely on a nonrelativistic treatment of the kinematics,
the longitudinal and transverse response functions can be ex-
pressed as a function of the nonrelativistic scaling variable
ψnr, defined as

ψnr = mN

|q|kF

(
ω − |q|2

2mN
− ε

)
, (36)

where kF is the Fermi momentum and ε is a parameter chosen
to account for binding effects in the initial and final states.
In the present analysis we used kF = 180 MeV [71] and ε =
10 (15) MeV for the 3H (3He) nucleus.

The SF formalism allows one to directly compute the cross
section; the computational cost required to evaluate the nu-
clear response functions for different values of ω and q is quite
small. In order to test the accuracy of the interpolation proce-
dure, within the SF approach we compared the cross-section
results obtained from a direct calculation and interpolating
the response functions. Since the SF quasielastic kinematics
is fully relativistic, in this case we use the scaling function
defined in Ref. [72],

ψ = 1√
εF

λ − τ√
(1 + λ)τ + κ

√
τ (1 + τ )

(37)

with

εF =
√

k2
F + m2

N/mN − 1,

λ =(ω − ε)/(2mN ),

κ =|q|/(2mN ),

τ =(|q|2 − ω2)/(4m2
N ).

The values of kF and ε are the same as in the nonrelativistic
case.

IV. RESULTS

The different panels of Fig. 4 display the longitudinal (left)
and transverse (right) electromagnetic responses of 3He for
different values of the momentum transfer |q|. The blue rep-
resent the experimental data of Ref. [60]. The black and green
curves correspond to the GFMC one- and one-plus-two-body
current contributions. The yellow solid and dashed curves dis-
play the STA one- and one-plus-two-body current calculations

and the red dashed line show the SF results, where only the
one-body current operator has been included. At low momen-
tum transfer, the GFMC results exhibit the correct behavior
in both the longitudinal and transverse channels, proving to
be in excellent agreement with experiments. Once the elas-
tic contributions are subtracted and the correct behavior at
threshold has been enforced, the STA calculations are very
close to the GFMC ones. Final state interactions, not included
in the current SF calculations, are relevant at q = 300 MeV.
Neglecting these corrections yields an excess of strength in
the SF results with respect to the experimental data for the
longitudinal response and a shift of the quasiealstic peak to-
ward too large ω values. Note that, in this work we applied a
quenching factor to the SF response functions by subtracting
the incoherent contribution of the elastic form factor from the
sum rule, corresponding to Eq. (18) at τ = 0. This effect is
more significant for the longitudinal response functions at q
up to 400 MeV and leads to a quenching of the strength of
the response. The elastic contribution is significantly smaller
in the transverse channel and for this reason it has not been
subtracted from the transverse response functions obtained
within the SF approach. Within the STA, the elastic contribu-
tion was found to be negligible in the transverse channel, and
in the longitudinal for values of the momentum transfer q �
700 MeV. In the STA, the correct behavior at threshold has
been enforced to correctly reproduce the transverse response
functions at q = 300 and q = 400 MeV. In the GFMC and
STA calculations, two-body currents provide the enhancement
required to correctly reproduce the transverse data. The SF
results, based on the single nucleon current alone, slightly
underestimate the data.

The discrepancies between data and the SF results are also
visible for q = 500 MeV because of the missing final-state
interaction (FSI) corrections, while for this kinematics the
GFMC and STA results nicely agree among each other and
with the experiment. At q = 700 MeV, relativistic corrections
to both the kinematics and the current operators become siz-
able and considerably narrow the width of the quasielastic
peak. The GFMC and the STA include relativistic corrections
in the current operator up to O(q2/m2). However, this is
not sufficient to correctly reproduce the position, the height,
and the width of the peak in either the longitudinal or the
transverse channel. On the other hand, for large momentum
transfer the factorization of the hadronic vertex is expected
to be a good approximation and the SF results with relativis-
tic kinematics correctly reproduce experimental data in both
panels.

In Fig. 5, we present the longitudinal and transverse re-
sponses of 3H, for the same values of the momentum transfer
as in Fig. 4. To the best of our knowledge, there are no ex-
perimental data available for the 3H electromagnetic response
functions at these values of momentum transfer. The general
behavior of the theoretical curves is analogous to what ob-
served for 3He. However, even after subtracting the spurious
elastic contribution from the STA and SF results, the three
different approaches exhibit discrepancies in the position and
strength of the peaks for q = 300 MeV. The absence of FSI
corrections leads to a shift toward large ω in the SF results for
both q = 300 and q = 500 MeV. The STA and GFMC results
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FIG. 4. Longitudinal and transverse response functions of 3He.

nicely agree for q = 500 and q = 700 MeV. Analogously with
the 3He responses, for the latter values of the momentum
transfer, relativistic corrections become relevant, as is appar-
ent when comparing the essentially nonrelativistic GFMC and
STA results with those obtained within the SF approach. In
Fig. 6 we present the contributions of the different nucleon-
nucleon pairs for 3H and 3He response functions, compared
to the total responses. The data have been smoothed to

remove the numerical artifacts that can be seen in the re-
sponses obtained in the STA for low and high values of ω. For
all practical purposes the same procedure can be applied to the
data in Figs. 4 and 5. For both the longitudinal and transverse
responses the dominant contribution comes from np pairs. The
same is true for the effect of two-nucleon currents. The lon-
gitudinal response (left panel) in 3He has a small contribution
given only by the pp pair, while the contribution of the nn pair
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FIG. 5. Longitudinal and transverse response functions of 3H.

in 3H is negligible, since the charge form factor of the neutron
is very small. In the transverse case (right panel), both pp and
nn pairs give a small contribution to the total responses.

The inclusive electron scattering cross sections on 3He and
3H targets are shown in Figs. 7 and 8, respectively. The various
plots correspond to different values of the beam energy and
scattering angles and display the double-differential inclusive

cross sections as a function of the energy transfer. The curves
and colors scheme adopted to represent experimental data
and GFMC, STA, and SF theoretical results are the same as
in Fig. 4. The comparison between experiment and theory
is restricted to the quasielastic-peak region; reproducing the
experimental data at larger ω would require dealing with
pion-production mechanisms. The inclusion of explicit-pion
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FIG. 6. STA Longitudinal and transverse response functions of 3H and 3He and contribution of different pairs. Solid lines are full responses,
dashed lines are np pairs, and dashed-dotted lines are nn and pp pairs respectively.

degrees of freedom in the GFMC method is in its infancy
[73], and computing the relevant Euclidean response functions
involves nontrivial challenges for the future. On the other
hand, since the STA involves only two active nucleons in the
final state, it is amenable to the inclusion of pion production
channels. As with the SF approach, both the pion-production
mechanism and fully relativistic two-body currents have been
included; see Ref. [34] for recent 12C calculations. However,
more work is required to deal with isospin-asymmetric nuclei,
such as 3H and 3He.

Neglecting the binding in the initial state and FSI, at the
quasielastic peak, the energy and the momentum transfer are
related by ωQE � (q2

QE + m2
N )1/2 − mN . For the kinematics

in which qQE is small, we observe a very good agreement
between the GFMC and the data, while the STA and SF
results show some minor discrepancies with the experiment.
For moderate values of the momentum transfer, there is a very
good agreement between the three approaches and the data.
Note that, for large values of the scattering angle, two-body
currents enhance the GFMC and STA results, primarily via
the interference with one-body currents, bringing theoretical
calculations closer to experimental data. For the A = 3 nuclei
that we are considering in this work, the two-body current
contribution amounts to �10% of the total strength. This ef-
fect is known to be more sizable for larger and more compact
nuclei, such as 4He and 12C, as discussed in Refs. [25,27,36].
In the kinematics with large qQE, where relativistic effects are
dominant, the SF calculations are in good agreement with the
experiment in the quasielastic region, whereas the GFMC and
STA fail to reproduce the position and the width of the peak.

V. CONCLUSIONS

We carried out theoretical calculations of the electromag-
netic response functions and inclusive cross sections on 3H
and 3He nuclei for a variety of kinematical setups. These
observables are relevant for the electron-scattering program
conducted at Jefferson Lab and other facilities worldwide,
which are designed to investigate short-range aspects of nu-
clear structure. Our analysis is based on quantum Monte Carlo
methods, as they are ideally suited for accurately treating

both the long- and short-range components of the nuclear
wave function that emerge from realistic two- and three-body
interactions.

We thoroughly benchmarked three approaches: the Green’s
function Monte Carlo, the short-time approximation, and the
spectral function. The GFMC, which has already been ex-
tensively employed to perform virtually exact calculations of
inclusive electron and neutrino scattering [27,39,48] on 4He
and 12C, retains the full complexity of nuclear many-body
correlations in both the initial and final states of the reaction.
The GFMC results for the electromagnetic response functions
and cross sections of 3H and 3He in the quasielastic region are
in excellent agreement with experimental data, for low and
moderate values of the momentum transfer. In this regard, it
is important to include two-body currents, which bring about
a ≈10% excess strength with respect to the one-body case. At
larger values of q, the nonrelativistic GFMC calculations fail
to reproduce the correct position and width of the quasielastic
peak. A possible way to improve the GFMC results in this
kinematical region is to consider relativistic corrections in the
kinematics combined with the use of a convenient reference
frame, as done in Ref. [39].

The STA and the SF approaches are based on the factoriza-
tion of the final hadronic state, which allows one to overcome
some of the limitations of the GFMC. The STA fully retains
two-nucleon dynamics and accounts for correlations in the
initial and final state as well as two-body currents and inter-
ference terms. Consistent with the GFMC results, the latter
enhance the transverse response functions in the quasielas-
tic region and are needed to reproduce experimental data.
Once the correct behavior at threshold is enforced and the
spurious elastic contributions are subtracted from the longi-
tudinal responses at values of momentum transfer lower than
∼300 MeV, a good agreement between the STA calculations
and experimental data is observed for the electromagnetic
responses and cross sections up to moderate values of the
momentum transfer. The current version of the STA approach
suffers from limitations analogous to those in the GFMC in
the high momentum transfer region that could be remedied
using the strategy of Ref. [39]. The STA is amenable to a more
direct inclusion of relativistic effects and meson production
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FIG. 7. Inclusive double-differential cross sections for electron scattering on 3He.

mechanisms. In this work, the STA algorithm has been applied
to the VMC computational method; it is, however, exportable
to other QMC methods suited to study larger nuclear systems,
e.g., the auxiliary field diffusion Monte Carlo method [24].

We presented a novel algorithm to obtain the SF of 3H
and 3He combining VMC calculations of the nuclear spec-
troscopic overlaps with two-body momentum distributions.

Since the SF formalism can accommodate fully relativis-
tic kinematic and currents, its predictions for large values
of momentum transfer are in better agreement with exper-
iments than both the GFMC and the STA In particular,
the SF results correctly reproduce the width and the posi-
tion of the quasielastic peak for both the longitudinal and
transverse responses of 3He at q = 700 MeV. However,
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FIG. 8. Inclusive double-differential cross sections for electron scattering on 3H.

the SF only retains the incoherent contribution to the nu-
clear response function and cross section. In addition, final
state interaction between the struck nucleon and the spec-
tator system are neglected altogether in the present work.
As a consequence, there are some discrepancies between
the SF results and experiments at low momentum transfer,
which are mitigated once the spurious elastic contribution

is subtracted from the theoretical calculations. Two-body
currents and pion-production amplitudes have already been
implemented in the SF formalism for isospin-asymmetric
nuclei [34]. However, they have not been included in the
present 3H and 3He results because of the nontrivial diffi-
culties involved when dealing with light, isospin-asymmetric
nuclei.
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Our analysis has shown that the GFMC, STA, and SF
results for inclusive electron scattering on both 3H and 3He
agree reasonably well in all the kinematic regions that we
considered. The reason for this agreement has to be found in
the consistent description of nuclear correlations in the initial
target state, and in the remnant systems in the case of STA
and SF methods. The three methods appear to be remarkably
close in the region corresponding to 400 � qQE � 600 MeV.
In this regime, the factorization of the final state appears
to be a reliable approximation and, concurrently, relativistic
effects play a relatively minor role. Besides being relevant
for the current experimental program, our study paves the
way for precise quantification of the uncertainties inherent to
factorization schemes. As a followup of this work, we intend
to carry out a similar analysis for 12C and other A � 12 nuclei,
along the lines of Ref. [74].

Our work has also highlighted a few current limitations
of these three methods. Relativistic effects in the interaction
vertex and in the kinematics of the reaction play an important
role in the high momentum transfer regime. While the SF
approach takes them into account, work is ongoing to include
them in both the GFMC and STA approaches. On the other
hand, some developments are required in the SF formalism
to account for two-body currents– including their interference
with one-body terms—in isospin-asymmetric nuclei.
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