
PHYSICAL REVIEW C 104, L061602 (2021)
Letter

Examination of the sensitivity of quasifree reactions to details of the bound-state overlap functions
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It is often stated that heavy-ion nucleon knockout reactions are mostly sensitive to the tails of the bound-state
wave functions. In contrast, (p, 2p) and (p, pn) reactions are known to access information on the full overlap
functions within the nucleus. We analyze the oxygen isotopic chain and explore the differences between single-
particle wave functions generated with potential models, used in the experimental analysis of knockout reactions,
and ab initio computations from self-consistent Green’s function theory. Contrary to common belief, we find that
not only the tail of the overlap functions, but also their internal part is assessed in both reaction mechanisms,
which are crucial to yield accurately determined spectroscopic information.
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Introduction. High-energy (�100 MeV/nucleon) neutron
and proton removal (knockout) reactions with, e.g., 9Be and
12C targets are one of the most successful tools to investigate
the single-particle structure of the many-body wave functions
of nuclei far from stability. A large number of experiments
yielded an enormous amount of knowledge collected on
magicity, shell evolution, two- and three-body halo configu-
rations, spectroscopy of deep-lying states, etc. The magnitude
of the knockout cross sections, as well as the momentum
distribution of the fragments, has been the main source of
information since the very beginning of this experimental
campaign [1–3]. Theories have been developed for a credible
description of the experimental data [4–8].

It is widely considered that knockout reactions are periph-
eral and probe the tail of the nucleon removal wave function,
due to absorption at low impact parameters (see, e.g., Refs.
[9–12]). The removal wave function is given by the overlap
integral I (r) = 〈�A−1

i |ψ (r)|�A
g.s.〉, where |�A

g.s.〉 and |�A−1
i 〉,

respectively, denote the (many-body) wave functions for the
projectile and the residual fragment in its ith excited state
[13,14]. The operator ψ (r) removes a nucleon at position r.
The tail of I (r) is proportional to the Whittaker function,

I (r) = 〈
�A−1

i

∣∣ψ (r)
∣∣�A

g.s.

〉 −−−→
r→∞ C

1

r
W−η,l+1/2(2κr), (1)

where κ = √
2μEB/h̄ is the wave number, μ the reduced mass

between the outgoing nucleon and the (A − 1) residual, EB is
the removed nucleon separation energy, η = μZN Z(A−1)e2/h̄κ

is the Coulomb parameter, with ZA and ZN the target and
projectile charges, and l is the angular momentum of the
removed nucleon.

Eikonal models for knockout reactions [4–12,15] imply
that the total knockout cross section is proportional to the
integral of the square I2(r) and, as long as the reaction
is truly peripheral, to the squared asymptotic normalization
coefficient (ANC): C2. In this case the ANC is the only mes-
senger carrying information about the complex many-body
wave functions |�A

g.s.〉 and |�A−1
k 〉 entering Eq. (1). Ab initio

methods compute the shape of overlap functions microscopi-
cally, even where these are not well represented by mean-field
orbits. Moreover, they can handle the large model spaces
necessary to resolve the full quenching of spectroscopic fac-
tors due to correlations [16]. In contrast, phenomenological
assumptions on radial shapes cannot be avoided even for long-
used approaches such as the shell model [17,18]. In practice,
most applications in the literature still assume that the tail of
I (r) does not differ from an independent-particle approxima-
tion (IPA) wave function, for example, a Woods-Saxon (WS)
plus spin orbit tuned to the corresponding separation energy.
Compared to the experimental data on nucleon knockout re-
actions, the square of C can be extracted and compared to
predictions of many-body models (e.g., shell-model calcula-
tions). This procedure is used to determine the spectroscopic
factors S according to [15,19]

C2
exp = S · C2

IPA, (2)
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where CIPA is computed assuming that its IPA wave function
is properly normalized to unity.1 Nuclear correlations have the
effect of quenching the spectroscopic factor, S ≡ ∫

I2(r) d3r,
and so the experimental value of Cexp is smaller than its IPA.
The many-body ANC, CMB, computed through Eq. (1) should
be compared directly to Cexp. The primary goal of nucleon
knockout experiments with heavy-ion targets is to extract
information on the spectroscopic factors and the CMB.

New experiments have been carried out or are planned
using (p, pN ), with N = p, n, reactions in inverse kinematics
[20–23]. New reaction models have been developed differing
from those appropriate for knockout reactions with heavy tar-
gets [24,25]. The proton probes are more sensitive to the inner
parts of the nuclear wave function, especially for light nu-
clear projectiles [21]. Since both knockout as well as (p, pN )
reactions are notable spectroscopic tools of unstable nuclei,
it is imperative to understand to what extent experimental
conclusions can be affected by assumptions in modeling I (r).

Overlaps with ab initio methods. The ab initio overlaps
have been calculated from the Hamiltonian

H (A) = T − T [A−1]
c.m. + V + W, (3)

where T [A−1]
c.m. is the intrinsic kinetic energy for the recoil-

ing system of mass A − 1 nucleons, while V and W are the
two- and three-body interactions. This formulation is con-
veniently suited for the calculation of overlap functions and
the corresponding nucleon separation energies, Eh [26]. The
three-body term W is reduced to an effective two-body op-
erator as outlined in [27]. We used self-consistent Green’s
function (SCGF) theory within the third-order algebraic di-
agrammatic construction [ADC(3)] truncation scheme, which
accounts for all 2p1h, 2h1p intermediate-state configurations
[28,29]. The SCGF self-energy was obtained in a harmonic
oscillator basis including 14 major shells (Nmax = 13) and at
frequency h̄� = 20 MeV. The correct asymptotic tail of our
ab initio overlap I l j

GF(r) is ensured by a final Dyson diagonal-
ization in the full (nontruncated) momentum space [30],[

Eh − k2

2μ

]
Ĩ l j
GF(k) =

∫
dq q2 �� l j (k, q; Eh) Ĩ l j

GF(q), (4)

where �� is the ADC(3) self-energy, μ is the reduced mass
of the (A − 1)-body system plus the ejected nucleon, and
Ĩ (k) represents the Fourier-Hankel transform of Eq. (1). We
perform computations using the NNLOsat interaction because
of its good saturation properties [31]. Both radii and binding
energies are known to be well reproduced for the oxygen chain
nuclei used in this analysis [32], allowing for a meaningful
comparison with reactions from Woods-Saxon–based calcu-
lations.

We show the results for (p, pN ) quasifree cross sections
using overlap functions obtained with (a) the SCGF formalism

1Spectroscopic factors are often labeled C2S̃ in shell-model and
reaction theory. S̃ represents the quenching of strength due to in-
ternucleon correlations, while C2 is a Clebsh-Gordan coefficient
that accounts for partial occupation of orbits. Here, we follow the
convention from the ab initio community using S ≡ C2S̃, to avoid
confusion between ANCs and Clebsh-Gordans.

with the chiral NNLOsat interaction, denoted IGF(r); and (b)
single-particle wave functions, uWS(r) generated in a potential
model, herewith denoted WS. The WS radii and diffuseness
parameters were taken as R = 1.2A1/3 fm and a = 0.65 fm,
respectively. A homogeneously charged sphere with radius
R was used to generate the Coulomb potential. In case (a)
the spectroscopic factors given by SGF = ∫

drI2
GF(r) are com-

puted directly from the associated SCGF propagators. In case
(b) the WS model cannot predict the normalization of the
overlap functions, hence only empirical spectroscopic factors
(Semp

WS ) can be obtained by calculating the quasifree cross
sections and comparing them to the experimental data. Our
comparison of the cross-section calculations will follow the
reaction theory developed in Ref. [21] keeping all other input
parameters the same, such as separation energies and nuclear
densities.

In Table I we list a series of properties of proton (neutron)
knockout reactions for 350-MeV protons in inverse kine-
matics and for oxygen isotopes incident on 9Be targets at
350 MeV/nucleon. A selected set of neutron and proton states
in oxygen isotopes was chosen. In some cases, we included
more than one final state for the same nucleus and partial
wave removal, corresponding to different excitations of the
residual nucleus (hence, different EB). These are computed
as distinct correlated (A − 1)-nucleon states by the SCGF,
while we can only assume the same mean-field orbit for all
of them when using the WS. The shell model explains this
fragmentation of the spectrum very well but it falls short of
providing microscopic information on the differences between
their radial overlaps, similarly to the WS. The last column
in Table I lists the spectroscopic factors, as computed from
the ab initio SCGF. To simplify the comparison and focus on
the ANC contribution, in this study we keep all GF overlap
and WS functions normalized to 1, i.e., the cross sections
have not been multiplied by the spectroscopic factors Sl j . In
the asymptotic limit (where the nuclear force is vanishingly
small), the radial part of the WS wave function and GF over-
laps can be expressed in terms of the Whittaker function and
a corresponding ANC, Cl j , can be deduced.

The r.m.s. radii of the GF wave functions are slightly larger
than those of the WS wave functions. There seems to be a
one-to-one correspondence of this behavior with the quasifree
(p, pN ) cross sections, which are larger for the GF wave
functions. The only exception is the s1/2 state in 15N (fourth
row in Table I), which does not have dominant single-particle
character and cannot be directly associated either to a 1s1/2

or to a 2s1/2 orbit. The increase in the cross sections with the
r.m.s. radii of the wave function is also clearly visible for the
additional three cases (one for 16O and two others for 22O),
where the parameters of the WS potential were adjusted to
reproduce the same binding energies and same r.m.s. radii as
the GF wave functions. The comparison between the cross
sections for WS and GF wave functions improves, but very
noticeable differences remain, pointing again to the fact that
both quasifree scattering and knockout reaction mechanisms
depend on the details of the wave functions. Spectroscopic
factors similar to those listed in Table I were used in Ref. [22]
and shown to reproduce the data rather well. It is also note-
worthy that in a few cases the ANC values are very different
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TABLE I. Separation energies, EB, root mean square radii of the overlap wave function, 〈r2〉1/2, asymptotic normalization coefficients,
(p, pN ) quasifree cross sections, σqf , and nucleon knockout cross sections, σko, with 9Be targets, for 350 MeV/nucleon oxygen projectiles.
”WS” denotes wave functions calculated with a potential model (Woods-Saxon) and ”GF” denotes many-body ab initio overlap functions
from the self-consistent Green’s function method. In a few cases we generated two different WS orbits, with the second choice constrained to
reproduce the same radii as the GF. Different final states are distinguished by their separation energy, EB. The first column indicates the target
isotope and the mean-field WS orbit that could be tentatively associated with the transferred nucleon. SGF values are theoretical spectroscopic
factors predicted by the self-consistent GF; all other results employ overlap functions normalized to unity.

Nucleus EB 〈r2〉1/2
WS 〈r2〉1/2

GF CWS CGF σ WS
qf σ GF

qf σ WS
ko σ GF

ko SGF

(state) (MeV) (fm) (fm) (fm−1/2) (fm−1/2) (mb) (mb) (mb) (mb)

14O (π1p3/2) 8.877 2.836 2.961 6.665 7.060 20.72 21.28 26.28 28.15 0.548
14O (π1p1/2) 6.181 2.991 3.160 4.872 5.401 21.08 16.89 28.61 31.33 0.760
14O (ν1p3/2) 21.33 2.513 2.722 11.39 14.64 30.55 32.80 21.13 23.92 0.773
16O (πs1/2) 15.89 2.295 2.233 13.06 13.81 7.870 7.696 16.97 15.81 0.074
16O (π1p3/2) 17.43 2.612 2.832 15.29 18.27 17.41 18.58 19.83 22.70 0.805
16O (π1p1/2) 10.65 2.816 3.077 8.624 10.70 9.094 9.913 22.54 26.29 0.794

3.077 11.22 9.625 25.24
16O (ν1p3/2) 20.71 2.580 2.807 11.96 13.88 27.88 30.26 18.81 21.66 0.801
16O (ν1p1/2) 13.83 2.767 3.032 6.684 7.578 14.64 16.47 21.20 24.89 0.790
22O (π1p3/2) 29.26 2.554 2.884 43.74 63.52 14.37 17.08 13.07 14.50 0.274

2.884 75.87 15.47 15.72
22O (π1p3/2) 25.67 2.606 2.820 35.00 54.07 13.30 14.20 12.93 15.10 0.443

2.820 49.22 15.13 14.66
22O (π1p1/2) 23.58 2.634 2.916 30.49 51.49 6.607 7.253 13.27 16.21 0.731
22O (ν1d5/2) 6.670 3.328 3.533 4.519 4.685 45.30 46.63 21.36 24.28 0.806
24O (π1p3/2) 28.57 2.609 2.886 45.76 66.45 12.13 13.29 11.37 14.01 0.675
24O (π1p3/2) 31.88 2.566 2.847 55.88 95.22 11.94 13.11 10.98 13.70 0.042
24O (π1p1/2) 25.28 2.657 2.985 37.04 57.21 6.054 6.881 11.81 15.11 0.740
24O (ν2s1/2) 4.120 4.190 4.479 3.971 4.130 13.94 19.95 31.81 36.45 0.844
24O (ν1d5/2) 6.961 3.436 3.557 2.056 2.106 40.53 41.95 19.51 21.11 0.832

between the WS and the GF wave functions. In essence, it
is not necessary, or expected, that the GF wave functions
reproduce the same ANC as in the WS case because they are
constrained by the integral of their internal part, which can
vary sensibly due to correlations.

Earlier ab initio wave functions obtained from expansions
in harmonic oscillator wave functions did not reproduce the
large-distance behavior of the nuclear states unless the expan-
sion ran over a very large number of oscillator shells [33–35].
A simple way to prevent unnecessary large-scale calculations
was reported in Refs. [34,35] by using a procedure that re-
places ab initio wave functions at their tails with those with
appropriate asymptotic behavior such as solutions of a WS
model. A fit extending to the internal part of the ab initio
overlap functions and adequate renormalization yields appro-
priate values for the ANCs. In fact, it was shown in Refs.
[34,35] that this procedure leads to an excellent description of
cross sections and momentum distributions of proton/neutron
knockout reactions with heavy targets based on overlap func-
tions stemming from the no-core shell model. Similar issues
are now fully resolved both for the no-core shell model [36]
and for SCGF theories. In our case, the projection of Eq.
(4) into momentum space, as discussed in Ref. [30], always
yields the correct asymptotics without the need for ad hoc
corrections.

Probing deep inside the nucleus. An exact reproduction of a
Whittaker tail is irrelevant in (p, pN ) reactions. To show this,
in Fig. 1 we plot the overlap functions for a few selected states

from Table I. All cases are for protons except the bottom-right
panel, which is for a neutron single-particle state. Solid lines
represent SCGF calculations, and dashed lines Woods-Saxon
potentials with parameters fitted to match the same separation
energies. Evidently, the forms of the wave functions are not

FIG. 1. Overlap functions for selected states from Table I. All
cases are for protons except the bottom-right panel, which is for a
neutron single-particle state. Solid lines represent calculations with
the ab initio self-consistent Green’s function (GF) method, and
dashed lines Woods-Saxon (WS) potentials reproducing the same
separation energies.
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FIG. 2. Same as Fig. 1, but showing the logarithmic tail of the
overlap functions.

very different, but some differences in the details are notice-
able and have an impact on the r.m.s. radii and on the quasifree
cross sections, as one can easily see in Table I. The cross
sections can change by as much as 20%.

In Fig. 2 we show the logarithmic tails of the same wave
functions as in Fig. 1. It is clear that our SCGF overlap
functions possess very reasonable exponential slopes, as with
the WS wave functions. Therefore, small differences in the
knockout cross sections in Table I are due to the authentic
modification of the height of the tails due to many-body
effects stemming from the interior part of the GF overlap
functions. All wave functions are normalized to unity.

Substantial differences exist in heavy-ion knockout cross
sections obtained with single-particle versus many-body over-
lap functions. This cannot be ascribed to the asymptotic
behavior of the wave functions. By simply rescaling the tails
of the wave function with an ANC or a spectroscopic factor
would lead to an incorrect experimental analysis, i.e., just the
ANC, or spectroscopic factor, is not enough. Full knowledge
of the wave function is necessary.

FIG. 3. Woods-Saxon (WS; dotted black line) wave function and
Green’s function (GF; dashed red line) overlap function for 24O,
1p3/2, EB = 31.88 MeV.

FIG. 4. Probability of removing a proton from 24O, 1p3/2, EB =
31.88 MeV for Woods-Saxon (WS; dotted black line) and Green’s
function (GF; dashed red line) in the M = 0 (thin lines) and M = ±1
(thick lines) channels calculated with Eq. (5).

To clarify the latter point and show that knockout reactions
with heavy ions are also partially sensitive to details of the
inner part of the wave functions, consider the probability of
one-nucleon stripping in a collision with the core (surviving
spectator) having an impact parameter b with the target, while
the removed nucleon has an impact parameter bn. The strip-
ping probability is [7]

Pko(b) = Sc(b)〈1 − |Sn(bn)|2〉
= Sc(b)

∫
d3r|φnl j (r)|2(1 − |Sn(bn)|2), (5)

where φnl j (r) denotes the wave function with quantum num-
bers nl j expressed in terms of the relative core-neutron
distance r. Sc (Sn) is the scattering matrix for the core
(nucleon)–target and |φnl j |2 is the probability of finding the
nucleon at r. bn ≡ (bn, φn) and the intrinsic coordinate r ≡
(r, θ, φ) are related by [7]

b =
√

r2 sin2 θ + b2
n − 2rbn sin θ cos(φ − φn). (6)

FIG. 5. Same as Fig. 4, but for very large impact parameters b,
where the integrand in Eq. (5) is dominated by the tail of the wave
function of the removed nucleon.
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FIG. 6. Percentage deviation of cross sections using WS wave
functions and GF overlaps for the 17 reactions listed in Table I for
quasifree scattering (filled symbols) and knockout reactions (open
symbols). Cross sections calculated with the GF overlaps are larger
than those calculated with the WS wave functions, except for two
states.

We apply Eq. (6) to obtain the heavy-ion proton knockout
from 24O, 1p3/2, with EB = 31.88 MeV. In Fig. 3 we compare
the GF and WS wave functions, noting that while the tails are
similar to a Whittaker function (only seen on a logarithmic
scale), there are visible differences in their overall shapes.
The calculated proton stripping probabilities from Eq. (5) are
shown in Fig. 4. They are larger for the GF wave functions,
yielding larger cross sections, as expected upon inspection of
Table I.

A simple question arises: Do the heavy-ion knockout cross
sections scale with the squares of the ANCs? The answer
is negative. The respective ANCs scale as (CGF/CWS)2 ∼ 3,
whereas the cross sections scale as σ GF

ko /σ WS
ko ∼ 1.25. This

intriguing difference is best understood if the stripping prob-
ability is plotted logarithmically for large b. This is shown in
Fig. 5. While at very large distances, the probability seems as
if it scales with a single factor (the ratio between the ANCs),
at lower but still large impact parameters it visibly differs
from simple scaling. This result is understood by considering
the stripping probability in Eq. (5). Even for large b, when
the core and the target pass by as much as 10 fm apart, the
inner parts of the wave function are still probed because the
integrand is too small to make substantial contributions to
the probability if bn 	 1, as 1 − |Sn|2 decreases rapidly. We
have observed the same behavior for all the cases listed in
Table I.

The imprints of the details of the many-body overlap func-
tions are summarized in Fig. 6 for the 17 reactions listed in
Table I. The horizontal scale is a list of the reactions in Table I

from top to bottom of the table. The vertical scale repre-
sents (σGF − σWS)/σWS as a percentage for (p, pN ) reactions.
Except for two cases, the quasifree cross sections calculated
with the GF overlaps are larger than those calculated with the
WS wave functions. The squares (diamonds) [circles] {stars}
represent these quantities for 350 MeV/nucleon 14O (16O)
[22O] {24O} projectiles. It is evident that the results change
appreciably with a different form of the internal part of the
overlap functions. Figure 6 also demonstrates that variations
with respect to the overlap functions are smaller in the (p, pN)
case (filled symbols). This is due to the capability of this
reaction mechanism to better probe the internal part of the
nucleus.

Conclusions. In contrast to a commonly considered idea,
both heavy-ion knockout reactions and (p, pN ) reactions are
sensitive to the internal details of the overlap wave function
and place strong constraints on the coordinate dependence of
the many-body wave functions.

An accurate experimental analysis ideally requires not only
the input of an accurately determined overlap function from
many-body computations, but also a direct comparison among
possible predictions, so that one can assess the extent of the
model dependence for the inferred spectroscopic factors. The
latter task requires particular attention since a good reproduc-
tion of nuclear binding energies and radii is a fundamental
constraint but only a fraction of currently available ab initio
Hamiltonians offer satisfactory saturation properties [37–39].
While this poses a more difficult task for the study of single-
particle configurations with heavy-ion knockout and (p, pN)
reactions, it also provides opportunities for a better and more
profound understanding of many-body configurations and
their single-particle overlaps.

In view of the recent advances in experimental facili-
ties and detection techniques, it is suggested that heavy-ion
knockout and (p, pN ) reactions be analyzed using a consis-
tent many-body model, because they are a formidable tool
to extend our knowledge in nuclear spectroscopy only when
many-body correlations are considered in the analysis.
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