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Although they are among the lightest nuclei, the hydrogen isotopes are not well understood both experimen-
tally and theoretically. Indeed, besides the deuteron and triton, all known hydrogen isotopes are resonances
of complex structure. Even more elusive is 7H, which may have been observed experimentally and has been
claimed to be a narrow resonance. Nevertheless, even its existence is controversial, and its theoretical study is
difficult due to both its unbound character and large number of interacting valence nucleons. It is then the object
of this paper to theoretically study the hydrogen isotopes 4–7H with the Gamow shell model and to perform, to
our knowledge, the first direct calculation of unbound resonance hydrogen isotopes up to 7H. As the Gamow
shell model includes both continuum coupling and internucleon correlations, useful information can be obtained
about poorly known unbound hydrogen isotopes. Our present calculations indicate that 4,6H ground states are
fairly broad resonances, whereas those of 5,7H are narrow, which is in accordance with current experimental data.
The results then suggest that, in particular, 5,7H should be more heavily studied, as they might well be among the
most narrow neutron resonances of the light nuclear chart.

DOI: 10.1103/PhysRevC.104.L061306

Introduction. The lightest nuclei are among the most in-
teresting nucleonic systems of the nuclear chart [1–3]. The
structure of the lightest nuclei is typically very complex
[4–8]. A detailed description of the structure of 4,5He could
be obtained with realistic interactions in a nocore frame-
work [8]. Several theoretical approaches have been devised
to study light nuclei, where realistic interactions are in-
cluded: Faddeev-Yakubovski equations [9–11], the no-core
shell model with harmonic oscillator [12–15] or Berggren
bases [7,8], coupled-channel potential equations generated
microscopically from the no-core shell model [16–20], com-
plex scaling of realistic Hamiltonians [9,21–23], etc. Added
to that, as light nuclei can be accessed experimentally up to
drip lines and also beyond [2], they form ideal laboratories to
study the nucleon-nucleon interaction from both experimental
and theoretical points of view.

However, the hydrogen chain, besides the deuteron and
triton isotopes [24–33], has been typically ignored in the vast
amount of theoretical calculations devoted to light nuclei.
Two main reasons can explain this situation. First, hydrogen
isotopes bear a single proton. Thus, it is impossible to repre-
sent a hydrogen wave function, even approximately, by a few
valence nucleons interacting above an even-even core nucleus
coupled to J = 0. In fact, this core + valence nucleon picture,
fundamental in the shell model [34], demands at least using
a 4He core for the lightest nuclei. Consequently, hydrogen
isotopes should ideally be described in a no-core picture.
Second, hydrogen isotopes are all unbound for A � 4, so that
models devised for well bound nuclei, such as the harmonic
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oscillator no-core shell model, cannot be used, insofar as
neutron-emission width may reach a few MeV (see Table I).
Phenomenological calculations have been effected using ei-
ther the harmonic oscillator shell model in restricted model
spaces [35,36] or cluster models [37–45]. In fact, the only
realistic calculations for the unbound hydrogen isotopes were
done using Faddeev-Yakubovski equations [11,46]. However,
even in this last case, besides calculations of the reaction cross
sections of n + 3H [46], only the widths of the 4,5H ground
states have been assessed from extrapolation methods [11].
Added to that, calculating hydrogen nuclear wave functions
is out of reach in the no-core Gamow shell model (no-core
GSM), due to the quickly increasing model space dimensions,
on the one hand, and to the difficulty of obtaining convergence
for broad resonances, on the other hand [5,6]. In fact, no-core
GSM can be applied only up to A = 4 without truncations
[6,7]. Indeed, the broad resonance formed by the tetraneu-
tron ground state [6], as well as the unbound ground states
of 4H and 4Li [7], could be successfully described in this
framework with realistic interactions. Note, nevertheless, that
the properties of unbound A = 4 nuclei are still debated [7].
In particular, the value of the neutron-emission width of 4H
and 4Li is not precisely known experimentally, as it varies by
several MeV from one experiment to another [7].

It is then the object of this Letter to evaluate the energies
and neutron-emission widths of the unbound hydrogen iso-
topes with GSM. For this, we will first describe the model
used for that matter, by focusing on the theoretical assump-
tions made. In order to assess the theoretical errors induced,
different Hamiltonians will be considered. While the two-
body interaction will be fixed from a calculation of helium
isotopes similar to that done in Refs. [64,65], the one-body
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TABLE I. Energies (E ) and widths (�) of hydrogen isotopes 4–7 H
obtained in various experiments (Exp.). Energies are given in MeV
and widths in keV.

E � Exp. E � Exp.

4H 1.99 ± 0.37 2850 ± 300 [47] 1.6 ± 0.1 400 ± 100 [48]
2.7 ± 0.6 2300 ± 600 [49]

5H ≈1.8 ≈1500 [50] ≈1.8 ≈1200 [50]
1.7 ± 0.3 1900 ± 400 [51] 1.8 ± 0.1 <500 [52]
1.8 ± 0.1 <600 [53] 1.8 ± 0.2 1300 ± 500 [54]

≈2 [55] 1.7 ± 0.3 ≈2500 [56]
≈2 ≈1300 [57] 2.4 ± 0.3 4800 ± 400 [58]

6H 2.6 ± 0.5 1500 ± 300 [59] 2.7 ± 0.4 1800 ± 500 [49]
7H ≈1.7 <2000 [60] ≈3.0 <1000 [61]

≈2 [62] 1.8(5) <300 [2]
2.2(5) [63]

part, generated by the used core, will have its parameters
varied. We will then consider in more details the broad or
narrow character of unbound hydrogen isotopes, as we will
see that both these types of resonances are present in the
evaluated unbound hydrogen isotopes. The important case of
7H will be emphasized, in particular. Then, conclusions will
be made in relation with the current experimental situation.

Method. As one cannot include a large number of valence
nucleons in a GSM calculation, it is necessary to freeze a few
nucleons in a core other than 4He. Hence, we will consider
the core + valence neutron picture using a core of 3H. As
the 3H ground state is coupled to Jπ = 1/2+, one always
obtains two degenerate many-body ground states of same
energy but different total angular momentum unless valence
neutrons are coupled to J = 0. While this is problematic in
general, this deficiency is rather mild in our case considering
the simplicity of our model. On the one hand, valence neutrons
are always coupled to Jπ = 0+ in 5,7H ground states, so that
one always has Jπ = 1/2+ for the total angular momentum of
5,7H ground states therein. On the other hand, the doublet of
lowest energy states 1− and 2− in 4H is almost degenerate, as
they differ by about 300 keV experimentally [66], and by only
50 keV in our previous no-core Gamow shell calculation [7],
while their widths have been estimated to be about 1 MeV.
However, the situation is unclear concerning 6H. The angular
momentum of the ground state of 6H is not known experimen-
tally and supposed to be either 2− or 1+ [66]. However, a total
angular momentum of 1+ was found by using the harmonic
oscillator shell model [36], whose reliability is doubtful for
broad resonance states. In fact, one can demand the angular
momentum of the ground state of 6H to be equal to 2−, which
is, in fact, the most consistent assumption one can make in the
frame of the used model.

The use of a core + valence nucleon picture also prevents
us from devising a realistic Hamiltonian for the calculation of
hydrogen nuclear wave functions. In principle, it is possible to
derive an effective Hamiltonian in a truncated valence model
space from an initial realistic nucleon-nucleon interaction, us-
ing, for example, in-medium similarity group renormalization
[67] or the extended Kuo-Krenciglowa method [68]. However,

assuming that the latter methods can be utilized with cores
coupled to J �= 0, convergence problems are expected to oc-
cur in the numerical calculation of the effective interaction
because the many-body wave functions of hydrogen isotopes
are well spread in momentum space [69]. Consequently, it
is necessary to utilize phenomenological interactions whose
parameters are fitted on experimental data. Hence, for that
matter, we will use in the following the Minnesota (MN) force
[70] and the Furutani-Horiuchi-Tamagaki (FHT) interaction
[71], which have been successfully used for the description of
helium isotopes in the frame of GSM [64,65]. As experimental
data related to unbound hydrogen isotopes are scarce, on the
one hand, and as we aim at making predictions about 7H
in particular, on the other hand, we will use MN and FHT
interactions whose parameters have been optimized using 4He
as a core to reproduce neutron-rich helium isotopes. Only the
parameters of the Woods-Saxon (WS) potential mimicking the
3H core will be modified afterwards. Thus, in order for results
to be predictive, the WS central potential depth will vary in
a given range, so that the variations of energy and widths of
unbound hydrogen isotopes can be assessed.

As such, we will use the core + valence particle picture
with the Berggren basis [72] to generate the many-body space
within GSM (see [73] for a review of GSM). GSM relies on
the completeness of the Berggren basis in the complex mo-
mentum plane for a given partial wave of quantum numbers
� j:

∑
n

|n� j〉 〈n� j| +
∫

L+
|k� j〉 〈k� j| dk = 1, (1)

where the L+ integral contains the continuous part of the
Berggren basis (see Ref. [73] for a definition and details), with
|k� j〉 running over the scattering states belonging to the L+
contour of complex linear momenta, and where the discrete
part, built from |n� j〉 states, consists of bound states and of
the resonance states inside the L+ contour. The L+ integral
is efficiently discretized with the Gauss-Legendre quadrature,
as convergence is obtained with 30–50 points [73]. The GSM
many-body basis of Slater determinants is then generated by
occupying the one-body states of the discretized Berggren
basis for all considered partial waves.

As we consider the core + valence particle picture, the
most natural framework is that of the cluster orbital shell
model (COSM) [74]. In COSM, all valence particle coordi-
nates are defined with respect to the center of mass of the core,
so that the COSM formalism is translationally invariant and
then no spurious center of mass motion can occur. The Pauli
principle is taken into account by demanding the occupied
states of the core to be orthogonal to the valence one-body
states [75]. The two Hamiltonians considered for the helium
and hydrogen isotopes bear the same formal structure in the
COSM framework and read

H =
Avaal∑
i=1

(
pi

2

2μ
+ Ucore(ri)

)
+

Aval∑
i< j

(
Vi j + pi · p j

Mcore

)
. (2)

where Aval is the number of valence nucleons, μ is the effec-
tive mass of the core + nucleon two-body system, Ucore(r) is
the WS potential mimicking the considered core, V is the MN
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or FHT interaction, and the last part of the Hamiltonian is the
recoil term, arising from the finite mass of the core, Mcore.

The GSM Hamiltonian takes the form of a complex sym-
metric matrix to diagonalize. As many-body resonance states
are hidden among scattering eigenstates, the overlap method
is used to identify resonance eigenstates [73]. Very large
Hamiltonian matrix dimensions occur due to the numerous
discretized scattering states. It is then necessary to impose
model space truncations when the Berggren basis is used. In
our calculation, the number of nucleons occupying scattering
one-body states has been limited to three, which is custom-
arily written as 3p-3h truncations. As a result, GSM matrix
dimensions are tractable only for 4−6H, but not for 7H, as the
latter possesses four valence neutrons above the 3H core. In
order to have complete calculations for 7H, we will generate
the GSM many-body basis from natural orbitals [76]. Natural
orbitals are the eigenstates of the reduced density matrix, so
that nucleon occupation is concentrated on the lowest natural
orbitals [76]. Consequently, one typically obtains convergence
using only 5–7 natural orbitals for a given partial wave. In
the following, we will then generate natural orbitals using
3p-3h truncations in 7H. Calculations without truncations can
then be realized for 7H by using a basis of natural orbitals,
whereby the GSM Hamiltonian matrix dimension is strongly
reduced. More theoretical details and recent applications of
the mentioned numerical techniques in the GSM framework
can be found in Refs. [65,73].

Results. We will first consider the two-body interaction for
helium isotopes, and hence use a 4He core. The FHT inter-
action was fitted in Ref. [65] and analyzed using statistical
tools within linear regression in order to quantify theoretical
errors. It is not the case for the MN interaction, which is
a phenomenological interaction whose parameters were tai-
lored to the study of the charge radii of 6,8He in Ref. [64].
Consequently, in order to assess how predictive the MN in-
teraction is, two different MN interactions will be used: one
with the initial parameters of Ref. [64], denoted as MN1,
and another MN interaction, denoted as MN2, described in
the following. The GSM model spaces are indeed different
according the used MN1, MN2 or FHT interaction. For the
MN1 interaction, the one-body basis consists of the Berggren
basis partial waves bearing � � 2 while, for the MN2 and
FHT interactions, it consists of the same psd partial waves, to
which the f partial waves represented by harmonic oscillator
shells are added, following the same approach as in Ref. [65].
The two different model spaces have been introduced in order
to assess the dependence on the number of partial waves. As
a result, it was found that the MN2 interaction parameters
must be equal to 1.1 times those of the initial MN interaction
of Ref. [64] for an optimal reproduction of helium binding
energies and widths.

Results are shown in Fig. 1, where we concentrate on
6–8He, as their number of valence neutrons is the same as in
5–7H, respectively. One can see, as could be expected, that
the best reproduction of experimental data is obtained with
the FHT interaction, where differences between the calculated
and experimental energies and widths do not exceed 100 keV.
While the energy and width of the 0+ and 2+ states of 6He are
also well reproduced with MN interactions, the ground states
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FIG. 1. Energy spectra and neutron-emission widths of helium
isotopes 6–8He obtained with GSM using the FHT, MN1, and MN2
interactions (see text for definition) and compared to experimental
data (Exp). Energies are in MeV. The numerical value of width is
written above the energy in keV units. Width is also represented by a
shaded area, enlarged by a factor 3 for clarity.

of 7He and 8He are slightly too bound, with the width of 7He
being about 90 keV too narrow. However, the results are over-
all satisfactory, as the largest discrepancy with experimental
data occurs in 8He, where the binding energy obtained with
MN2 is about 120 keV more bound than that obtained with
MN1.

The parameters of the WS core potential mimicking the
effect of the 3H core remain to be considered. As energies
mainly depend on its central depth, only the central poten-
tial depth will be varied, while all the other parameters are
fixed. We will then change the central potential depth so
that the energy of 5H will vary from a few hundreds of keV
in negative value with respect to the 3H core to its highest
value compatible with experimental data. Results are shown in
Figs. 2 and 3 for the MN and FHT interactions, respectively.
In principle, it would be possible to calculate the theoretical
errors on energies and widths by using statistical formulas
similarly to Ref. [65]. However, only four hydrogen states
would be considered for that matter, on the one hand, and
experimental data differ much from an experiment to another,
on the other hand. Thus, the theoretical errors obtained from
a statistical study might not be reliable. Hence, we preferred
to assess errors by considering the variations of both energies
and widths inside the ranges of potential depths determined
by experimental data (see Figs. 2 and 3). Indeed, a range
of core potential depths allowing for the reproduction of the
binding energies of both 5H and 7H arises. Consequently, we
assume that the theoretical error made on energies and widths
of 5,7H is directly given by the most extreme values obtained
for energy and width in this overlapping zone.

We can then now consider all the 4–7H isotopes with the de-
vised Hamiltonians, defined by both the two-body interaction,
of MN1, MN2 or FHT type, and the one-body WS potential
of the 3H core, whose potential depth varies as stipulated
above. The different experimental energies and widths of con-
sidered hydrogen isotopes obtained from several experiments
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FIG. 2. Energies and widths (in MeV) of 5,7H in GSM using the
MN1 and MN2 interactions (see text for definition) as a function of
the WS core potential depth mimicking the 3H core. Experimental
values (Exp) are provided with error bars (see also Table I). The
minimal and maximal values of the energies of 5,7H provided by
experiments are indicated by dashed lines and arrows.

have been summarized in Table I. Our calculated results are
depicted in Fig. 4 and all energies are given with respect to
the 3H core. One can see that theoretical calculations are in
good agreement with experimental data. Indeed, both energies
and widths are compatible with experimental values. Note that
the width of 4H is larger than that obtained in Ref. [7] by a
factor 2. However, this can be explained by the fact that the
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FIG. 3. The same as Fig. 2, but for the FHT interaction (see text
for definition).

0

1

2

3

4

5

6

E
(M
eV
)

4H

Exp

5H 6H 7H
GSM

F
H
T

M
N
1

M
N
2

Exp
GSM GSM GSM

Exp Exp

F
H
T

F
H
T

F
H
T

M
N
1

M
N
1

M
N
1

M
N
2

M
N
2

M
N
2

x10

FIG. 4. Energies and widths (in MeV) of the hydrogen isotopes
obtained from GSM calculations using FHT, MN1, and MN2 as
two-body interaction (see text for definition) and compared to ex-
perimental values. The theoretical error bars are determined from the
difference between the minimal and maximal energies and widths
obtained using different core WS potentials (see text for details).
Experimental data, enumerated in Table I, are either given along
with error bars or maximal values for the case of two experiments
related to 7H. Theoretical widths of 7H and associated errors have
been enlarged by a factor 10 for readability.

structure of 4H is hereby oversimplified, as it is one neutron
above the 3H core, and hence is only sensitive to the one-body
WS potential of the Hamiltonian. Added to that, width varies
quickly with energy, so that a difference in energy of a few
hundreds of keV can easily provide 1–2 MeV difference for
width. Note that the width is still comparable to experimental
data, despite the one-body nature of 4H in our model. The
energy and width of 5H are rather well constrained in our cal-
culations, as the estimated theoretical errors for both energy
and width are about 100 and 200 keV when using the FHT
and MN interactions, respectively. 5H is then predicted to be a
resonance state of about 1.4 MeV for energy and 500 keV
for width. One can note that our results are very different
from those of Refs. [11,42,42], where 5H is predicted to be a
broad resonance of width around 2.5–3.5 MeV. Nevertheless,
this result is compatible with those of Refs. [37,39], where
a width around 1 MeV is predicted for 5H. The results for
6H do not vary much according the used Hamiltonian either,
as 6H has an energy of about 3.2 MeV and a width of about
2 MeV over all the whole range of considered potential depths
and with both the MN and FHT interactions. Conversely, the
energy of 7H has an estimated error of about 400 and 600 keV
when using the FHT and MN interactions, respectively. This
is due to both the larger experimental error on the energy of 7H
and the faster variations of the theoretical energy of 7H with
respect to the potential strength of the one-body WS potential
of the 3H core. The neutron-emission width of the ground state
of 7H exhibits variations similar to that of 5H, as its value lies
between 15 and 240 keV with the MN interaction and between
10 and 140 keV with the FHT interaction (see Figs. 2 and 3).
Even though one has rather large error bars for the energy
and width of 7H, this isotope remains a narrow resonance
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in all situations. The closure of the 0p3/2 neutron shell can
be reasonably seen to be responsible for the small width of
the 7H ground state. Indeed, it is this subshell closure which
generates the abnormally large binding energy of 8He [65,77].
Note that, similarly to Refs. [5–7], our calculations provide
the width values compatible with the smallest experimental
widths obtained from the various experiments dedicated to the
5–7H isotopes.

Summary. Hydrogen isotopes remain among the least
known nuclei of the beginning of the nuclear chart. Even
though hydrogen isotopes possess fewer than 10 nucleons,
their theoretical study is made difficult due to their broad
resonance character when A � 4. Consequently, only the well
bound deuteron and triton ground states are well known.

Hence, for the first time, to our knowledge, a direct calcu-
lation of the energy and width of the ground states of 6,7H has
been done in this Letter in the frame of the complex-energy
shell model. In order to obtain results without recurring to
model space truncation, we devised a core + valence neutron
particles using a 3H core. In order to minimize dependence
on theoretical assumptions, the two-body residual interaction
has been taken from an independent calculation of helium
isotopes. Added to that, the WS potential arising from the 3H
core was allowed to vary in a physical range determined from
available experimental data. The latter procedure also used to
assess the theoretical errors present in the calculated values of
energy and width of 4–7H.

Our calculations provided results compatible with current
experimental data (see Table I and Figs. 2–4). Even though
the estimated theoretical errors are significant for 7H, our
calculations showed that 7H is expected to be a very narrow
resonance. The small width of 7H seems to have the same
origin as the abnormally large binding energy of 8He, i.e., it
might arise from the closure of the 0p3/2 neutron shell. The
calculated widths of the 5,7H isotopes compare well with the
smallest widths arising from experimental studies (see Table I
and Figs. 2–4). Hence, we strongly suggest that experimen-
talists focus on the hydrogen isotopes beyond neutron drip
line, as it is very likely that 5,7H belong to the most narrow
neutron resonances of the beginning of the nuclear chart.
If this assumption is confirmed, they would then be, with
10He, the most asymmetric many-body narrow resonances,
and could surely provide important new information about the
nucleon-nucleon interaction under extreme conditions.
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