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Collisions of . light and heavy nuclei in relativistic heavy-ion collisions have been shown to be sensitive to
nuclear structure. With a proposed 16O 16O run at the CERN Large Hadron Collider (LHC) and at the BNL
Relativistic Heavy Ion Collider (RHIC) we study the potential for finding α clustering in 16O. Here we use
the state-of-the-art iEBE-VISHNU package with 16O nucleonic configurations from ab initio nuclear lattice
simulations. This setup was tuned using a Bayesian analysis on pPb and PbPb systems. We find that the 16O 16O
system always begins far from equilibrium and that at LHC and RHIC it approaches the regime of hydrodynamic
applicability only at very late times. Finally, by taking ratios of flow harmonics we are able to find measurable
differences between α-clustering, nucleonic, and subnucleonic degrees of freedom in the initial state.
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Introduction. In the past several years, the state of the
art in the field of relativistic nuclear collisions has reached
the threshold of precision physics [1–5]. The evolution of
nuclear collisions is by now widely accepted to be well de-
scribed within the framework of relativistic hydrodynamics, in
which fluid dynamical behavior is manifested by a collective
response to the initial collision geometry [6–14]. Precision
measurements for probing the hydrodynamic evolution of nu-
clear collisions include a suite of flow observables [15,16],
multiparticle correlation observables [17–19], soft-hard or
heavy multiparticle azimuthal correlations [12,20–23], and
femtoscopic radii [24–28], to name a few.

These observables are sensitive to the the initial state,
the prehydrodynamic evolution [29–32], and the subsequent
hydrodynamic phase. Essential to disentangling the effects
of quantum fluctuations in the initial state and the prehy-
drodynamic evolution from those of the subsequent medium
response is the ability to engineer initial conditions with spec-
ified geometries. This approach has been exploited already
with great success in the context of small-system geometry
engineering by the PHENIX Collaboration [33–40] and a
quadruple deformation of 129Xe was confirmed at the CERN
Large Hadron Collider (LHC) [41–44]. More recently, dedi-
cated runs of 16O 16O collisions have been proposed [22,45–
51] at both the BNL Relativistic Heavy Ion Collider (RHIC)
and LHC as a way of extending the geometry scan results to
systems of intermediate size, which exhibit more exotic initial
configurations due to an effect known as “α clustering.”

The phenomenon of α clustering is a type of nucleon-
nucleon (NN) correlation which is expected on the basis of
nuclear lattice effective field theory (NLEFT) calculations to
be present in doubly magic nuclei such as 16O and 208Pb.
In such nuclei, nucleon positions are not completely uncor-
related, but tend to cluster together into groupings of two
neutrons and two protons each, thereby effectively forming
α particles (or “α clusters”) in the nucleus. These correlations
lead to quantifiable effects on the initial states of collisions
between such nuclei and may manifest themselves in corre-
sponding precision measurements of nuclear collision flow
observables [49,52]. The possibility of measuring α cluster-
ing in 16O is of enormous interest to the low-energy nuclear
structure community [53–57]. It may also be possible to have
subnucleonic fluctuations that would influence the collective
flow [58–64]. A natural question is thus whether α cluster-
ing is measurable in relativistic heavy-ion collisions once all
relevant effects have been considered.

The purpose of this paper is to explore the quantitative
impact on flow observables of incorporating α clustering ef-
fects vs subnucleonic fluctuations into the initial conditions
for hydrodynamic simulations of 16O 16O at both RHIC and
LHC energies. To do this we adopt the state-of-the-art setup
used in a recent Bayesian analysis [4] which was conditioned
on experimental data at the LHC.

Initial conditions. Heavy ion collisions are rarely head
on, but rather are characterized by a finite impact parameter.
Consequently, a number of nucleons do not participate in the
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TABLE I. Parameters from [74] for the Woods-Saxon density
distribution used in the initial conditions.

Parametrization R (fm) a (fm) w (fm)

16O 3pF 2.608 0.513 −0.051

collision, traveling on to the detector. Participating nucleons
are counted using Npart and the impact region is treated as the
initial condition for relativistic hydrodynamic calculations. In
recent years [41,42,65–73] it has been found that the shape of
the nucleus can play a role in the geometrical shape of the im-
pact range, which is quantified through eccentricities. These
eccentricities are connected to the collective flow observables
through linear response for central [6–12] and mid-central col-
lisions and linear+cubic response in peripheral collisions [1].
Thus, deformations in the shape of the nucleus are then trans-
lated to final state observables, which are most detectable in
central collisions from linear response.

In order to model 16O one uses a three-parameter fit [74] of
the radial density distribution in the nuclear rest frame, written
in spherical coordinates as

ρ(r, θ, φ) = ρ0

(
1 + w

r2

R2

)[
1 + exp

( r − R

a

)]−1

, (1)

with ρ0 the nuclear saturation density, R a measure of the
gluonic radius of the nucleus, and a the surface diffusion pa-
rameter. For nuclei such as 208Pb, a “doubly magic” nucleus in
the nuclear shell model, these spherically symmetric densities
give a good description of elliptic flow at the LHC. The pa-
rameters used in our initial conditions are given in Table I. For
16O, only the three-parameter fit (1) is available. Being a dou-
bly magic nucleus, 16O is taken to be spherically symmetric.
We have coded this Woods-Saxon into the phenomenologi-
cally driven initial condition model, TRENTo [68], using the
following parameters: the thickness function scaling p = 0,
the multiplicity fluctuations k = 1.6, and the nucleon width
ω = 0.51 fm. The nucleon-nucelon cross sections correspond
to the p-p values at each energy investigated: σNN = 42.5 mb
at

√
sNN = 200 GeV (RHIC), and σNN = 72.5 mb at

√
sNN =

6.5 TeV (LHC).
Ab initio structure and clustering. Nuclear clustering is

a feature of many light nuclear systems and is particularly
prevalent in nuclei with even and equal numbers of protons
and neutrons. For such nuclei the clustering is mostly asso-
ciated with the formation of α clusters. See, for example,
Ref. [75] for a recent review. The nuclear states with the
most pronounced α cluster substructures are excited states
near α separation thresholds, such as the Hoyle state of 12C.
However the strong four-nucleon correlations also persist in
ground states of nuclei. Recently it has even been suggested
that the parameters of the nuclear force lie close to quantum
phase transition between a nuclear liquid and a Bose gas of α

particles [54].
One of the ab initio methods that is able to probe α clus-

tering is nuclear lattice effective field theory (NLEFT). See
Refs. [76,77] for reviews. In this work we use the nucleonic
configurations for 16O produced in Ref. [78]. These calcu-

lations used a simple leading order interaction, although the
reproduction of the binding energies and radii of light and
medium mass are accurate to a few percent error. In partic-
ular, the charge density distribution for 16O is in excellent
agreement with electron scattering data. These calculations
were performed with a 1.32 fm spatial lattice spacing.

The nucleon configurations were computed using the pin-
hole algorithm introduced in Ref. [79]. The pinhole algorithm
produces a classical distribution of the nucleon positions
weighted according to the 16-nucleon density correlation
function for the 16O ground state. These 16-nucleon config-
urations provide the initial conditions for our hydrodynamics
calculations to be described below. In the Supplemental
Material [80], we quantify the amount of α clustering in
the 16O wave function. The short-range two-nucleon, three-
nucleon, and four-nucleon correlations at lattice spacing 1.32
fm are only about 14% higher than that associated with a
simple product state of four α clusters. Hence the degree of
α clustering at the 1.32 fm distance scale is relatively high.

Hydrodynamic setup. We model the hydrodynamic evo-
lution in 16O 16O using the Duke Bayesian tune of the
iEBE-VISHNU package [4,64] to pPb and PbPb collisions
at the LHC. The framework uses the TRENTo model [68]
to generate an initial entropy distribution. These distributions
require normalization constants of 5.3 (RHIC) and 17 (LHC),
which were obtained from an extrapolation of the energy
dependence elsewhere [4]. The initial entropy distribution
is then passed through a free-streaming phase of duration
τs = 0.37 fm/c and then used to initialize the hydrodynamic
evolution at τ = τs. The construction of the hydrodynamic
equation of state, as well as the temperature dependences of
the specific bulk and shear viscosities (ζ/s)(T ) and (η/s)(T ),
are described in Ref. [64]. Finally, the hydrodynamic phase
is terminated at a freeze-out temperature of Tf o = 151 MeV,
at which point the system is converted to particles and
evolved until kinetic freeze-out using ultrarelativistic quantum
molecular dynamics (UrQMD) [81,82]. The final output is
a collection of discrete particles at a final time step which
may be used to compute observables of interest, such as flow
coefficients and their ratios.

In order to make direct comparisons with experimental
data, cumulants of the flow harmonics [17] are calculated usin:

vn{2}2 = 〈
v2

n

〉
,

vn{4}4 = 2
〈
v2

n

〉2 − 〈
v4

n

〉
,

where the moments of the vn distribution are used to calculate
the cumulants. Centrality class bins are determined based on
the initial state entropy density, which has been found to be
a very good proxy for final state multiplicity distributions
(used for experimental data). We have run 30 000 events for
each different ion and configuration, and use subsampling to
determine statistical error.

Results. Hydrodynamics is applicable when there is a large
separation of scales. In relativistic heavy ion collisions there
is some ambiguity of the correct scales to compare and, there-
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FIG. 1. Average Knudsen and inverse Reynolds values of regions
above the freeze-out temperature (0.151 GeV) vs time for both√

sNN = 200 GeV (top) and
√

sNN = 6.5 TeV (bottom) comparing
the Woods-Saxon, Woods-Saxon + quarks, and α-clustering models
with common initial conditions.

fore, multiple Knusden (Kn) and inverse Reynolds (Re−1)
numbers are used [83]:

Knπ = τπ

√
σμνσμν, Re−1

π = √
πμνπμν/P, (2)

Kn
 = τ
θ, Re−1

 = |
|/P. (3)

We consider first in Fig. 1 the time evolution of the Kn
and Re−1 numbers for bulk and shear, averaged at each
time step over all fluid cells above the particlization tem-
perature of Tswitch = 0.151 GeV for a single event (the same
seed for the initial condition is chosen for Woods-Saxon,
Woods-Saxon+substructure, and α clustering). We observe
that, while the choice of initial-state model makes little dif-
ference to the time evolution of these quantities, both Knπ

and Re−1
π are problematically large1 (�0.5) for the majority of

the hydrodynamic phase, predominantly at early times τ � 2
fm/c. This observation holds at both RHIC and LHC energies,
and suggests that the hydrodynamic formalism is pressed to
the limits of its validity in the description of intermediate
systems such as 16O 16O . While Kn and Re−1 have been

1The choice in “large” as of yet unclear; others have chosen larger
values, e.g., �1 [84].

FIG. 2. Various flow coefficients (vn{m}) vs centrality for both√
sNN = 200 GeV (top) and

√
sNN = 6.5 TeV (bottom) comparing

the Woods-Saxon, Woods-Saxon + quarks, and α-clustering models.

previously studied in an event averaged version of pPb [85],
this is the first study of their values with the setup used within
the Duke Bayesian analysis. It appears that eventually reason-
able Kn and Re−1 are reached after τ ≈ 3 fm although there
is some dependence on both the initial conditions. We note
that one must consider the maximum of all Kn and Re−1 to
determine the applicability of hydrodynamics and, therefore,
these numbers indicate that even in intermediate systems one
needs to consider the implications of far-from-equilibrium
effects.

In Fig. 2 we present the flow cumulants predicted by our
model at RHIC and LHC energies as functions of centrality,
for the various initial-state models considered. We note that
the largest quantitative effects are due to subnucleonic fluc-
tuations and emerge at large centralities, while the effects of
α clustering are somewhat smaller but on the same order of
magnitude, and occur mainly at small centralities. v2 is the
most sensitive to details of the initial state, while v3 and v4 are
only weakly affected. These features are expected from a hy-
drodynamic response to initial geometry which is dominated
by fluctuations in central collisions and by global collision
geometry in mid-central and peripheral collisions.

The effects of different 16O 16O initial-state models on the
vm{k}, although not qualitatively significant, should neverthe-
less be accessible for an analysis of O(108) events collected
in a short 16O 16O run at the LHC. Additional constraints
can be obtained by considering ratios of flow coefficients as
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FIG. 3. v3{2}/v2{2} vs centrality for both
√

sNN = 200 GeV
(top) and

√
sNN = 6.5 TeV (bottom) comparing the Woods-Saxon,

Woods-Saxon + quarks, and α-clustering models.

functions of centrality, as shown in Figs. 3–5. In this case, both
subnucleonic fluctuations and α-clustering correlations lead
to nontrivial and measurable effects. The ratio of v4{2}/v2{2}
shown in Fig. 3 demonstrates a suppression for α cluster
in central collisions at the LHC, opposite to subnucleonic
fluctuations that increase the ratio. This can be understood
because α clustering enhances v2 more than v3. Perhaps the
strongest effects are visible in the ratio v4{2}/v2{2} (Fig. 4),
where the effects of subnucleonic fluctuations and α cluster-
ing tend to act in opposite directions and may even produce
detectable nonmonotonicity in the corresponding centrality
dependences. This is especially important, given that the
beam-energy dependence of the flow ratios contributes to
the differences between RHIC and LHC energies in highly
nontrivial ways. Quantitatively reproducing both the centrality
and

√
sNN dependences of all flow ratios would therefore

place stringent constraints on the importance of subnucleonic
fluctuations and α clustering in real-world nuclear collisions,
and provides motivation to carry out 16O 16O collisions at both
RHIC and LHC energies.

Because v4 appears to be the most promising observable
to distinguish α clustering from subnucleonic fluctuations, we
also study the quantity v4{4}4, which is sensitive to the fluctu-
ations of v4 on an event-by-event basis. v4{4}4 is a particularly
interesting observable because hydrodynamic models have
so far failed to capture its sign change at the LHC, even

FIG. 4. v4{2}/v2{2} vs centrality for both
√

sNN = 200 GeV
(top) and

√
sNN = 6.5 TeV (bottom) comparing the Woods-Saxon,

Woods-Saxon + quarks, and α-clustering models.

for well-understood PbPb collisions [86,87]. In Fig. 5 we
find that at the LHC there is clear separation in v4{4}4 for
central collision, which indicates a nice potential for distin-
guishing between α-clustering and subnucleonic fluctuations.
Additionally, these mechanisms produce effects in opposite
directions, with α clustering making v4{4}4 significantly more
negative and subnucleonic fluctuations bringing the value of
v4{4}4 close to 0. In contrast, RHIC does not provide a clear
signal and it is unlikely that v4{4}4 could be used to dis-
tinguish between our three scenarios. Finally, we have also
checked v2{4}/v2{2} but found that all three initial conditions
produced relatively similar results.

Conclusions. In this work we use ab initio lattice ef-
fective field theory calculations of the nuclear structure of
16O coupled to the state-of-the-art relativistic hydrodynam-
ics description of the quark gluon plasma to determine the
possibility of measuring α clustering in relativistic heavy-ion
collisions. We find that LHC energies are better suited to
finding α clustering but one must consider ratios of harmonics
such as v3{2}/v2{2} and v4{2}/v2{2}. Interestingly enough, α

clustering suppresses v3{2}/v2{2} and enhances v4{2}/v2{2}
and in all our comparisons subnucleonic fluctuations al-
ways has the opposite effect compared to α clustering at
LHC energies. Another promising observable is v4{4}4, where
very significant differences appear between α clustering and
subnucleonic fluctuations at 0–30% centrality at the LHC.

L041901-4



16O 16O COLLISIONS AT ENERGIES … PHYSICAL REVIEW C 104, L041901 (2021)

�

�

FIG. 5. v4{4}4 vs centrality for both
√

sNN = 200 GeV (top) and√
sNN = 6.5 TeV (bottom) comparing the Woods-Saxon, Woods-

Saxon + Quarks, and α clustering models.

In contrast, RHIC has more ambiguous results and appears
less likely to be sensitive to α clustering but may be slightly
sensitive to substructure.

While our results for Kn and Re−1 may be some-
what concerning, this does not immediately rule out the
relativistic viscous hydrodynamics picture in small and inter-
mediate systems. One possible solution may be anisotropic
hydrodynamics [88–90], rederiving the hydrodynamic equa-
tions of motion in a far-from-equilibrium regime [91],
effective transport coefficients [92–96], an intermediate stage
between initial conditions and hydrodynamics [97,98], or
even considering the Kn and Re−1 within the Bayesian analy-
sis (and excluding parameter sets with unreasonable results).
At the moment we do not look for attractors (originally pro-
posed in [99]) in our simulations but leave that for a future
work (complications arise in more realistic scenarios with
shear and bulk coupled together and a realistic equation of
state [100]).
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[49] M. Rybczyński and W. Broniowski, Glauber Monte Carlo
predictions for ultrarelativistic collisions with 16O, Phys. Rev.
C 100, 064912 (2019).

[50] A. Huss, A. Kurkela, A. Mazeliauskas, R. Paatelainen, W. van
der Schee, and U. A. Wiedemann, Predicting parton energy
loss in small collision systems, Phys. Rev. C 103, 054903
(2021).

[51] B. Schenke, C. Shen, and P. Tribedy, Running the gamut of
high energy nuclear collisions, Phys. Rev. C 102, 044905
(2020).

[52] Y.-A. Li, S. Zhang, and Y.-G. Ma, Signatures of α-clustering
in 16O by using a multiphase transport model, Phys. Rev. C
102, 054907 (2020).

[53] N. Furutachi, S. Oryu, M. Kimura, A. Dote, and Y. Kanada-
En’yo, Cluster structures in oxygen isotopes, Prog. Theor.
Phys. 119, 403 (2008).

[54] S. Elhatisari, N. Li, A. Rokash, J. M. Alarcón, D. Du, N.
Klein, B.-N. Lu, Ulf-G. Meißner, E. Epelbaum, H. Krebs,
T. A. Lähde, D. Lee, and G. Rupak, Nuclear Binding Near
a Quantum Phase Transition, Phys. Rev. Lett. 117, 132501
(2016).

[55] R. Bijker and F. Iachello, The algebraic cluster model: Struc-
ture of 16O, Nucl. Phys. A 957, 154 (2017).

[56] L. Contessi, A. Lovato, F. Pederiva, A. Roggero, J. Kirscher,
and U. van Kolck, Ground-state properties of 4He and 16O
extrapolated from lattice QCD with pionless EFT, Phys. Lett.
B 772, 839 (2017).

[57] Y. Kanada-En’yo and D. Lee, Effective interactions
between nuclear clusters, Phys. Rev. C 103, 024318
(2021).

[58] J. S. Moreland, Z. Qiu, and U. W. Heinz, Imprinting quantum
fluctuations on hydrodynamic initial conditions, Nucl. Phys. A
904-905, 815c (2013).

[59] A. Dumitru, L. McLerran, and V. Skokov, Azimuthal asymme-
tries and the emergence of “collectivity” from multi-particle
correlations in high-energy pA collisions, Phys. Lett. B 743,
134 (2015).

[60] J. Noronha-Hostler, J. Noronha, and M. Gyulassy, Sensitivity
of flow harmonics to subnucleon scale fluctuations in heavy
ion collisions, Phys. Rev. C 93, 024909 (2016).

[61] J. L. Albacete, H. Petersen, and A. Soto-Ontoso, Symmetric
cumulants as a probe of the proton substructure at LHC ener-
gies, Phys. Lett. B 778, 128 (2018).

[62] H. Mäntysaari, B. Schenke, C. Shen, and P. Tribedy, Imprints
of fluctuating proton shapes on flow in proton-lead collisions
at the LHC, Phys. Lett. B 772, 681 (2017).

[63] F. G. Gardim, F. Grassi, P. Ishida, M. Luzum, P. S. Magalhães,
and J. Noronha-Hostler, Sensitivity of observables to coarse-
graining size in heavy-ion collisions, Phys. Rev. C 97, 064919
(2018).

[64] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Bayesian
calibration of a hybrid nuclear collision model using p-Pb and
Pb-Pb data at energies available at the CERN Large Hadron
Collider, Phys. Rev. C 101, 024911 (2020).

[65] W. Broniowski and E. Ruiz Arriola, Signatures of α Clustering
in Light Nuclei from Relativistic Nuclear Collisions, Phys.
Rev. Lett. 112, 112501 (2014).

[66] L. Adamczyk et al. (STAR Collaboration), Azimuthal
Anisotropy in U + U and Au + Au Collisions at RHIC, Phys.
Rev. Lett. 115, 222301 (2015).

[67] H. Wang and P. Sorensen (STAR Collaboration), Azimuthal
anisotropy in U+U collisions at STAR, Nucl. Phys. A 932, 169
(2014).

[68] J. S. Moreland, J. E. Bernhard, and S. A. Bass, Alternative
ansatz to wounded nucleon and binary collision scaling in
high-energy nuclear collisions, Phys. Rev. C 92, 011901(R)
(2015).

[69] A. Goldschmidt, Z. Qiu, C. Shen, and U. Heinz, Collision
geometry and flow in uranium + uranium collisions, Phys. Rev.
C 92, 044903 (2015).
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