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Motivated by the unknown nature of the 2.50–2.67 M� compact object in the binary merger event GW190814,
we study the maximum neutron star mass based on constraints from low-energy nuclear physics, neutron star
tidal deformabilities from GW170817, and simultaneous mass-radius measurements of PSR J0030+045 from
NICER. Our prior distribution is based on a combination of nuclear modeling valid in the vicinity of normal
nuclear densities together with the assumption of a maximally stiff equation of state at high densities, a choice
that enables us to probe the connection between observed heavy neutron stars and the transition density at
which conventional nuclear physics models must break down. We demonstrate that a modification of the highly
uncertain suprasaturation density equation of state beyond 2.64 times normal nuclear density is required in order
for chiral effective field theory models to be consistent with current neutron star observations and the existence
of 2.6M� neutron stars. We also show that the existence of very massive neutron stars strongly impacts the radii
of ≈2.0M� neutron stars (but not necessarily the radii of 1.4M� neutron stars), which further motivates future
NICER radius measurements of PSR J1614−2230 and PSR J0740+6620.
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Introduction. Recently, the LIGO/Virgo Collaboration
(LVC) reported measurements [1] of gravitational waves re-
sulting from a 2.50–2.67 M� “mass-gap” object [2] in binary
coalescence with a heavy (22.2–24.3 M� companion black
hole. Not only are the mass ratio of q = 0.112+0.008

−0.009 and in-
ferred merger rate of 1–23 Gpc−3yr−1 challenging to describe
[1,3,4] with traditional binary evolution models, but, taken at
face value, the mass-gap secondary object in the observation
represents the discovery of either the heaviest known neutron
star (NS) or the lightest known black hole (BH). Neither the
absence of a measurable tidal deformation signature in the
gravitational waveform nor the absence of an electromagnetic
counterpart would be unexpected [1,5] for a NSBH merger
at the extreme mass ratio reported in GW190814. However,
equation of state inferences [6] based on the binary neutron
star merger event GW170817 and properties of its electro-
magnetic counterpart [7–11] suggest that the maximum mass
of slowly rotating neutron stars, MTOV

max , is bounded above by
MTOV

max � 2.3M�. Population studies [12–14] of known galac-
tic pulsars exhibit a double-peaked mass distribution with
extended high-mass tail, leading to the less restrictive bound
[1] MTOV

max = 2.25+0.81
−0.26M� with associated probability of 29%
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that the GW190814 secondary mass lies below MTOV
max . On

the other hand, rapid uniform rotation [15–17] allows for
stable neutron star mass configurations about 20% above the
maximum nonrotating mass, though dissipation and electro-
magnetic spindown before merger would likely reduce the
GW190814 secondary’s spin, which was essentially uncon-
strained by observation [1].

Equation of state models used to interpret the nature of
the GW190814 secondary [1,16,18], or more generally to
predict maximum neutron star masses, incorporate a variety
of high-density extrapolations, including piecewise poly-
tropes [19,20], speed of sound parametrizations [21–23],
spectral representations [24,25], parameter-free inference via
Gaussian processes [26], or smooth extrapolations from low-
density regions constrained by nuclear physics [27,28]. In
this work, our aim is to understand model-independent impli-
cations for the high-density nuclear equation of state under
the assumption that the GW190814 secondary is a neutron
star. For this purpose, we choose an equation of state prior
distribution that at low-density is informed by nuclear theory
and experiment and at high densities is maximally stiff. On the
one hand this choice explores a more limited range of high-
density extrapolations than previous studies, but on the other
hand it enables robust predictions for the critical density at
which chiral effective field theory modeling breaks down. The
transition density nt to the maximally-stiff equation of state
is varied within the range 2n0–4n0, where n0 = 0.16 fm−3 =
2.4 × 1014 g/cm3 is nuclear saturation density. We then in-
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clude likelihood functions that incorporate recent radius and
tidal deformability measurements of ≈1.4M� neutron stars
as well as assumptions on the nature of the GW190814
secondary. From the posterior probability distribution, we
explore the minimum transition density required to support
slowly rotating 2.5–2.7 M� neutron stars and find that it lies
in the range nt ≈ (2.39–2.95)n0, which is below the central
density of neutron stars with masses M ≈ 1.4M� [27]. We
find that the existence of massive ≈2.6M� neutron stars leads
to an increase in our predicted lower bounds for radii and
tidal deformabilities of typical M ≈ 1.4M� neutron stars. In
addition, we show that our predicted radius distribution for
a heavy neutron star (M ≈ 2.0M�) is strongly correlated with
the maximum neutron star mass and may offer unique insights
into the nature of ultradense matter [29].

Bayesian modeling of the neutron star equation of state.
Experimentally measured nuclear binding energies and bulk
oscillation modes constrain [30,31] the nuclear equation of
state around normal nuclear density n0 for matter consisting
of nearly equal numbers of neutrons and protons. Neutron-rich
matter, on the other hand, is challenging to produce and study
in the laboratory, and therefore the principal nuclear physics
constraints on the neutron star equation of state rely in one
way or another on nuclear theory models, which nowadays
have a firm foundation in chiral effective field theory [32–35],
the low-energy realization of quantum chromodynamics. Pre-
viously, we have incorporated constraints from chiral effective
field theory [36,37] and nuclear experiments [30,38] to con-
struct [27,39] Bayesian posterior probability distributions for
the neutron star equation of state parameterized in terms of a
Taylor series expansion in the Fermi momentum kF ∼ n1/3:

E (n, δ) = 1

2m
(τn + τp) + [1 − δ2] fs(n) + δ2 fn(n), (1)

where τn (τp) is the neutron (proton) kinetic energy density,
δ = (nn − np)/(nn + np) is the proton-neutron asymmetry pa-
rameter, and the potential energy density is expanded as

fs(n) =
3∑

i=0

ai n(2+i/3), fn(n) =
3∑

i=0

bi n(2+i/3). (2)

In all of our neutron star structure models, we construct a
realistic outer and inner crust using the same parameters
(�a, �b) in a unified way implementing the liquid drop model
as explained in more detail in Ref. [40]. When these models
were extrapolated to high densities, the maximum neutron star
mass was found to be MTOV

max � 2.3M�. Numerous other works
have employed chiral effective field theory to study the dense
matter equation of state [41–50] and its extension to finite
temperatures [51–53], with applications to neutron star radii
[19,22,54], tidal deformabilities [55–57], moments of inertia
[58,59], supernovae, and neutron star mergers [53,60,61]. In
describing the properties of the heaviest neutron stars, whose
central densities can reach up to n = 5n0–10n0, all of these
models perform extrapolations into regions where the nuclear
force and composition of dense matter are poorly understood.

To explore the widest range of maximum neutron star
masses, we extend this previous model for the equation of
state probability distribution to include a transition to the

maximally-stiff equation of state consistent with relativity,
defined when the speed of sound is equal to the speed of light.
The transition density nt is taken to have a uniform prior in
the range 2n0 < nt < 4n0. A transition density beyond 4n0

produced only minor differences in the equation of state prior.
Formally, we employ a second-order phase transition where
the phase transition starts at E = E1 and ends at E = E2, where
�E = E1

10 .
The approach described above defines the prior distribution

π (·), and we construct Bayesian posterior probability distribu-
tions as follows. Having observed neutron star tidal deforma-
bilities associated with GW170817 [6,62–64] and simultane-
ous mass-radius measurements [65,66] of PSR J0030+045
from the NICER mission, the posterior distribution of θ is pro-
portional to LR�(θ ) π (θ ), where LR�(θ ) = LMR(θ )LM�(θ )
is the likelihood function of θ . Here LMR(θ ) denotes the
likelihood contribution from two NICER mass-radius mea-
surements, which we combine with statistically equal weights,
and LM�(θ ) denotes the joint {M1,�1; M2,�2} posterior dis-
tribution from the LIGO analysis of GW170817. Since these
are two independent measurements, the combined likelihood
assumes a product form.

We now detail the construction of the LMR and the LM�

likelihoods. Let Rθ (M ) denote the (unique) radius-versus-
mass curve corresponding to the set of parameters in θ . Each
Rθ (·) curve has its own maximum mass Mmax

θ above which
the neutron star would undergo gravitational collapse, and
hence the domain of Rθ (·) is (Mmin

θ , Mmax
θ ), where in all cases

we take Mmin
θ = 1.0M�. Although the correlated uncertainty

corresponding to either NICER measurement resembles a
tilted ellipse, a closer inspection of the contour plots reveal
departures from normality. As a result, we build a nonpara-
metric likelihood using a bivariate kernel density estimator
(kde). To that end, we denote by {(Mi, Ri ), i = 1, . . . , n1} and
{(Mi, Ri ), i = n1 + 1, . . . , n1 + n2}, where n1 = n2 = 12246,
the posterior samples (M, R) obtained from Fig. 7(b) of
Ref. [65] and Fig. 19 (“ST+PST”) of Ref. [66] respectively.
We fit a bivariate kernel density estimator f̂ to the pooled
samples {(Mi, Ri ), i = 1, . . . , n1 + n2}, thus giving equal con-
fidence to these two independent analyses [67]. We used the
R package ks to fit the kde, employing a bivariate Gaussian
kernel and the smoothed cross-validation estimator for the
bandwidth matrix. Then, we consider an “average” of this
fitted density over an R(M ) curve as the corresponding likeli-
hood, i.e.,

LMR(θ ) =
∫ Mmax

θ

Mmin
θ

f̂ (M, Rθ (M ))
dM

Mmax
θ − Mmin

θ

, (3)

where we make no prior assumption on the mass distribution
of isolated millisecond pulsars (or binary neutron stars in the
case of GW170817) due to the current limited data. The con-
struction of the LM� likelihood is similar, except that we fit a
quadvariate kde to the posterior samples of {M1,�1; M2,�2}
with a quadvariate Gaussian kernel and a smoothed cross-
validation estimator for the bandwidth matrix.

We incorporate the secondary “mass-gap” object into our
likelihood function using the GW190814 posterior mass sam-
ples [68]. Although the distribution of the secondary mass Ms
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FIG. 1. Mass and radius probability distributions for the (top-
left) prior with smooth high-density extrapolation, (top-right) prior
with maximally stiff high-density extrapolation, (bottom-left) pos-
terior not supporting ≈2.6M� neutron stars, and (bottom-right)
posterior supporting ≈2.6M� neutron stars. The green [66] and blue
[65] contours represent the NICER 68% (solid) and 95% (dashed)
credibility bands.

in Fig. 4 of Ref. [1] resembles a Gaussian, a Kruskal-Wallis
test rejected the hypothesis of Gaussianity. Hence, we used
a nonparametric density estimate f̂Ms using univariate kde to
approximate the distribution of Ms, again with a smoothed
cross-validation estimator for the bandwidth. Hence, for a
given value of θ from the equation of state, the secondary
object is realizable as a neutron star with probability given
by

P
(
Ms � Mmax

θ

) =
∫ Mmax

θ

Mmin
θ

f̂Ms (M )dM. (4)

Equation (4) then defines the likelihood of the object as-
suming it to be a neutron star, denoted LNS

s (θ ), which when
multiplied with LR�(θ ) gives the overall likelihood for θ .
Similarly, if we assume the object is a black hole, then the
likelihood involves the probability given by LBH

s (θ ) : = 1 −
P(Ms � Mmax

θ ). While alternative exotic compact objects have
been theorized to exist (see Ref. [69] for a recent review), here
we consider the GW190814 secondary to be either a black
hole or neutron star.

Results. In Fig. 1 we show the mass and radius probability
distributions based on the Bayesian analysis described above.
In all subpanels of Fig. 1, the green and blue contours repre-
sent the 68% (solid lines) and 95% (dashed lines) credibility
bands obtained from our kernel density estimators associated
with the Riley et al. [66] and Miller et al. [65] analyses
of NICER x-ray waveform data from PSR J0030+045. The
top-left figure is our previous prior [39] with a smooth high-
density extrapolation, and the top-right panel is our new prior

with uniformly varying transition density 2n0 < nt < 4n0 to
the maximally stiff equation of state. We see that the modified
high-density prior naturally leads to much larger maximum
neutron star masses, up to MTOV

max = 2.9M� for the lowest value
of the transition density considered nt = 2n0. We note that
this new maximum neutron star mass of MTOV

max = 2.9M� is
almost certainly unphysical since it lies above the total mass
Mtot � 2.7M� of the GW170817 remnant, which is expected
[70] to have collapsed to a black hole after being supported
initially through differential rotation.

The bottom-left and bottom-right panels of Fig. 1 represent
the posterior mass-radius probability distributions under the
assumption that the secondary in GW190814 was a slowly
rotating black hole or neutron star, respectively. Interestingly,
we see that for typical neutron stars with masses M ≈ 1.4M�,
the distribution of radii is not strongly different under the
two interpretations of the GW190814 secondary. This is due
to the fact that the bulk properties of the average neutron
star are strongly correlated [39,71,72] with the pressure of
beta-equilibrium matter at the density n = 2n0, which is close
to the regime where nuclear physics places strong constraints
on the equation of state. However, we do observe that the exis-
tence of massive (2.5–2.6)M� neutron stars would rule out the
softest equations of state. In particular, neglecting LR�(θ ), our
previous finding [39] for the radius of a 1.4M� neutron star
at the 95% credibility level was 10.3 km � R1.4 � 12.9 km.
Including the new kde constraints from the two NICER and
GW170817 analyses now gives at the 95% credibility level
10.8 km � R1.4 � 12.9 km under the assumption LBH

s (θ ).
This result is consistent with numerous other recent predic-
tions for the radius of a 1.4M� neutron star (see Ref. [73] for a
summary, where the 90% credibility region 10.8 km � R1.4 �
13.2 km is reported). Under the assumption LNS

s (θ ), we anal-
ogously find 11.5 km � R1.4 � 13.0 km. We note that the
lower bound of 11.5 km � R1.4 obtained from LNS

s (θ ) agrees
remarkably well with a recent study [74] of the correlation
between the radius of a 1.4M� neutron star and the maximum
neutron star mass, where a sharp cutoff of 11.4 km � R1.4 was
found assuming MTOV

max = 2.5M�.
In Fig. 2 we plot the maximum neutron star mass as

a function of the transition density nt from the posterior
distribution LR�(θ ) π (θ ), that is, without any assumptions
regarding the nature of the GW190814 secondary. At the
largest value of nt = 4n0, the maximum neutron star mass
allowed in the present modeling is 2.32M�. In order to support
{2.5, 2.6, 2.7}M� neutron stars, the transition density must
be less than {2.95, 2.64, 2.39}n0, respectively. Therefore, the
relatively soft equations of state predicted by chiral effec-
tive field theory would have to become fairly stiff soon after
their natural breakdown scale in the range 1n0–2n0 (see also
Refs. [75,76] for recent related discussions). We note that
since our high-density equation of state is maximally stiff,
the above constraints must be satisfied for any other choice of
high-density extrapolation. In addition, in Fig. 2 we plot the
relation between Mχ

max and nt under the assumption of rapid
rotation χ = 0.6, which has recently been suggested [17] as
the central value of the GW190814 secondary’s spin under
the assumption it was once a neutron star. For this calculation
we employ the quasi-universal relation between MTOV

max and
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FIG. 2. Probability distribution for the maximum mass of a non-
rotating neutron star (red) as a function of the transition density nt to
the maximally stiff high-density equation of state. Also shown is the
95% credibility band (blue) for the maximum mass of a neutron star
with spin χ = 0.6. The green dashed line lies at the central value,
M = 2.59M�, of the GW190814 secondary.

Mχ
max for a uniformly rotating neutron star with spin χ derived

in Ref. [77]. Although rapid rotation (χ = 0.6) alone would
be sufficient to stabilize 2.6M� neutron stars for nearly all
of our posterior samples, the unknown evolutionary path of
GW190814 and its observationally unconstrained spin make
it difficult to draw additional inferences at this time.

We see from Fig. 1 that in contrast to typical neu-
tron stars with M = 1.4M�, heavy neutron stars have
significantly different radius probability distributions un-
der our two assumptions for the GW190814 likelihood,
LBH

s (θ ) and LNS
s (θ ). In Fig. 3 we show the posterior probabil-

ity distributions for the radius of a 1.4M� neutron star (left)
and 2.0M� neutron star (right) under the two assumptions that
the GW190814 secondary was a black hole (blue) or a neutron
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FIG. 3. Radius distributions for a 1.4M� neutron star (left) and
2.0M� neutron star (right) under the two assumptions that the
GW190814 secondary was a black hole (blue) or a neutron star (red).
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FIG. 4. Probability distributions for the tidal deformability ver-
sus mass under the two assumptions LNS

s (θ ) (left) and LBH
s (θ ) (right).

The blue and green contours show the 68% (solid) and 95% (dashed)
marginal likelihoods associated with the primary and secondary in
GW170817, respectively. Inset: probability distributions for �1.4 in
the two competing scenarios.

star (red). The notation P(R|Mmax > 2.59M�) corresponds to
the likelihood assumption LNS

s (θ ) and likewise P(R|Mmax <

2.59M�) corresponds to LBH
s (θ ). The stiff equations of state

needed to support the heaviest neutron stars produce a radius
distribution for M = 2.0M� that is narrower and peaked at
larger central values compared to softer equations of state.
In contrast, for typical 1.4M� neutron stars the two radius
distributions under the LNS

s (θ ) and LBH
s (θ ) posteriors are very

strongly overlapping. We find at the 95% credibility level
that the radius of a 2.0M� neutron star is 10.4 km < R2.0 <

12.5 km under the assumption LBH
s (θ ) and 11.8 km < R2.0 <

13.2 km under the assumption LNS
s (θ ). The lower bound of

11.8 km < R2.0 obtained from LNS
s (θ ) is also quantitatively

similar to the results of Ref. [74], where a sharp cutoff of
11.9 km � R2.14 was found assuming MTOV

max = 2.5M�.
In Fig. 4 we show the two posterior probability distribu-

tions for the tidal deformability as a function of mass under
the two assumption for the likelihood LBH

s (θ ) and LNS
s (θ ).

In both subpanels the blue and green contours denote the
68% (solid lines) and 95% (dashed lines) marginal likelihoods
[e.g.,

∫ L(M1,�1; M2,�2) dM2 d�2 for the blue contours]
from our quadvariate kde associated with the primary and
secondary components, respectively, of GW170817. As in-
sets to Fig. 4, we show the tidal deformability of a typical
1.4M� neutron star under the assumptions that the GW190814
secondary was a neutron star (red) or black hole (blue). Our
previous 95% credibility interval in Ref. [39] was found to
be 140 < �1.4 < 520. From the new posterior distribution
including NICER and GW170817 measurements as well as
the assumption LBH

s (θ ), we find 180 < �1.4 < 540. Under
the opposite scenario, LNS

s (θ ), we likewise find 310 < �1.4 <

580 at the 95% credibility level.
Summary. The existence of heavy neutron stars with

masses 2.5–2.6 M� are a challenge to explain with equations
of state smoothly extrapolated from the low-density regime

L032802-4



RADIUS AND EQUATION OF STATE CONSTRAINTS FROM … PHYSICAL REVIEW C 104, L032802 (2021)

(1n0–2n0) constrained by nuclear physics to the highest-
density regime (5n0–10n0) encountered in neutron star cores.
We have demonstrated that a modification of the highly
uncertain suprasaturation density equation of state above a
transition density of nt = 2.64n0 is necessary for the support
of slowly rotating ≈2.6M� neutron stars while maintain-
ing consistency with state-of-the-art nuclear theory modeling
within the framework of chiral effective field theory, nuclear
experiments involving medium-mass and heavy isotopes, as
well as current observations of neutron star radii and tidal
deformabilities. In our modeling, the existence of very heavy
neutron stars (2.5–2.6 M�) is not strongly correlated with
the radii of typical 1.4M� neutron stars but is correlated
with the radii of ≈2.0M� neutron stars. We suggest that
NICER measurements of e.g., the PSR J1614−2230 or PSR
J0740+6620 radius may therefore provide useful and strong

constraints on the nuclear equation of state at supra-saturation
density.
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