
PHYSICAL REVIEW C 104, L031305 (2021)
Letter
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A method for calculating the symmetry-projected energy of coupled-cluster singles plus doubles (CCSD)
wave function through the Monte Carlo method is proposed. We present benchmark calculations in considering
the three-level Lipkin model which is a simple and minimal model with two phases: spherical and deformed. It
is demonstrated that this method gives good ground-state energy and low-lying spectra.
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I. INTRODUCTION

To solve many-body problems, the use of an intricate trial
wave function is absolutely desirable, while computability
limits its functional form. To enlarge the power of trial wave
functions has been one of the central issues of many-body
physics. Let us look back at some well-established theories.
In the Rayleigh-Ritz variational approach, Hartree-Fock (HF)
and Hartree-Fock-Bogoliubov (HFB) wave functions corre-
spond to mean-field theories and have been well developed
[1] in the past. Beyond mean field, symmetry restoration is es-
sential and is well compatible with HF and HFB approaches.
Symmetry projection has also been extensively reviewed in
Ref. [2]. On the other hand, as a nonvariational approach,
the coupled-cluster method [3–11] is quite prominent and has
been well developed with a broad field of applications. Its
trial wave function is a mean-field wave function multiplied
by an exponential with many-body correlations eZ , which has
an elaborate structure. The integration of the coupled-cluster
method and symmetry projection is a challenging issue, and
very recently, such a study has been actively pursued [12–20].

In the present study, we propose an integration of coupled-
cluster wave functions with symmetry projection via the
Monte Carlo method. We start with the coupled-cluster singles
plus doubles (CCSD) wave function, and optimize it by the
coupled-cluster method. Then, we apply the symmetry pro-
jection operator to it and evaluate the expectation value of the
Hamiltonian. Of course, due to the eZ correlation factor, the
straightforward utilization inevitably leads to huge and mostly
intractable computational difficulties. Therefore, we introduce
the Monte Carlo approach.

To evaluate this proposed method, we use the three-level
Lipkin model [6,21,22], which is a generalization of the
Lipkin-Meshkov-Glick model [23]. This model is simple but
exhibits a spherical-deformed phase transition. For the case
of degenerate single-particle energies of the upper two levels,
there is an exchange symmetry, which can be handled by

the symmetry projection method. Thus, the three-level Lipkin
model is a minimal model for our purpose. With numerical
investigations, we will test the performance of our method.

In the symmetry projection, we use spherical and deformed
bases in a mixed way. For the spherical basis, the creation
and annihilation operators are denoted by c†

i and ci, while for
deformed basis, they are denoted by a†

i and ai. The deformed
operators are canonically related to the spherical operators
as ai = ∑

j Di jc j . The true vacuum is represented as |−〉.
Hereinafter, a state defined by spherical operators is denoted
|i1, . . . , im〉 = c†

i1
· · · c†

im
|−〉, while a state defined by deformed

operators is denoted |k1, . . . , km) = a†
k1

· · · a†
km

|−〉.

II. METHOD

Coupled-cluster singles plus doubles and coupled-cluster
doubles wave functions. We begin by considering the coupled-
cluster (CC) method [3–6]. Based on a HF wave function
|ψ0), we define the CC wave function |ψcc) with the
many-body Z operator as |ψcc) = eZ |ψ0). Z is defined as∑

χp1,p2,...,h1,h2,...a
†
p1

a†
p2

· · · ah1 ah2 · · · , where p (h) stands for
unoccupied (occupied) orbits. The summation is arranged as
Z = Z1 + Z2 + · · · , where Zk are defined as Zk = ∑

i x(k)
i Z (k)

i

and the Z (k)
i are the different k-body operators and x(k)

i are
their parameters. We limit Z by up to two-body terms (k = 2)
due to the increasing numerical complexity in the applications
for higher values of k. We call this the CCSD approximation.

The parameters x are determined in the following way: If
|ψcc) is an exact wave function, we have

H |ψcc) = EeZ |ψ0), (1)

where E is the exact energy and H is the Hamiltonian
expressed with the deformed operators. The equation cor-
responds to a non-Hermitian-type eigenvalue problem as
follows:

H̄ |ψ0) = E |ψ0), (2)
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where the transformed Hamiltonian H̄ = e−Z HeZ is non-
Hermitian. The energy is obtained by

(ψ0|H̄ |ψ0) = E , (3)

where we refer to it as the CC energy hereinafter. Multi-
plying Eq. (2) from the left with (ψ∗|, the coefficients x
are determined by the CC equation (ψ∗|H̄ |ψ0) = 0, where
(ψ∗| is any state orthogonal to (ψ0|. Within the CCSD ap-
proximation, all operators Z (k)

1 , Z (k)
2 and their parameters x(k)

1 ,
x(k)

2 are renamed as zi (i = 1, . . . , n0) and xi (i = 1, . . . , n0),
where n0 is the number of parameters. The mean-field wave
function |ψ0) is simply shown by |0) as the 0th basis
state. We evaluate the following matrix elements for an ex-
cited state (k| as ak = (k|H |0), bki = (k|[H, zi]|0), and cki j =
(k|[[H, zi], z j]|0) where i, j, k = 1, . . . , n0. The CC equation
is then rewritten as ak + ∑

i bkixi + 1
2

∑
i j cki jxix j = 0. The

parameters x can be obtained iteratively and we, thus, can
evaluate the CC energy with the CCSD wave function.

Moreover, we introduce the CCD wave function as shown
in Ref. [9], eliminating the one-body operator Z1. The eZ1

operator changes the mean-field determinant |0) into another
one |0′) = eZ1 |0). Then with this new mean-field state |0′), we
recalculate all the matrix elements and solve the CC equation.
This process is repeated iteratively. After the convergence, we
obtain the optimal mean-field state |0) and the CCD wave
function eZ2 |0), which is the starting point of this study.

Symmetry projection of coupled-cluster wave function. In
the coupled-cluster method, the energy is given by Eq. (3).
This method, however, does not satisfy the Rayleigh-Ritz vari-
ational principle. Therefore, we evaluate the energy directly as

E = (ψ |H |ψ )

(ψ |ψ )
, (4)

where |ψ ) stands for the CCSD or CCD wave function. This
energy gives an upper limit to the exact energy, unlike the
coupled-cluster method. Hereinafter we refer to it as the RR
energy to distinguish it from the CC energy.

The variational coupled-cluster methods, with which the
RR energy is evaluated based on the CC wave-function by
expanding eZ , has already been tried, for instance, in Ref. [24].
In the present method, we develop another expansion.

Next, we introduce the symmetry projection operator
PL, which is a projection onto a state with a good quan-
tum number L. For example, in nuclear structure physics,
angular-momentum projection has often been utilized. For
a continuous symmetry, the symmetry projection operator is
generally given by

PL = 1

N
∫

dμW (L, μ)R(μ), (5)

where N is a normalization, W is a weight function, and R(μ)
is given by eiÔ·μ where Ô is generally defined in terms of
spherical operators, not by deformed ones. The integration
is carried out over the parametrization μ of the continuous
group. We will show an example below in Sec. III. If |ψ ) is a
superposition of several states with different L, the projection

operator PL extracts |ψ, L) with a definite quantum number L
as |ψ, L) = PL|ψ ) = 1

N
∫

dμW (L, μ)R(μ)|ψ ).
The RR energy EL with the projected coupled-cluster wave

function is given by

EL = (ψ |HPL|ψ )

(ψ |PL|ψ )
, (6)

where we refer to it as projected energy. If we follow the
terminology of the projection method, e.g., variation after
projection (VAP) or projection after variation (PAV), we call
this procedure projection after coupled cluster (PACC). Note
that this evaluation is usually carried out through spherical
operators, although the above equation is expressed in the
deformed basis. To evaluate the projected energy, we need the
matrix elements with the projected wave function as

(ψ |
[

1
H

]
PL|ψ ) = 1

N
∫

dμW (L, μ)(ψ |
[

1
H

]
|ψ (μ)), (7)

where the rotated state |ψ (μ)) is defined by

|ψ (μ)) = eiÔμ|ψ ). (8)

This is the standard way for projection calculations. In real-
istic applications with huge Hilbert spaces, this projection is
generally not feasible because |ψ ) includes eZ2 in the CCD
wave function, and evaluation of deformed operators through
spherical operators additionally increases computational ef-
forts.

Monte Carlo procedure. To carry out the symmetry pro-
jection, we introduce the Monte Carlo procedure. Hereinafter
we choose the label s to specify each basis of the spherical
representation. Similarly, we choose the label d to specify
each basis in the deformed mean-field representation. The
coupled-cluster wave function is given as |ψ ) with the de-
formed operators.

Inserting the unity operator
∑

s |s〉〈s| = 1, the projected
energy in Eq. (6) can be rewritten as

EL =
∑

s

ρL(s)EL(s). (9)

For the spherical basis s, we define the projected local energy
EL(s) as

EL(s) =
∑

s′
hs,s′

〈s′|PL|ψ )

〈s|PL|ψ )
, (10)

where hs,s′ is the Hamiltonian matrix element in the spherical
representation and which is generally very sparse. We can also
define the projected density ρL(s) as

ρL(s) = |〈s|PL|ψ )|2∑
s |〈s|PL|ψ )|2 , (11)

where ρL(s) � 0 and
∑

s ρL(s) = 1. This property allows us
to stochastically generate the distribution of s according to
Eq. (11) by the Markov chain Monte Carlo (MCMC) method.
Note that this technique has been presented in cases with pair
condensates [25–28]. Therefore, by applying the Monte Carlo
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sampling, the symmetry projected energy can be estimated as

EL ∼ 1

N0

∑
i

EL(si ), (12)

where N0 is a number of Monte Carlo samples and we refer to
it as the MC energy hereinafter.

Next, we investigate the projected overlap 〈s|PL|φ) in
detail. By inserting

∑
d |d )(d| = 1, the projected overlap is

rewritten as

〈s|PL|ψ ) =
∑

d

〈s|PL|d )(d|ψ ), (13)

where there is another possibility for introducing the trunca-
tion instead of the expansion of eZ .

The computation of the correlation part of the overlap,
(d|ψ ) = (d|eZ2 |0), is feasible because Z2 is also represented
with the deformed operators and PL does not operate on |ψ ).
The symmetry projection is easily carried out in the form
〈s|PL|d ), where s and d span, in principle, the whole Hilbert
space, while on the other hand, for s, we use the Monte Carlo
sampling so as to avoid the full use of the Hilbert space. For
d , we also restrict the whole Hilbert space by introducing a
truncation scheme due to the overlap (d|ψ ). For a certain ε,
we can truncate the coupled-cluster wave function as

|ψ ) ≈
∑

|ψ (d )|2>ε

ψ (d )|d ), (14)

where ψ (d ) = (d|ψ ) is an amplitude of |ψ ) in the basis
d . Under the assumption that the system has a moderately
good mean field, the CCD wave function |ψ ) can be well ap-
proximated by an expansion around the optimized deformed
mean-field wave function |0), we can naturally expect that
this truncation scheme works well, as we will see in Sec. III.
Thus, we can also avoid the difficulty with the handling of
the full Hilbert space for d . Note that several techniques in
Refs. [27,28] can be applied to evaluate the projected overlap
in Eq. (13) and we presented some discussions in the supple-
mental material [29] .

III. BENCHMARK TEST

In this section, we want to demonstrate the feasibility of
our new method by taking the three-level Lipkin model as a
testing ground.

Three-level Lipkin model. First, we define the three-level
Lipkin model with the levels i = 0, 1, 2, each having a
degeneracy of N . We consider N spinless fermions. The
single-particle energies εi are ε0 = 0 and ε1 = ε2 = 1. The
creation and annihilation operators of the kth particle on the
ith level are c†

ik and cik , which we call, as before, spherical
operators. The Hamiltonian is defined in this basis as H =
ε(n1 + n2) − v

2 (J2
10 + J2

01 + J2
20 + J2

02), where ε = 1 and v is
the strength of the two-body interaction. The J operators are
defined by Jpq = ∑

i c†
p,icq,i. The system is specified by the

dimensionless parameter χ = v(N − 1)/ε. The spectra show
two phases: One has a vibrational pattern around χ ≈ 0 and
the other a rotational pattern for χ > 2. These two phases
continuously change from one into the other when considering
a finite number N .

The HF approximation is given by the mean-field state
|φ) = a†

0,1 · · · a†
0,N |−〉 with the deformed operators, a†

i,m (i =
0–2, m = 1–N), which are canonically related to the spheri-
cal ones with coefficients Di j as a†

i,m = ∑
j Di jc

†
j,m. The HF

energy can be shown to be EHF = 0 for χ < 1 and EHF =
Nε
4 (2 − χ − 1

χ
) for χ > 1 [22].

For the degenerate two upper single-particle energies, there
is a symmetry concerning the exchange of one and two levels.
This can be embodied by the symmetry operator (identifiable
with a rotational operator) L = i(J21 − J12) which commutes
with the Hamiltonian, [H, L] = 0. Thereby, all wave functions
have the quantum number L0 = 0,±1,±2, . . . . Except for
L0 = 0, the eigenstates with L0 are doubly degenerate. With
this symmetry operator, we can construct the projection oper-
ator as

PL0 = 1

2π

∫ 2π

0
dθei(L−L0 )θ , (15)

which projects out the L0 component from any wave func-
tion |ψ ) that is, |ψ, L0) = PL0 |ψ ) where L0 and |ψ, L0)
are the eigenvalue and eigenstate of L, respectively; that is,
L|ψ, L0) = L0|ψ, L0). Note that L is defined by the c and c†

operators and the projection should be carried out using the
spherical operators.

Symmetry projection of coupled-cluster wave function. The
CCSD wave function |ψ ) is given by |ψ ) = eZ |0) where |0)
is the deformed HF state, and Z is organized into a sum
of one-body and two-body operators Z = x1K10 + x2K20 +
y11K2

10 + y22K2
20 + y12K10K20, where the K operators are de-

fined as Kpq = ∑
i a†

p,iaq,i. In applying the CCSD procedure
described in Sec. II, we take the components |1, 0), |0, 1),
|1, 1), |2, 0), and |0, 2) in the deformed basis, defined by
|k1, k2) = Nk1,k2 (K20)k2 (K10)k1 |0), with normalization factor
Nk1,k2 . With this, the CCSD equation can be solved easily. We
can also carry out the CCD calculations by changing the mean
field.

Figure 1(a) shows the CC energy differences 
E = E −
Eexact where this is relative to the exact ground-state energy
Eexact as a function of χ for N = 20. In Fig. 1(b), as a measure
of improvement, we plot the ratio between 
E and 
EHF =
EHF − Eexact which is the correlation energy. It shows that the
coupled-cluster wave function contains a considerable amount
of more correlations. Moreover, the CC energy of CCD is
lower than that of CCSD. As the coupled-cluster method does
not, however, satisfy the Rayleigh-Ritz variational principle;
we calculate the RR energies in Eq. (4) with the same CCSD
and CCD wave functions. CCSD and CCD give almost the
same RR energies. The CCD wave function may seem not
to be so good. It shows, however, a distinct aspect if we
apply the symmetry projection. In Fig. 1, projected ground-
state energies with CCSD and CCD relative to the exact
ones 
E and 
E/
EHF are plotted. The projected energy
of the ground state is vastly improved over the CC energy,
especially for the CCD, where about 95% of correlation en-
ergy is taken into account. Note that VAP calculations can
also be straightforwardly carried out in this simple model,
and the calculated 
E and 
E/
EHF are also plotted as a
reference result. The VAP correlation energy with ≈0.01–0.6
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FIG. 1. Energy differences (a) 
E and (b) ratios between 
E
and 
EHF are shown as a function of χ with N = 20. Blue (green
dashed) line show CC energy with the CCSD (CCD) wave function.
Blue open squares (green open dots) show RR energy with the
CCSD (CCD) wave function. Blue filled squares (green filled dots)
show projected energy with the CCSD (CCD) wave function. Black
diamonds show VAP energy.

error is almost perfect. We will, however, not further dwell
on the VAP procedure, since it seems to be numerically in-
tractable for realistic cases. On the other hand, very recently
the analog to the VAP calculation has been carried out for
the pairing Hamiltonian in Ref. [15]. We also will come back
to the VAP approach in a follow-up presentation in the near
future.

In Fig. 2, the exact excitation energies for L0 = 1–3 are
plotted as a function of χ for N = 20. For χ ≈ 0, spectra
show a vibrational feature, while for χ ≈ 5, the spectra show
a deformed band. For 1 < χ < 2, a crossover between these

FIG. 2. Excitation energies are shown as a function of χ with
N = 20. Black lines show exact energies (L0 = 1–3). Blue filled
(green open) symbols show the projected energies (L0 = 1–3) with
the CCSD (CCD) wave function.

FIG. 3. MC energies with L0 = 0 as a function of Monte Carlo
sampling number N0. For each N0, 100 sets of MC energies with
different random numbers are plotted. Orange-filled circle and er-
ror bars stand for average energy and its one-standard deviations,
respectively.

two phases occurs. We plot the projected excitation ener-
gies of Eq. (6) with the CCSD and CCD wave functions,
using the symmetry projection in Eq. (15) to show the re-
sults obtained with the PACC procedure. The results show
reasonably good excitation energies except for the crossover
region.

For 0 < χ < 1, CCD and CCSD wave functions are the
same by construction and coupled-cluster method gives a pure
spherical mean field. Thereby, in the projected calculations
with CCD, we added a slight deformation to the pure spherical
mean-field and succeeded in reproducing the excitation ener-
gies. Thus, the symmetry projection for the coupled-cluster
wave function is quite promising. The remainder of the prob-
lem is how to calculate such a symmetry projection in realistic
cases. Next, we introduce the Monte Carlo method and mixed
representation for the projected overlap as in Eq. (13).

Tests of Monte Carlo procedure. The symmetry projection
in Eq. (7) requires heavy computations in realistic applica-
tions, so we introduce the Monte Carlo method as described in
Sec. II. The spherical basis s is sampled by the MCMC, which
stochastically generates the distribution obeyed to ρL(s) in
Eq. (11). To perform the MCMC, we take the basis states
specified by s as a random walker, and we move this s basis
to another nearby s′ basis under the control of the Metropolis-
Hasting (MH) algorithm, keeping the detailed balance as in
Refs. [27,28].

As a benchmark test of the MC calculation, we take the
projected energy in Eq. (6) with the CCD wave function,
whose value for L0 = 0 is −17.789. We investigate the same
projected energy by the Monte Carlo method. As the MC cal-
culations have statistical errors, we examine the convergence
by taking several sampling numbers N0 = 30, 100, 300, 1000,
3000, 10 000, 30 000. For each N0, we carry out 100 sets
with different random numbers. In Fig. 3, the MC energy
in Eq. (12) for each calculation is displayed. The average
energy and its average variance over 100 sets are also plotted.
Thus, the statistical errors of the Monte Carlo procedure are
well controlled. The sampling number is, in general, relatively
constant for various quantum systems with a larger Hilbert
space.
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FIG. 4. MC energies with L0 = 0–3 as a function of basis trun-
cation ratio. At ratio 1, exact projected energies are also plotted. The
MC statistical errors are invisible within the bars.

Finally, we discuss the remaining problem: the computa-
tion of the projected overlaps 〈s|PL0 |ψ ). For the MC sampling
in Eq. (10), the spherical basis is better than the deformed
one due to the advantage of the sparsity in hs,s′ . However, the
projected overlap includes the exponential-type operators, of
which exact projections become intractable for larger systems
in general. Therefore we decompose the computation of the
projected overlap as in Eq. (13), which yields the following
natural truncation scheme of the deformed complete set of
states. As the |d ) states comprise the ground state |0) and
all excited states thereof, the overlaps 〈s|PL0 |ψ ) for highly
excited states |d ) are expected to be negligible, which then
can be truncated by the limiting value of (d|ψ ). As the
CCD wave function |ψ ) has no dependence of θ in Eq. (15)
and is expressed by the deformed operators, the numerical
evaluation of the values of (d|ψ ) is simple. Moreover, contri-
butions of higher excited states |d ) are, in general, expected
to be smaller. Therefore, the truncation of d by (d|ψ ) is
feasible.

In Fig. 4, we present a benchmark test of such a trunca-
tion scheme for the states with L0 = 0–3. By setting a given
threshold for the value (d|ψ ), we can truncate the summation
for d in Eq. (13). The MC energies in Eq. (12) with these
projected states are plotted as a function of the ratio of the
truncated basis number to the one of the whole Hilbert-space
dimension. The parameters for the three-level Lipkin model
are χ = 5 and N = 20. The calculation at the ratio of 0.02
shows that the truncation scheme works quite well. This ratio

is expected to be increasingly smaller for larger systems. Its
investigation for various quantum systems will, however, be
our task for the future.

IV. SUMMARY

This study combines the Rayleigh-Ritz variational pro-
cedure, the coupled-cluster wave function, and symmetry
projection through the Monte Carlo method. We start from
the mean-field wave function and extend it by applying an
exponential-type correlation factor eZ as within the coupled-
cluster theory. We use the CCSD wave function, and its
parameters are optimized by the coupled-cluster method as
shown in Sec. II. Next, we apply the symmetry projection to
this wave function and we directly evaluate the expectation
value of the Hamiltonian with this projected wave function
as in Eq. (6). Such an approach is, however, numerically
intractable for practical applications. Therefore, we introduce
the Monte Carlo method as in Eqs. (9)–(12). We also introduce
an efficient truncation scheme for the deformed set of states as
in Eq. (14).

To evaluate the feasibility of this new method, we employ
the three-level Lipkin model, which has spherical and de-
formed phases. Moreover, it has an exchange symmetry under
degenerate single-particle energies of the upper two levels.
Therefore we can introduce the symmetry projection concern-
ing this symmetry in Eq. (15). By numerical calculations,
we found that the symmetry projected CCD wave function
can give a better ground-state energy than the coupled-cluster
method and gives reasonable spectra for low-lying states.
We showed that the Monte Carlo method and the truncation
scheme we introduced also work quite well.

This method can be applied to many quantum systems. For
instance, the shell-model calculation is under investigation
with promising preliminary results. The other direction of this
method is to extend it to variation after projection, for which
the Monte Carlo realization is also under study.
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