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Possible cluster states in heavy and superheavy nuclei
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The α-core structure has been constructed to successfully interpret the band spectra of a series of nuclei above
the double shell closure, plus the extension to the heavier cluster structure in the actinide region. By refining the
binary cluster model, we show that such kind of picture can be applicable to more heavy nuclei, implying that
there can exist cluster states in any heavy nuclei. As for superheavy nuclei, the involved cluster, analogous to
the heavy particle radioactivity, is allowed to be above Z > 28 plus the core 208Pb. In this sense, besides some
predictions on energy spectra of cluster states in superheavy nuclei, the very recently reported 2+ state of 282Cn
is diagnosed to be not in the ground state rotational band via the present method. During the whole procedure,
the uncertainty of the cluster model is determined for the first time, by the nonparametric resampling strategy, to
make the whole theoretical results reliable and complete.
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From the universe to the fundamental particle world, basic
objects often behave in an aggregative way, like the assem-
blage of stars into galaxies or a certain number of quarks
confined in hadrons. Accordingly, despite the complicated
nature of the nuclear many-body system, the atomic nucleus
often exhibits regular patterns, of which clustering is one
essential dynamical feature [1]. Actually, the α cluster was,
as early as the beginning stage of nuclear physics, taken as
the building block to construct Nα nuclei or other nuclei with
the help of extra particles [2,3]. Since then, clustering has
been a key concept to understand the exotic structure in light
nuclei [4,5], like the molecularlike band in the beryllium and
calcium isotopes [6–8], and especially the famous Hoyle state
of 12C [9]. Following the proposal of the Ikeda diagram [10],
various cluster configurations were predicted to emerge near
the cluster threshold energies for light nuclei. The micro-
scopic cluster models have been then developed to describe
significant observables in light nuclei [11], such as the the res-
onating group method (RGM), generator coordinate method
(GCM), or orthogonality condition model (OCM). Moreover,
extensive efforts are being devoted to fully and further under-
standing the cluster structure of light and medium nuclei from
both theoretical and experimental aspects [1,12,13].

As for heavier nuclei above 100Sn, one dominant decay
channel is α decay [14], which is usually considered as a pre-
formed α cluster subsequently tunneling through the Coulomb
barrier. In this sense, the α decay process can be a natural lab-
oratory for probing into the clustering phenomenon of heavy
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nuclei [15,16]. However, this is still based on theoretical judg-
ment, while the observation of α-cluster formation in heavy
nuclei has been not explicitly implemented. Fortunately, the
formation of α clusters has been very recently “seen” at the
surface of neutron-rich tin isotopes for the first time via the
quasifree α cluster knockout reactions [17]. On the other
hand, one could imagine that, besides the α decay process
corresponding to the resonant α-core state, there would exist
α cluster structure in heavy nuclei demonstrated by their band
spectra, esspecially above the double shell closure. Indeed,
this was soon realized by Buck et al. after a significant α

cluster component was proposed for accurately calculating
the absolute α decay width of 212Po [18]. Meanwhile, some
observed enhanced E1 transitions, involving unnatural-parity
states of 212Po, have been explained by the “α + 208Pb”
clustering case [19]. The α cluster states have been inves-
tigated in other nuclei above double-shell closures as well,
like 20Ne, 44Ti, 94Mo, and so on [20–23]. Exotic cluster
states have also been postulated in actinide nuclei to describe
their ground-state rotational bands plus related electromag-
netic properties [24,25]. With these in mind, one may say
that the cluster is a crucial degree of freedom in curving the
dynamical behavior and reaction features of not only light but
also heavy nuclei. Consequently, the cluster configuration has
been embodied into the shell-model framework [26] and the
microscopic cluster model [27], in order to well reproduce the
experimental decay width and understand special structural
properties.

One main aim of the present study is therefore to shed
some light on an open question on the cluster state struc-
ture: Are there other kinds of cluster states in heavy nuclei
besides 212Po? One decade ago, the concept of cluster decay
was changed to allow heavier clusters above Z = 28 emitting
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from superheavy nuclei (SHN) and residual daughters around
208Pb [28,29]. Analogously, one can ask whether there exist
heavier cluster states in superheavy nuclei. Meanwhile, an
excited 2+ state in 282Cn was very recently reported, pro-
viding us an excellent opportunity to examine the present
cluster model in SHN [30]. On the other hand, consensus on
the nuclear effective interactions is still far away from being
achieved, resulting in the formidable systematic uncertainties.
Moreover, there is always the fitting process of model parame-
ters to experiments from the phenomenological point of view,
resulting in uncertainties as well as their propagation regard-
ing the model prediction [31]. This issue seems to be missing
in the previous studies of the effective cluster model. With
these in mind, it is necessary to perform a deep investigation
on the cluster states of heavier nuclei beyond the conventional
target, plus the evaluation of uncertainties.

The cluster-core relative motion, in the binary cluster
model (BCM), is the essential factor to interpret the rotational
band spectra of target nuclei. In fact, there is no new story
in solving the Schrödinger equation of such a two-body sys-
tem. The key point is the interaction potential between the
cluster and the residual nucleus, which regulates the behav-
ior of the relative motion wave function. As is well known,
the nuclear force is not fully recognized at all up to now
so that there are various proposals on the cluster-core effec-
tive potential. Since the pioneer work on this issue by Buck
et al. [20], various geometries of cluster-core potential have
been proposed in a phenomenological way [22,32], while the
semimicroscopic double folding procedure is also employed
to construct the two-body potential [33–35]. However, the
problem is that an angular-momentum-related factor or radius
parameter should be introduced into the nuclear potential
for each energy level of studied nuclei, which seems to be
not physically reasonable. This is actually caused by the
strategy of requiring that the Pauli principle is satisfied by
the introduction of the Wildermuth condition, in which the
constituent particles of a cluster are supposed to come from
the shell-model orbitals above the closed core. To overcome
this dilemma, the mixed Woods-Saxon (W.S.) form is then
generated to refine the shape of the strong nuclear potential,
giving rise to a simultaneous correspondence with half-lives
of charged-particle emissions and spectra [24]. Meanwhile, an
alternative improvement on the double-folding potential can
be reached by including the nuclear medium effect, regulating
the behavior of the cluster-core potential at the overlapping
region [36]. In this study, we choose a slightly modified ver-
sion of the mixture of the conventional W.S. potential [23,24]
as the nuclear part of the cluster-core potential, namely the
(1+Gaussian)(W.S. + W.S.3) shape,

VN = −V0

[
1 + λ exp

(
− r2

σ 2

)]

×
{

x

1 + exp[(r − R)/a]
+ 1 − x

1 + exp[(r − R)/3a]3

}
.

(1)

The coulomb potential VC is taken to arise from a cluster in-
teracting with a uniformly charged core of radius R. The total

cluster-core potential is then obtained as the sum of these two
parts, i.e., V (r) = VN (r) + VC (r). The energy spectra can be
readily displayed, once the Schrödinger equation, correspond-
ing to the cluster-core relative motion, is solved within this
total potential. As mentioned above, the ingredient nucleons
of the cluster must lie in the orbitals outside the residual core,
which is restricted by the Wildermuth condition,

G � 2n + � =
∑

i

(
gAd +Ac

i − gAc
i

)
. (2)

Here the gAd +Ac
i are the oscillator quantum numbers of the

nucleon forming the cluster above the core nucleus, while the
gAc

i are the interior quantum numbers of the Ac nucleons for
the cluster in the shell-model context. In this way, the global
quantum number G is determined, and the number n of the
internal nodes in the radial wave function is subsequently
obtained for each angular momentum �. Now let us recall the
parameters involved in the nuclear potential (1). As compared
to previous studies [22–24], the chosen procedure of these
parameters is different here to make the following calculation
consistent and steady. Specifically, the subtle radius parameter
R is determined by exactly reproducing the yrast bandhead 0+
of each nucleus, while the residual parameters are completely
fixed by matching the ground-state bands of selected nuclei,
namely 20Ne, 44,52Ti, 60Zn, 94Mo, 136Te, and 212Po.

One objective of this study, as mentioned before, is the
evaluation of uncertainty of the present BCM. In fact, the issue
on the uncertainty has recently received special attention in
the field of nuclear physics through statistical methods like
sensitivity analysis and Bayesian inference [31,37–40]. Be-
sides, the Monte Carlo bootstrap tool [41], as a nonparametric
resampling method, has been widely accepted in the statistics
practice and machine learning strategies due to its robustness
and efficiency [42–45]. The applicability of this method has
been also shown in simulating NN scattering data [46] and
the estimation of α decay half-lives [47]. In the present study,
the number of samples in the statistical analysis is relatively
limited, corresponding to the above listed nuclei as the learn-
ing set. Moreover, the bootstrap method can provide standard
error and bias estimates of the involved model parameters and
given measured observables without prior assumptions such
as normal distributions. Considering these, it is suitable and
necessary to bootstrap the α-cluster state bands of typical nu-
clei, aiming at a global description and prediction on possible
cluster states of heavy and superheavy nuclei. The specific
steps are listed as follows:

(i) The ground-state (g.s.) bands, from 2+ to 10+, of the
aforementioned α-core-type nuclei are selected as the
learning data set, namely {Ek} with the total number
of N . Given the high accuracy of these measured data,
they are considered as accurate values. By resampling
and allowing replacement (an important choice in the
bootstrap method), one can always pick up N samples
from the learning set {Ek}. One can then obtain an
energy array {Ei

k′ } for the ith resampling, and this pro-
cess will be repeated again and again to get M = 105

groups of {Ei
k′ } with the computational facility.
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TABLE I. The correlation coefficients of the parameter set in-
volved in the effective nuclear potential.

V0 a x λ σ

V0 1.000
a −0.8257 1.000
x −0.6699 0.9272 1.000
λ −0.0271 0.0888 0.0797 1.000
σ −0.7015 0.4572 0.4307 −0.4221 1.000

(ii) For each group of {Ei
k′ }, the parameter set involved in

the cluster-core potential will be determined through
the differential evolution algorithm [48], by minimiz-
ing the square deviation between the experimental
energy levels and the calculated results, namely

χ2
i =

∑N
i=1

(
Ei

k′,cal − Ei
k′,exp

)2

N
. (3)

In this way, there will be M groups of parameter
sets, plus the corresponding Ei

k,cal derived from the ith
optimal parameter set, to be stored for the following
analysis.

(iii) With the help of the above parameter groups, the
uncertainty evaluation on the nuclear potential and the
sequential prediction can proceed via the statistical
bootstrap strategy. The target observable in this study
is the energy level, whose uncertainty is deduced from
the systematical and statistical aspects. The system-
atical uncertainty of one energy level, rooted in the
model itself, is determined by

σ̂ 2
sys,k = (

Ēk,cal − Ei
k,exp

)2
, (4)

where Ēk,cal is the mean value of the calculated re-
sults for the kth energy level in the learning set, i.e.,
Ēk,cal = 1

M

∑M
i=1 Ei

k,cal. On the other hand, the statisti-
cal error is assessed by the unbiased square deviation
of the calculated energy levels themselves, namely

σ̂ 2
stat,k = 1

M − 1

M∑
i=1

(
Ei

k,cal − Ēk,cal
)2

. (5)

The model uncertainty of the kth energy level is then
obtained as σ̂ 2

total,k = σ̂ 2
sys,k + σ̂ 2

stat,k , leading to the
total uncertainty of the whole learning set, namely

σ̂ 2
total = 1

N

N∑
k=1

σ̂ 2
total,k = 1

N

N∑
k=1

(
σ̂ 2

sys,k + σ̂ 2
stat,k

)
.

(6)

Based on the obtained M groups of parameters, one can
easily obtain correlation coefficients between parameters,
which are shown in matrix form in Table I. As expected, the
Gaussian term of Eq. (1) regulates the spacing between the
0+ and 2+ states, while it is not relevant to the higher-lying
states [22]. The strength parameter λ is indeed in tiny con-
nection with other parameters, and the σ is more sensitive
to the depth V0 for a better pattern in the beginning region.

FIG. 1. The g.s. bands of 20Ne and 44Ti, in which the uncertainty
bar is denoted by the shadow range. The dash line indicates the
α+core breakup threshold.

The three parameters of the W.S. part are correlated with each
other to determine the suitable geometry of the final nuclear
potential. As is well known, the electromagnetic transition
probability, apart from the spectra, is another quantity that
is very sensitive to the structure of nuclear states. Once the
cluster-core potential is determined within one sampled group
of parameters, the radial wave functions are obtained. In the
BCM scheme plus the present case of spinless clusters and
cores, the reduced transition strength B(E2 ↓) can be then
given by [24,25]

B(E2; J → J − 2) = 15β2

8π

J (J + 1)

(2J + 1)(2J − 1)

〈
r2

J,J−2

〉2
(7)

with

β = ZcA2
d + Zd A2

c

(Ad + Ac)2
, (8)

〈
r2

J,J−2

〉 =
∫ ∞

0
u∗

J (r)r2uJ−2(r)dr. (9)

Here the subscripts c and d separately correspond to the clus-
ter and the residual core, and the radial wave function uJ (r)
comes from the cluster state with the angular momentum J .
Note that there is no introduction of any effective charge.

For an intuitive judgment of the present BCM, the com-
parison of the experimental energy levels with the computed
values are initially plotted in Fig. 1 for two light nuclei 20Ne
and 44Ti, while those of two heavier nuclei 94Mo and 212Po
are shown in Fig. 2. The evaluated uncertainty, corresponding
to one standard deviation σ̂ around the most probable value,
is also demonstrated by the shadow for each level. As one
can see from these two figures, the g.s. spectra are quite
well reproduced for both the light and heavy nuclei, while
the uncertainty appears to increase with increasing angular
momentum and mass number. For example, the largest total
uncertainty occurs in the 12+ state of 44Ti. This may come
from the nonlocality of the valence nucleons in the high-lying
state for light nuclei [12,49], which seems to be not satisfied
by the BCM framework. On the other hand, there are overlaps
between the uncertainty bars of two neighboring energy lev-
els for the high-lying states, plus the more serious tendency
towards heavy nuclei. In this sense, quantum “chaos” would
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FIG. 2. Same as Fig. 1 but for heavier nuclei 94Mo and 212Po.

exist in the BCM prediction for the high-lying rotational states
of heavy nuclei. Hence the evaluation of these energy regions
is not shown here except for 212Po. The obvious uncertainty
and overlap of this typical nucleus raises questions on the
capability of the BCM for the heavy and superheavy nuclei,
which will be tackled in the following. Despite this, the total
uncertainty is actually only 0.196 MeV for the whole learning
set. On further examination, the calculated B(E2) values are
compared with the available experimental data for the above
target nuclei in Table II. Within the aforementioned bootstrap
treatment, the statistical uncertainty is also presented for the
reduced transition strength. Obviously, the measured B(E2)
value and the general trend are satisfactorily reproduced by
the BCM despite the overestimation in 212Po. This latter
abnormal case may be understood from the natural thought
that the mean-field effect will be enhanced for heavy nuclei
as compared to lighter ones. In this sense, the strong spin-
orbit force can at least moderate the α cluster correlation
when proceeding to heavier nuclei, resulting in the relatively
large B(E2) value without the consideration of single-nucleon
degree. We then apply the BCM, plus the uncertainty eval-

TABLE II. Comparison of the experimental data and the calcu-
lated values for the reduced E2 transition strength of four nuclei,
namely 20Ne, 44Ti, 94Mo, 212Po. Note that only the transitions with
experimental data are listed here.

Nuclei Transition B(E2 ↓)expt (e2fm4) B(E2 ↓)calc (e2fm4)

20Ne 2+ → 0+ 66 ± 3 49.3 ± 14.5
4+ → 2+ 71 ± 6 66.4 ± 22.5
6+ → 4+ 65 ± 10 57.3 ± 23.6
8+ → 6+ 29 ± 4 33.9 ± 19.5

44Ti 2+ → 0+ 120 ± 37 103.8 ± 29.4
4+ → 2+ 277 ± 46 140.9 ± 42.6
6+ → 4+ 157 ± 22 133.1 ± 42.8
8+ → 6+ >14 106.6 ± 37.1

10+ → 8+ 138 ± 28 71.1 ± 27.4
12+ → 10+ <60 33.9 ± 14.6

94Mo 2+ → 0+ 406 ± 10 201.3 ± 58.4
4+ → 2+ 660 ± 101 278.4 ± 84.0

212Po 6+ → 4+ 293 ± 83 729.9 ± 251.4
8+ → 6+ 173 ± 7 694.3 ± 236.7

10+ → 12+ 165 ± 45 626.7 ± 210.4

FIG. 3. Calculated energy levels for the ground state band of
104Te in terms of the α + 100Sn system, in comparison with the other
theoretical spectra in panel (b) from Ref. [23] and in panel (c) from
Ref. [35].

uation, to the superallowed α emitter 104Te [50]. Due to the
lack of experimental data, the calculated energy levels are
compared with other theoretical results [23,35] in Fig. 3. The
predicted energies in the panel (b) are produced by the BCM
with a different fitting procedure [23]. In detail, the low-lying
energy band, in Ref. [23], is generally consistent with that of
the present results, while there is an obvious deviation with re-
spect to higher-lying states. In panel (c), the nuclear potential
is derived from the double-folding integral [35], leading to a
narrow rotational band. Given the extensive efforts devoted to
experiments around the tin region [17,50], it is expected that
the present prediction can be examined in the near future.

As mentioned before, another objective in this study is to
explore the possible cluster states in heavy and superheavy
nuclei with N > 126. Within the BCM, the residual core,
analogous to the choice in the regular cluster emission of ac-
tinide nuclei [24] and the heavy particle decay of superheavy
nuclei [28], is considered to be the double-magic nucleus
208Pb. The other component is then extended from α par-
ticle to carbon, oxygen, neon, and heavier clusters. Before
this procedure, we paid special attention to the choice of
the fundamental nuclear potential, especially considering the
aforementioned situation in 212Po. This is due to the fact the
number n of the internal nodes in the wave function would
be quite large (≈200), and this kind of oscillation should
be performed in an extremely narrow range. Meanwhile, the
wave function behavior is exactly responsible for the reason-
able description of the energy spectra. In fact, the interior
region of the cluster-core potential generally behaves like a
relatively stable plateau, which results in a sine or cosine type
of radial wave function. One can then easily get the point that
the angular frequency, corresponding to the node number, is
related to the wave number

√
2μ(V − E )/h̄2. Given that the

total potential V (r) varies quite limitedly when r < R, this
steady value of (V − E ) is proportional to the depth parameter
V0, leading to the relationship

√
μV0 ∝ n. Considering that the

reduced mass number μ can be approximated by the cluster
mass number Ac, the depth of the nuclear potential can be
regulated by

V0

Ac
= V1

n2

A2
c

+ V2
n

Ac
+ V3. (10)
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FIG. 4. Similar to Figs. 1 and 2, but with the refined IBCM for
the heavier cluster states above 208Pb. Note that the rotational band
has been located in a quite narrow energy range.

With such an improved BCM (IBCM), we explore the rota-
tional spectra in the actinide region, to be the benchmark for
the attempt to probe into the cluster structure of superheavy
nuclei. Initially, the experimental rotational spectra are also
well reproduced for the Ra, U, and Th isotopes in terms of
the C, O, and Ne cluster structures above 208Pb. The standard
deviation is around 0.06 MeV for this fitting procedure, pos-
itively confirming the validity of the present construction. In
addition, we have also expanded the target to the heavier Mg
and Si cluster cases as a test, accompanied by high accuracy.
As typical examples, the energy levels of 220Ra and 236Pu are
presented in Fig. 4, where the calculated energies not only
agree quite well with the measured values, but also carry very
narrow uncertainty ranges. Encouraged by this, the IBCM is
applied to predict the possible cluster structure of superheavy
nuclei, while the 2+

1 state has been recently postulated in
282Cn. As a result, we pay special attention to g.s. rotational
bands of 282Cn. The 2+ state is found to lie around 0.02
MeV, deviating from the reported value (about 0.22 MeV) for

the 2+
1 state. One may therefore conclude that this reported

excited state cannot be divided into the pure g.s. rotational
band or the present choice of the two-body cluster structure
should be reconsidered. It is hoped that this study can be
further checked in future spectra experiments of superheavy
nuclei.

In conclusion, we have performed the uncertainty analy-
sis on the g.s. rotational bands of all the α-core-type nuclei
within the binary cluster model for the first time, to vali-
date the applicability of the BCM for exploring the possible
cluster states in heavy and superheavy nuclei. These involved
transition strengthes B(E2) can be well reproduced along
with statistical uncertainties as well. Through proposing a
subtle constraint on the depth of the nuclear potential and
the nodes of the cluster-core radial wave function, we have
further refined the BCM to adjust the g.s. rotational spectra
of heavy nuclei around the core 208Pb. These experimental
energy levels are not only reproduced very well but also with
quite narrow uncertainties, demonstrating the reliability of the
present development of the cluster model. On the other hand,
the presently reported cluster states can serve as the basis to
understand the cluster formation amplitude and the absolute
decay width. The recently observed 2+

1 state in 282Cn is also
discussed in terms of the present IBCM, and it is hoped that
the present study can enlarge our knowledge of the cluster
state band all over the nuclear chart.
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