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Binding two and three α particles in cold neutron matter
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We elucidate the fate of two and three neighboring α particles in cold neutron matter by focusing on an analogy
between such α systems and Fermi polarons realized in ultracold atoms. We describe in-medium excitation
properties of an α particle and neutron-mediated two- and three-α interactions using theoretical approaches
developed for studies of cold atomic systems. We numerically solve the few-body Schrödinger equation of α

particles within standard α cluster models combined with in-medium properties of α particles. We point out that
the resultant two-α ground state and three-α first excited state, which correspond to 8Be and the Hoyle state,
respectively, known as main components in the triple-α reaction, can become bound states in such a many-
neutron background although these states are unstable in vacuum. Our results suggest a significance of these
in-medium cluster states not only in astrophysical environments such as core-collapsed supernova explosions
and neutron star mergers but also in neutron-rich nuclei.

DOI: 10.1103/PhysRevC.104.065801

I. INTRODUCTION

An α particle (4He nucleus) has a significantly large bind-
ing energy compared to other light elements and hence can
be an important ingredient in understanding the structure of
nuclei as well as the origin of elements. In light N = Z nuclei,
the threshold energy for α particle disintegration becomes low
and even comparable to the one-α separation energy, which
helps the α cluster structure to emerge in the spectrum of such
light nuclei as predicted by the Ikeda diagram [1].

One of the most famous examples of the α cluster structure
is the first excited Jπ = 0+ state of 12C, which was originally
predicted by Hoyle [2]. This state, which is often called the
Hoyle state, is recognized as having a well-developed three-α
cluster structure. The existence of such cluster states plays a
role in enhancing the reaction rate at extremely low energies
near the Gamow window. The 12C element forms dominantly
through a sequential reaction in which a resonant two-α
system, the ground state of 8Be, absorbs another α particle
via radiative capture process [3]. The accurate description of
such α induced reactions can impact astrophysically important
explosive phenomena [4], such as core collapse supernovae
and neutron star mergers, which have recently started to be
measured through gravitational waves [5].

The importance of α clusters has extended from light
nuclei to many-nucleon systems such as medium-heavy nu-
clei and nuclear matter. The role of α particles in supernova
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explosions has attracted attention [6]. Very recently, an inter-
esting indication that α clusters emerge in a surface region of
medium-heavy mass nuclei has been obtained by a systematic
measurement via α knockout reactions [7]. These encourage
us to study the formation and structure of an α particle in
dilute neutron-rich matter. In Ref. [8], three of the present au-
thors (E.N., K.I., and W.H.) discussed the static properties of
an α particle in cold dilute neutron matter. The effective mass
of the in-medium α particle is enhanced by the interaction
with the neutron matter, implying the possibility of binding
the ground state resonance of 8Be and the Hoyle state in
such an extreme environment. If realized, these molecular-like
“bound” states will take part in the astrophysical reactions, in
addition to compact multi-α cluster systems, e.g., the ground
states of 12C and 16O, and thus should be incorporated ex-
plicitly as ingredients of simulations of astrophysical nuclear
processes [9], which may affect the local abundance of the
chemical elements.

In general, it is challenging to see how impurity par-
ticles behave in many-body backgrounds like a Fermi sea
due to infinitely large degrees of freedom. Nevertheless, this
problem has been tackled in ultracold atoms theoretically
and experimentally in terms of Fermi polarons [10–12]; an
impurity atom is dressed by excitations of majority Fermi
atoms via interspecies interactions. Quasiparticle properties
of a single polaron, such as the effective mass, have been
measured precisely in experiments [13–21] and successfully
described by various theoretical frameworks such as a vari-
ational method [22] and a T -matrix approximation [23].
Moreover, fermion-mediated interactions between polarons
have also been observed experimentally [24,25].

In this work, we investigate the structure of two- and
three-α systems in dilute neutron matter of density lower
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than about 1/100 of the saturation density, ≈0.01ρ0, at zero
temperature and discuss their medium-induced stabilization
by regarding each α particle as a mobile impurity immersed
in the neutron medium. Analogy with Fermi polarons realized
in ultracold atoms allows us to utilize the results obtained
for quasiparticle properties of a single α particle in neutron
matter [8] by using Chevy’s variational ansatz known to give
a quantitative description of Fermi atomic polarons. To dis-
cuss the stability of two- and three-α particles immersed in
neutron matter, moreover, we derive medium-induced two-
and three-body interactions among polarons using a diagram-
matic approach. Once the effective Hamiltonian is set, the
structure of the in-medium two- and three-α systems can
be accurately obtained from the solution of the correspond-
ing few-body Schrödinger equation. This study offers the
first quantitative evaluation of the energy and the pair den-
sity distribution of two and three-α systems in cold neutron
matter.

This paper is organized as follows. The next section
describes models of the in-medium multi-α systems. Sec-
tion II A is devoted to the derivation of induced two- and
three-α interactions in a neutron Fermi sea. Section II B
gives the effective Hamiltonian for multi-α systems in cold
neutron matter. The two cluster models employed in this
study are briefly described in Sec. II C. Given the effective
Hamiltonian, in Sec. II D, we address how to solve the few-α
Schrödinger equation precisely using the correlated Gaussian
expansion. Section III presents our results. The possibility
of the medium-induced stabilization of the two- and three-α
systems is discussed. The conclusion and future prospects are
given in Sec. IV.

II. MODELS OF IN-MEDIUM
TWO- AND THREE-α SYSTEMS

Let us proceed to construct models for the systems of
two and three α particles of bare mass M in a dilute gas of
neutrons of bare mass m at zero temperature. Since we are
interested in α particles in astrophysical environments where
the temperature is higher than the neutron superfluid critical
temperature [4], we can safely assume that the neutron gas is
in a normal state. We are interested in astrophysical situations
where α particles occur thermally rather than by external
factors; hence, the crust of very cold neutron stars is out of
our scope. We also ignore the neutron-neutron interaction for
simplicity. Although we employ the zero-temperature results
for the induced interactions among α particles and the α effec-
tive mass as will be discussed below, such zero-temperature
treatment can be justified when the temperature is below both

the neutron Fermi temperature TF = h̄2k2
F

2mkB
and the cutoff en-

ergy scale h̄2

mr r2
0

� 25 MeV of the neutron-α interaction with
the effective range r0 = 1.43 fm [8]. We finally remark that,
at sufficiently high neutron densities corresponding to kF �
0.3 fm−1, a p-wave resonance (5He) could be stabilized by the
Pauli blocking effect and emerge as a nuclear ingredient [8,9].
This possibility is another issue to be resolved, but is beyond
the scope of this work.

FIG. 1. Feynman diagrams in the center-of-mass frame of α par-
ticles that represent the induced (a) two-body interaction V (2)

eff (q, iν�)
and (b) three-body interaction V (3)

eff (k, q, iν�, iνu) among α particles
immersed in neutron matter. For V (2)

eff (q, iν�), the incoming (out-
going) momenta of α particles are given by k and −k (k′ and
−k′). For V (3)

eff (k, q, iν�, iνu), the incoming (outgoing) momenta of α

particles are given by k1 + q1/2, −k1 + q1/2, and −q1 (k2 + q2/2,
−k2 + q2/2, and −q2). The internal solid lines denote the thermal
Green’s function of a neutron.

A. Derivation of induced two- and three-body interactions in
cold neutron matter

We start with diagrammatic derivation of the medium-
induced two- and three-body interactions among α particles
in a neutron Fermi sea. As depicted diagrammatically in
Fig. 1(a), the induced two-body interaction between two α

particles can be obtained up to leading order in a as [26]

V (2)
eff (q, iν�) = −

(
2π h̄2a

mr

)2

× kBT

h̄2

∑
σ=↑,↓

∑
p,ωn

Gσ (p + q, iωn + iν�)

× Gσ (p, iωn), (1)

where kB is the Boltzmann constant, (q, iν�) = (k − k′, iνs −
iνs′ ) is the transferred four-momentum, ν� = 2�πkBT/h̄ is
the bosonic Matsubara frequency [27], Gσ (p, iωn) = (iωn −
ξp/h̄)−1 is the thermal Green’s function of a neutron with

energy ξp = p2

2m − εF relative to the neutron Fermi energy
εF , and mr = (m−1 + M−1)−1 is the reduced mass. a =
2.64 fm is the s-wave neutron-α scattering length [8]. Tak-
ing the summation of the fermionic Matsubara frequency
ωn = (2n + 1)πkBT/h̄ [27], we obtain the induced two-body
interaction as

V (2)
eff (q, iν�) = 2

(
2π h̄2a

mr

)2 ∑
p

f (ξp) − f (ξp+q)

ih̄ν� + ξp − ξp+q
. (2)

In the low-energy limit ν� = 0 at T = 0, Eq. (2) reduces to

V (2)
eff (q, 0) = − mkF

2π2h̄2

(
2π h̄2a

mr

)2

×
[

1 + kF

q

(
1 − q2

4k2
F

)
ln

∣∣∣∣q + 2kF

q − 2kF

∣∣∣∣
]
. (3)
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Note that in the long wavelength limit (q → 0), Eq. (3)
can be expressed by the compressibility κ = 1

ρ2 ( ∂ρ

∂μ
) of neu-

tron matter as V (2)
eff (q → 0, 0) = −( 2π h̄2a

mr
)2ρ2κ . By taking

the inverse Fourier transformation of Eq. (3), we obtain the
well-known Ruderman-Kittel-Kasuya-Yosida (RKKY) form
of the induced two-body interaction in the coordinate space
as [28–32]

V (2)
eff (r1, r2) = m

8π3h̄2

(
2π h̄2a

mr

)2

× (2kF r) cos(2kF r) − sin(2kF r)

r4
, (4)

where r = |r1 − r2|.
Moreover, as diagrammatically drawn in Fig. 1(b), the in-

duced three-body interaction up to leading order in a is given
by [33]

V (3)
eff (k, q, iν�, iνu) = 2

(
2π h̄2a

mr

)3

× kBT

h̄3

∑
σ=↑,↓

∑
p,ωn

Gσ (p, iωn)

× Gσ (p + k + q/2, iωn + iν�)

× Gσ (p + k − q/2, iωn + iν� − iνu),
(5)

where k = k1 − k2, q = q1 − q2, iν� = iνs1 − iνs2 , and iνu =
iν j1 − iν j2 are the transferred four-momenta. In the low-
energy limit (iν� = iνu = 0), the induced three-body interac-
tion in the coordinate space can be obtained as

V (3)
eff (r1, r2, r3) =

∑
k,q

V (3)
eff (k, q, 0, 0)e−ik·x1+iq·x2 , (6)

where x1 = r1 − r2 and x2 = r3 − (r1 + r2)/2. For simplic-
ity, we employ the contact-type three-body interaction whose
coupling constant is given by

V (3)
eff (0, 0, 0, 0) = 2

(
2π h̄2a

mr

)3
kBT

h̄3

∑
σ

∑
p,iωn

[Gσ (p, iωn)]3

= m2

π2h̄4kF

(
2π h̄2a

mr

)3

. (7)

Thus, we obtain

V (3)
eff (r1, r2, r3) = m2

π2h̄4kF

(
2π h̄2a

mr

)3

δ(x1)δ(x2). (8)

Note that adopting the contact interaction (8) is equivalent to
using the local density approximation.

B. Hamiltonian for two and three α particles in
cold neutron matter

A single α particle immersed in cold neutron matter has
its mass M changed into the effective mass M∗ by the in-
teraction with neutrons in the medium. This particle, dressed
with neutron excitations, can be regarded as a polaron. As a
natural extension of the previous study on this polaron [8], we

consider two- and three-α systems immersed in cold neutron
matter. As we shall see, the mass enhancement through M∗
acts to increase binding of these systems. The explicit form
of the Hamiltonian of the three-α system in cold neutron
matter is

H =
3∑

i=1

p2
i

2M∗ − Tcm +
3∑

i< j=1

[
U (2)

i j + V (2)
eff;i j

] + U (3) + V (3)
eff ,

(9)

where the center-of-mass kinetic energy term Tcm is sub-
tracted, U (x) (x = 2, 3) denotes the xα potential in vacuum
including the Coulomb term, and V (x)

eff is the induced xα in-
teraction in the neutron medium with the Fermi momentum
kF . Note that M∗ and V (x)

eff depend on kF . The kF dependence
of M∗/M is taken from Ref. [8]. We take the neutron mass as
h̄2/m = 41.47 MeV fm2 and M = 4m to keep the consistency
of the parameters given in Ref. [8].

Here we incorporate V (2)
eff and V (3)

eff derived in the previous
subsection into the Hamiltonian. The original RKKY poten-
tial (4) behaves as ∼r−1 at small r and hence has a singularity
at the origin. This is regularized by folding the harmonic
oscillator type form factor of the α particle associated with
the nuclear force, ( 8ν

3π
)

3
2 e− 8

3 νu2
, which leads to

V (2)
eff (r) = VRKKY(r)erf

(
4

3

√
νr

)
, (10)

where ν is also taken as 0.2675 fm−2 in a way that is consistent
with the width parameter of the α particle [34]. Note that this
range is shorter than the α-n scattering length a and 1/kF

considered in this work. It is reasonable to take the range of
the induced three-body force as the same as the one for the
induced two-α interaction, which leads to

V (3)
eff (R) = m2

π2h̄4kF

(
2π h̄2a

mr

)3

Nνe− 16
9 νR2

(11)

with the normalization constant of the form factor Nν =
( 16ν

3π
)3. Note that R2 = (r1 − r2)2 + (r2 − r3)2 + (r3 − r1)2 =

3
2 x2

1 + 2x2
2, which is symmetric in any particle exchange.

Since a is positive, the induced three-α potential is always
repulsive; its strength is inversely proportional to kF .

Figure 2 plots the kF dependence of the induced two-α
potential, Eq. (10). At short distances, this two-α interaction
is attractive, leading to more stability of multi-α systems.
The range of such attraction increases with kF , while, for
sufficiently large kF , some oscillatory behavior appears, a
feature reflecting the Friedel oscillation associated with the
presence of the neutron Fermi surface. The induced three-α
interaction, on the other hand, is repulsive and weakens as kF

increases. The optimal stability of the three-α system can thus
be realized at a certain kF that is determined in balance with
the purely repulsive induced three-α potential.

The difference of the effective mass from the bare mass,
together with the induced interactions, can crucially affect
the relative motion between α particles. In this work, we
consider each α particle to be a structureless particle but treats
the Pauli principle in the interaction between α particles in
two different ways. Both potential models well reproduce the
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FIG. 2. Induced two-body interaction V (2)
eff (r) as a function of the

α-α distance r for various values of the Fermi momenta kF of cold
neutron matter. The thin horizontal line indicates zero.

empirical α-α scattering phase shift. Although it is difficult to
obtain empirical information on the closest motion, they are
known to give different results for the internal region of the
relative wave function. See, e.g., [35–37] for some examples
in light cluster systems. We utilize such two potential models
to evaluate the uncertainty that comes from model choice.

C. Multi-α cluster models

We start with a standard type of α cluster model that
assumes a shallow and repulsive potential. As U (2), we em-
ploy the Ali-Bodmer (AB) potential [38] (Set a′ [39]), which
reproduces the α-α scattering phase shift and produces the
s-wave 8Be (0+

1 ) resonance position with 0.093 MeV, a value
close to the empirical one 0.092 MeV [40]. Note that we get
0.086 MeV in the present calculation because of the use of the
different mass parameter of an α particle (M = 4m). The AB
potential is l dependent, and its explicit form is

UAB(r) = (125P̂l=0 + 20P̂l=2) exp

(
− r2

1.532

)

− 30.18 exp

(
− r2

2.852

)
, (12)

where the energy and length are given in units of MeV and
fm, and P̂l is the projection operator onto the relative angu-
lar momentum l . This potential is so shallow that no bound
state appears. The Pauli principle in the interaction between
α particles is simulated by the first repulsive term of the
potential. It is known that the empirical energies of states
close to the threshold energy of the three-α system are not
well reproduced by the two-body interaction alone [41]. Then,
one often introduces a phenomenological three-α potential as
U (3), which only has a single Gaussian attractive term [42].
Because of such simplicity, a similar sort of potential model
has often been used to describe astrophysically important
reactions [42–48]. This three-α interaction, together with the
two-α one, leads to the Hoyle state energy of 0.38 MeV with

respect to the three-α threshold, which perfectly agrees with
the empirical Hoyle state energy [49].

Another standard cluster model employs a deep attractive
potential, which accommodates three redundant bound states
φn f l f m f with (n f , l f ) = (0, 0), (1, 0), (0, 2) that are forbidden
by the Pauli principle in the interaction between two α par-
ticles. When the two- and three-α equations are solved, the
orthogonality condition to be imposed for an N-α system
reads

N∑
i< j=1

∑
nlm∈ f

|〈φnlm(i j)|�〉|2 = 0, (13)

where f and � denote the Pauli forbidden two-α bound states
and the eigenstate of the system, respectively. That is why
this kind of model is called the orthogonality condition model
(OCM) [50–52], which has often been used as an alternative to
the microscopic cluster model and been successful in describ-
ing the α condensed states predicted for 12C and 16O [53,54].
As demonstrated in Ref. [55], the low energy α-α scattering
phase shifts are well reproduced without introducing repul-
sive components explicitly in the potential. The relative wave
function thus shows a nodal behavior in the internal region.

In the present study, we employ a folding-type two-α
potential that was based on the effective nucleon-nucleon
interaction [55] and readjusted in Ref. [34]. This potential
is expressed in a single Gaussian form that only includes
attractive term. The calculated energy of 8Be is 0.095 MeV,
reproducing the empirical energy. The explicit form of the
potential is a simple Gaussian form:

UOCM(r) = −106.1 exp

(
− r2

2.232

)
. (14)

This potential is apparently much deeper than the AB potential
of Eq. (12), and produces the three redundant forbidden states,
which should be removed from all the pairwise wave functions
in the three-α systems. The present Hamiltonian makes the
ground- and Hoyle states overbound only with the two-α
interaction, and hence a repulsive phenomenological three-α
potential is often introduced to adjust these energies to the
empirical values. Some applications with this potential set are
given in Refs. [56–58]. Because the calculated Hoyle state
energy amounts to no less than 0.78 MeV, here we newly
parametrize a three-α potential better able to reproduce the
empirical Hoyle state energy 0.38 MeV [49] for a fair com-
parison with the AB result. The explicit form of the potential
in MeV is

U (3)(R) = 77.0 exp(−0.12R2) − 10.0 exp(−0.03R2). (15)

The calculated Hoyle state energy is 0.34 MeV, which is close
to the empirical energy of the Hoyle state.

D. Correlated Gaussian expansion

Let us proceed to construct the wave function of the N-α
system, which is expanded by a superposition of symmetrized
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correlated Gaussian basis functions [59–61]

� (k) =
K∑

i=1

C(k)
i Ḡ(Ai, x) (16)

=
K∑

i=1

C(k)
i S exp

(
−1

2
x̃Aix

)
, (17)

where S denotes the symmetrizer that ensures the symmetry
of an identical bosonic system, x is the (N − 1)-dimensional
column vector composed of a set of the Jacobi coordinate
excluding the center-of-mass coordinate xN , and the tilde de-
notes the transpose of the corresponding matrix. A set of the
coefficients C(k)

i can be obtained by solving the generalized
eigenvalue problem

K∑
j=1

Hi jC
(k)
j = E (k)

K∑
j=1

Bi jC
(k)
j , (18)

where

Hi j = 〈Ḡ(Ai, x)|H |Ḡ(Aj, x)〉 (19)

and

Bi j = 〈Ḡ(Ai, x)|Ḡ(Aj, x)〉. (20)

The nonlinear variational parameter Ai is a positive def-
inite symmetric (N − 1)-dimensional matrix. Note that its
off-diagonal elements, which control correlations among par-
ticles, are determined by means of the stochastic variational
method [59,60]. We follow the setup of Ref. [47] to optimize
the wave function for the three-α system. The bound state
approximation is applied to the positive energy state, which
is valid for a state with a narrow decay width [62–64]. The
correlated Gaussian approach is flexible enough to describe
both short-range and long-range correlations required in this
study. See [65,66] for typical examples that show the power
of this approach.

When we incorporate the deep potential model into the cal-
culations, we impose the orthogonality condition practically
by using the projection method [67] that adds the pseudopo-
tential or projection operator,

γ

N∑
i< j=1

∑
nlm∈ f

|φnlm(i j)〉〈φnlm(i j)|, (21)

to the Hamiltonian. One can eliminate the forbidden states
variationally by taking a large γ value. Here, we adopt the
harmonic-oscillator wave functions with the width parameter
ν = 0.2675 fm−2 [34], which reproduces the size of the α

particle, as the forbidden states to be eliminated from the
relative motion between the α particles. We take γ = 105

MeV and confirm that the converged wave functions typically
contain the forbidden state component of relative magnitude
≈10−6.

III. RESULTS AND DISCUSSIONS

In neutron matter, the effective mass M∗ of an α particle,
as well as the induced two- and three-α interactions, changes

with kF [8]. Here we discuss the influence of these medium
effects on the binding energy of the two- and three-α systems.
More specifically, we analyze the ground state of the two-α
system, i.e., 8Be, and the first excited state of the three-α
system, i.e., the Hoyle state of 12C, both of which exhibit
a resonance in vacuum. We shall show that both the 8Be
and Hoyle states become bound in the neutron medium of
sufficiently large kF .

Figure 3 shows the energies of the three-α systems relative
to the three-α threshold, calculated for AB and OCM as a
function of the Fermi momentum of the neutron medium kF .
To see the contributions of the induced interactions, we com-
pare the energies including the two-body and/or three-body
induced interactions with the one in the absence of the induced
interactions. In general, each energy thus calculated gains as
kF increases except for the Hoyle state energies only with M∗
for AB. Note that M∗ increases with kF [8], leading to further
localization near the potential minima. In fact, the results only
with M∗ contribution clearly reflect the properties that the
OCM potential only have an attractive component while the
AB potential has repulsive and attractive components at short
and intermediate distances, respectively.

For the same reason, α particles of larger M∗ come closer to
each other once the induced two-α interaction, which is attrac-
tive at short distances as shown in Fig. 2, is taken into account.
Then, the induced two-body interaction always plays a role in
gaining the binding energy, which can be seen in the results
allowing for the induced two-body interaction (M∗ + 2b).
This is consistent with a microscopic α + α + n cluster model
calculation [68], which shows that the α-α distance shrinks
in 9Be owing to the interaction from the intervening neutron.
On the other hand, the induced three-α interaction is always
repulsive, which leads to increase in the energy denoted by
M∗ + 2b + 3b as compared with the one denoted by M∗ + 2b.
The result of OCM (M∗ + 2b + 3b) with kF = 0.036 fm−1 is
not shown because no physically stable state is obtained due
to too strong repulsion of the induced three-α interaction.

While all the above-mentioned tendencies apply to the two
cluster models, quantitative details look very different. For
AB, virtually no contribution from the induced three-body
interaction is found because there is only a negligible wave
function amplitude in the internal region due to the repulsive
component of the AB potential, which will be shown in the
next paragraph. The ground state of 8Be become bound at
kF � 0.11 fm−1 for AB and �0.08 fm−1 for OCM. The Hoyle
state becomes bound, i.e., the energy is located below the 8Be
energy, at kF � 0.22 fm−1 for AB and �0.16 fm−1 for OCM.
In the OCM case, the condition for binding of the Hoyle state
is determined by a subtle competition between the attractive
and repulsive contributions from the induced two- and three-
body interactions, respectively. Incidentally, one can safely
ignore the excited states and dissociation of an α particle
because the excitation energy to the first excited state in vac-
uum is far larger than the neutron Fermi energy at neutron
densities of interest here. Also, we ignore possible increase
in the kinetic energy of the two- and three-α systems due to
the Pauli blocking effect, which, in the case of dissolution of
α clusters, would become significant when the density of the
nuclear medium exceeds 0.03 fm−3 [9], again far higher than
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FIG. 3. Energies of the three-α system in neutron matter calculated as a function of the neutron Fermi momentum with different
potential models, (a) AB and (b) OCM. The calculations including the effective mass alone as medium effects are denoted by M∗, while
those additionally including the induced two-body force and also the induced three-body force are denoted by M∗ + 2b and M∗ + 2b + 3b,
respectively. The results for the two-α system (8Be) are also plotted for comparison. The lines are guides for the eye.

the medium density considered in this work. Although the
binding energy of an α particle in such a low density medium
as considered here can be shifted by several MeV [69], the
formation of the molecular-like states near the threshold has
yet to be affected significantly because the threshold energy is
also shifted by about the same amount. We remark in passing
that the polaronic quasiparticle energy, which is typically of
order MeV [8], acts as a shift of the binding energy of an α

particle, but does not affect the formation of weakly bound
molecular-like states because the threshold energy equally
shifts.

This model dependence of the system energy comes from
the difference of the internal structure of the relative wave
function between α clusters. To see such difference explicitly
we calculate the pair density distributions defined by

ρpair (r) =
〈
δ(|r1 − r2| − r)

4πr2

〉
, (22)

where the bracket denotes the expectation value with the
first excited state wave function of the three-α system and
4π

∫ ∞
0 r2ρpair (r)dr = 1. Figure 4 compares the results for the

pair density distribution obtained at various kF . For AB, the
amplitude of the wave function is strongly suppressed due to
the repulsive potential component at short distances, � 2 fm,
while the peak of the amplitude, located near the potential
minimum that arises from U (3), naturally increases with kF

or M∗. In the OCM results, on the other hand, an oscillatory
behavior is found at distances � 3 fm due to the orthogonality
condition to the Pauli forbidden states. Since a significant
amount of amplitude is present in such an internal region,
the wave function in this region is strongly modified as the
Hamiltonian changes. For larger kF or M∗, the amplitude of
the internal wave function becomes larger, which is natural
considering that heavier α particles are more difficult to move
near the OCM potential minimum of zero separation.

We conclude this section by examining how the difference
in the pair density distribution between AB and OCM is
reflected in the expectation values of the Hamiltonian terms.
Figure 5 displays decomposition of the total energy into the
contributions of the kinetic, direct interaction, and induced
interaction terms. Since the OCM wave function has its in-
ternal amplitude disturbed drastically by the medium, the
expectation value of the kinetic energy rapidly increases as
the kF increases for OCM, as can be seen from Fig. 5(a). This
energy cost is dominated by the energy gain from the direct
term 〈∑i j U (2)

i j + U (3)〉 as plotted in Fig. 5(b), which is in turn
controlled by the two-body OCM potential responsible for the
zero-separation potential minimum. For the AB model, the
same kind of behavior of both terms occurs, but the medium
effects are suppressed due to the repulsive nature of the AB
potential at short distances. Finally, Fig. 5(c) compares the
sum of the expectation values from the induced two- and
three-body interactions 〈∑i j V (2)

eff;i j + V (3)
eff 〉 (denoted by Vind)

between AB and OCM. In either case, the contribution of
the induced three-body force is about one or two orders of
magnitude smaller than that of the induced two-body force.
The model dependence of the induced interaction term is ap-
preciable at large kF , a feature that stems from the difference
in the amplitude of the wave function near zero separation
via the induced two-body force. At small kF , the expectation
values of the induced two and three-α interactions become
positive, where the magnitude of the repulsive induced three-α
interaction is larger than that of the induced two-α interaction.
This confirms why we do not find any stable Hoyle state for
the OCM result with kF = 0.036 fm−1.

The decomposition in the absence of the induced two- and
three-body interactions is also plotted in Figs. 5(a) and 5(b)
as denoted by M∗. We see that both the kinetic and direct
interaction terms almost follow the full calculations. Since the
contributions from the induced interactions are minor, i.e., one
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FIG. 4. Pair density distributions ρpair (r) of the three-α system in cold neutron matter of various kF with (a) AB and (b) OCM.

order of magnitude smaller than the expectation values of the
kinetic and direct interaction terms, the kF dependence is pre-
dominantly determined by the Hamiltonian in the absence of
the medium effects except the effective mass correction. The
modeling of the α cluster structure is more essential than the
medium-induced interactions to describe the kF dependence
of the properties of the three-α system in cold neutron matter.

In the present study, the two- and three-α systems, once
being bound, have an infinitely long lifetime. This is because
we have assumed that each α particle is robust in dilute,
cold neutron medium and that possible medium effects come
into our calculations only through the effective mass and in-
medium interactions. In order to evaluate the lifetime of the
two- and three-α bound states in the present cluster picture, we
have to take into account a multiple scattering process among
α particles and surrounding neutrons. Such a process has not
been considered in the present study. We expect, however, that
the resultant width (the inverse lifetime) of these bound states
would be negligibly small compared to the in-medium energy

shift of each α particle, because, as was found in Ref. [8],
the decay process from a single polaronic α particle to a bare
α particle and neutrons is kinematically suppressed due to
the neutron Fermi degeneracy at low temperature. We expect
that a similar mechanism works also for the two- and three-α
particle systems; the broadening is not so large as to lose the
cluster picture.

IV. CONCLUSION AND FUTURE PROSPECTS

The possibility that normally resonant two- and three-
α systems become bound in cold neutron matter has been
pointed out for the first time by combining precise quantum-
mechanical calculations with a polaron picture of α particles.
We have examined two standard α-cluster models that take
into account the Pauli principle in a different way, i.e., via
the Pauli potential and the orthogonality condition to the
Pauli forbidden bound states. We have shown that the ground
state of 8Be and the Hoyle state can be bound at kF � 0.08–
0.11 fm−1 and kF � 0.16–0.22 fm−1, respectively, for the two
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models. The presence of these light nuclear ingredients as
bound states would have a significant impact on the modeling
of matter in stellar collapse and neutron star mergers and also
affect reaction rates for nucleosynthesis therein.

It is interesting to note that the in-medium attraction dis-
cussed in this work has to be realized in finite nuclear systems,
e.g., Be and C isotopes, where the α cluster structure is well
developed. See, e.g., Ref. [70] and references therein. Isotope
dependence of the structure of 2α + Xn and 3α + Xn systems
would hint at the stability of α clusters in cold neutron matter.
As this is just the first evaluation, for simplicity, we ignore the
distortion of an α particle and the Pauli constraint of the rel-
ative wave function of α particles by the surrounding neutron
matter. The latter contribution would work as repulsion and
might counteract the stability of the “bound” 8Be and Hoyle
states. It would be desired to develop a model that includes
such explicit correlations from the neutron medium by starting
from the nucleon degrees of freedom.

Moreover, finite temperature effects would be important
in core-collapse supernovae and neutron star mergers. Al-
though we use the zero-temperature results for in-medium
excitation properties of a single α particle and induced two-
and three-α interactions, the description of such in-medium
properties can be extended to the finite-temperature case along
the theoretical developments in cold atom physics [71–73].
Works in these directions are under way and will be reported
elsewhere.
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