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The semi-inclusive correlator for a J=1/2 bound system, composed by A spin-1/2 fermions, is linearly
expressed in terms of the light-front Poincaré covariant spin-dependent spectral function, in valence approxima-
tion. The light-front spin-dependent spectral function is fully determined by six scalar functions that allow for a
complete description of the six T-even transverse momentum distributions, suitable for a detailed investigation of
the dynamics inside the bound system. The application of the developed formalism to a case with a sophisticated
dynamical content, like 3He, reaches two goals: (i) to illustrate a prototype of an investigation path for gathering
a rich wealth of information on the dynamics and also finding valuable constraints to be exploited from the
phenomenological standpoint and (ii) to support for the three-nucleon system a dedicated experimental effort for
obtaining a detailed three-dimensional picture in momentum space. In particular, the orbital angular momentum
decomposition of the bound state can be studied through the assessment of relations among the transverse
momentum distributions, as well as the relevance of the relativistic effect generated by the implementation of
macroscopic locality. A fresh evaluation of the longitudinal and transverse polarizations of the neutron and proton
is also provided, confirming essentially the values used in the standard procedure for extracting the neutron
structure functions from both deep-inelastic scattering and semi-inclusive reactions, in the same kinematical
regime.
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I. INTRODUCTION

A fully relativistic treatment is needed to describe hadronic
bound systems, when high energy processes are studied and/or
a high degree of accuracy is required. Among the phenomeno-
logical efforts to implement a Poincaré-covariant description
of a bound system, we recall the proposal in Ref. [1], where
the light-front Hamiltonian dynamics (LFHD) [2–7] was
adopted in order to obtain the light-front (LF) spin-dependent
spectral function, whose diagonal elements yield the distri-
bution probability to find a constituent with given spin, LF
momentum, and (off-shell) energy, inside the bound system.
The spectral function is primarily used to study the nucleon
momentum distributions in nuclei, but the formalism can be
notably extended to a hadronic bound system and, as it will
be illustrated in detail, to eventually obtain the six T-even
transverse momentum distributions (TMDs) [8]. Through the
latter quantities, one can achieve a detailed description of
the system, much richer than the one given by the usual
distribution in terms of the constituent momentum |p| in
the laboratory frame. As a matter of fact, one can address
the correlations between spin and momentum, substantially
deepening our understanding of the inner dynamics. For the
nucleon, TMDs (see, e.g., Refs. [9–19]) are the object of

impressive theoretical and experimental efforts, both in semi-
inclusive deep-inelastic scattering (SIDIS) and in Drell-Yan
processes (see, e.g., Refs. [20–28] and Refs. [29–31], respec-
tively). In particular light-cone models and phenomenological
approaches for the TMDs have been used, e.g., (i) to study the
three-dimensional nucleon structure [32–38], (ii) to address
the nucleon-spin puzzle [39], and hence (iii) to disentangle the
contributions of different angular momentum components to
the spin of the nucleon [40,41]. Let us notice that the nucleon,
namely, a spin-1/2 system, is composed by three quarks, in
valence approximation. Therefore, in this approximation, the
approach we have elaborated in LFHD can be applied both to
the nucleon, as a system of three quarks, and to 3He or 3H, as
systems of three nucleons.

The application of our formalism to the three-nucleon
system has a twofold benefit. On one side, it allows one to
illustrate a realistic example, with specific features of TMDs
and constraints among them that can be traced back to the
inner dynamics, e.g., the impact of the orbital momentum
content generated by the interaction. On the other side, it
establishes a first theoretical basis for supporting future ex-
perimental efforts aiming to investigate the TMDs of 3He and
eventually construct a three-dimensional (3D) tomography
of the nucleus in momentum space. In a nucleus with total
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momentum P in the laboratory frame, TMDs describe the
nucleon distribution as a function of x = p+/P+ and of the
transverse momentum p⊥, for any possible orientation of the
spin of the nucleus and of the spin of the nucleon.1 Hence,
it is quite natural to look for a possible interplay with the
spin-dependent spectral function. In Ref. [1] the LF spectral
function, Pτ

M,σ ′σ (κ̃, ε, S), is defined starting from the LF
wave function for a three-nucleon system with polarization
vector S, spin 1/2, and third component M, using nonsym-
metric intrinsic variables. The energy ε is the energy of a
fully interacting two-particle (23) subsystem and the variable
κ̃ = (κ+, κ⊥) is the LF momentum of particle 1 in the intrinsic
reference frame of the cluster [1,(23)]. From the spectator
energy ε one can reconstruct the component κ−, leading to
the off-shell energy of the constituent. The spectral function
is defined through the overlaps between the LF wave func-
tion of the system and tensor products of a plane wave of
momentum κ̃ and the intrinsic state of the two-particle spec-
tator subsystem. The mentioned tensor product allows one
to take care of macroscopic locality, i.e., cluster separability
[3], and to introduce a new effect of binding in the spectral
function [1]. With the help of the Bakamanjian-Thomas (BT)
construction of the Poincaré generators [42], the LF wave
function can be obtained from the usual nonrelativistic wave
function of the system with a realistic interaction between the
nucleons. Then the LF spectral function allows one to embed
the successful phenomenology for few-nucleon systems in a
Poincaré-covariant framework and to satisfy at the same time
both normalization of the three-body system bound state (i.e.,
the baryon number sum rule) and momentum sum rule. Inter-
estingly, in Ref. [1] the definition of the LF spin-dependent
spectral function was plainly generalized to a generic system
of A spin-1/2 fermions. As a first test of our approach, the
calculation of the European Muon Collaboration (EMC) effect
for 3He is under way [43]. Preliminary results which consider
only the contribution of the two-body bound-state channel
show encouraging improvements [44–47] with respect to a
convolution approach with a momentum distribution [48].

In this work the most general expressions for the spin-
dependent spectral functions and for the spin-dependent
momentum distribution in terms of six scalar functions, Bi

and bi, respectively (i = 0, . . . , 5), valid for any system of
spin-1/2 fermions are presented. In valence approximation,
we demonstrate that a linear relation between the LF spectral
function and the semi-inclusive fermion correlator occurs (for
preliminary results see Refs. [49–53]). In turn, for a spin-1/2
system it is straightforward to relate the six T-even twist-two
TMDs to the LF spectral function and eventually to the system
wave function. The results for the 3He TMDs corresponding
to a realistic nuclear interaction are also presented. In particu-

1For the definitions of the kinematical variables of the LFHD used
in this paper, the reader can refer to Ref. [1]. Let us only recall
here that the light-front components of a four-vector v are (v−, ṽ),
where ṽ = (v+, v⊥) with v± = v0 ± n̂ · v and v⊥ = v − n̂(n̂ · v).
The vector n̂ is a generic unit vector. Then the scalar product of two
four vectors a and b is a · b = a−b++a+b−

2 − a⊥ · b⊥. In this paper we
choose n̂ ≡ ẑ.

lar, the LF longitudinal and transverse effective polarizations,
quantities relevant for the extraction of the neutron informa-
tion from data collected with polarized nuclear targets, are
evaluated for the proton and the neutron in 3He and compared
with the corresponding nonrelativistic results currently used
by experimental collaborations. Moreover, we assessed the
approximated relations between the TMDs, investigated in
Refs. [13,35], with the aim to offer a guide for the extraction
of TMDs from experimental data.

It is important to stress that the validity of these relations
could be tested using 3He as a playground, since to perform a
similar test for the proton target is much more challenging,
at the present stage, due to quark confinement and hadron
fragmentation. Indeed the measurement of 3He TMDs ap-
pears feasible at high luminosity facilities, such as Jefferson
Lab and the future electron-ion collider (EIC) [54], through
3−→He(−→e , e′ p)X experiments with proper polarization setups of
beams and targets [55].

It should be pointed out that the relations investigated in
Refs. [13,35] could be applied and experimentally tested for
the nucleon, once one considers the nucleon formed by three
constituents, i.e., when the valence regime of the dressed
quarks is acting.

The paper is organized as follows. In Sec. II, the most
general expressions of the LF spin-dependent spectral func-
tion and of the LF spin-dependent momentum distribution are
presented for any bound system, composed by A fermions
of spin 1/2 in terms of six suitable scalar functions. Ex-
plicit expressions for the six scalar functions defining the
momentum distribution are given in Appendix C for a three-
nucleon system of spin 1/2. In Sec. III, the linear relation in
valence approximation between the semi-inclusive correlator
and the LF spectral function is derived. In Sec. IV, the relation
between the LF spectral function and the T-even twist-two
TMDs is illustrated. In Sec. V, the numerical results for the
3He nucleus are presented, ranging from the TMDs to the
new calculations of LF longitudinal and transverse effective
polarizations for the proton and the neutron in 3He. Also the
approximate relations between the T-even twist-two TMDs
are discussed. In Sec. VI, our conclusions are drawn.

II. THE LF SPIN-DEPENDENT SPECTRAL FUNCTION
AND THE LF SPIN-DEPENDENT MOMENTUM

DISTRIBUTION

Following Ref. [1], within the LFHD a Poincaré-
covariant definition of the spin-dependent spectral function
for an A-particle bound system polarized along S can
be simply obtained by replacing the nonrelativistic over-
laps 〈 �p1, σ τ ; ψ f(A−1)

|ψJM; S, T Tz〉, which define the non-
relativistic spectral function, with their LF counterparts
LF 〈τS, TS; α, ε; JzJ; τ, σ, κ̃|ψJM; S, T Tz〉.

Hence, the LF spin-dependent spectral function reads

Pτ
M,σ ′σ (κ̃, ε, S)

= ρ(ε)
∑
JJzα

∑
TSτS

LF 〈τS, TS; α, ε; JJz; τσ ′, κ̃|ψJM; S, T Tz〉

× 〈S, T Tz; ψJM|κ̃, σ τ ; JJz; ε, α; TS, τS〉LF , (1)
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where |ψJM; S, T Tz〉 is the A-fermion ground state, with
total angular momentum J (third component M), isospin
T Tz, and rest-frame polarization S ≡ {0, S}. The state
|κ̃, σ, τ ; TS, τS; α, ε; JJz〉LF is the tensor product of (i) a fully
interacting intrinsic state of the (A − 1)-particle spectator sys-
tem, with intrinsic energy ε (negative for bound states and
positive for the continuum spectrum ones), spin J (third com-
ponent Jz), isospin TS (third component τS), and α the set of
quantum numbers needed to completely specify the state, and
(ii) a plane wave for the acting particle with LF momentum
κ̃ in the intrinsic reference frame of the cluster [1, (A − 1)].
The total LF momentum of the cluster is P̃intr[1, (A − 1)] ≡
{M0, 0⊥} with M0 its free mass. In Eq. (1), ρ(ε) is the
energy density of the (A − 1)-particle states. Notice that for
(A − 1) = 2, one has ρ(ε) = 1 for the bound states, e.g., for
the deuteron, and ρ(ε) = m

√
mε/2 for the continuum, with m

the constituent mass.
Denoting with pi (i = 1, . . . , A) and P the momenta of

the particles and the whole system in the laboratory frame,
respectively, one gets the following expression for the intrinsic
momentum κ̃:

κ+ = ξ1M0[1, (A − 1)], κ⊥ = p1⊥ − ξ1P⊥, (2)

where ξ1 = p+
1 /P+ and M0[1, (A − 1)], the previously men-

tioned free mass of the [1, (A − 1)] cluster [1], is given by

M2
0[1, (A − 1)] = m2 + κ2

⊥
ξ1

+ M2
S + κ2

⊥
(1 − ξ1)

, (3)

with MS the mass of the interacting (A − 1) system. Let us
assume that the system is at rest in the laboratory. Then it
follows that κ⊥ = p1⊥ (recall that the LF momentum κ̃ is
relative to the cluster frame). For completeness let us intro-
duce the LF momentum k̃ ≡ (k+, k⊥) of the acting particle
in the intrinsic A-particle system, with transverse component
k⊥ = p1⊥ − ξ1P⊥ = p1⊥, plus component k+ = ξ1 M0 
= p+

1
(M0 is the free mass of A particles). In what follows the
subscript 1 will be dropped out and the notations ξ1 = x and
p1⊥ = p⊥ will be adopted.

It is worth reminding that the states |κ̃, σ, τ ; TS, τS; α, ε;
JJz〉LF , to be used for the definition of the spectral function
in the LF overlaps LF 〈τS, TS; α, ε; JzJ; τσ, κ̃|ψJM; S, T Tz〉,
fulfill the macroscopic locality. The property of macroscopic
locality means that the unitary representation of the Poincaré
group for a system composed of two separated subsystems can
be expressed as the tensor product of the unitary representa-
tions of the two subsystems. Hence, subsystem observables,
associated with different space-time regions, must commute
for large enough space-time separation (see Refs. [1,3]). This
is the mathematical formulation of the physical insight that
when a system is separated in disjoint subsystems, these sub-
systems must behave as independent subsystems. Obviously
the notion of disjoint subsystems does not apply to systems
of quarks, where asymptotic states do not exist due to the
confinement.

Furthermore, the use of the momentum κ̃, instead of the
momentum p of the fermion in the laboratory frame, intro-
duces a new effect of binding in the spectral function.

The LF overlaps where the ground state has a generic
polarization vector S, i.e., |ψJM; S, T Tz〉, can be obtained

from the overlaps where the ground state is polarized along the
z axis, i.e., |Jm; εA,
; T Tz〉z, by using the Wigner rotation
matrices, DJ

m,M(α, β, γ ), viz.,

|ψJM; S, T Tz〉 =
∑

m
|Jm; εA,
; T Tz〉zD

J
m,M(α, β, γ ),

(4)

where α, β, and γ are the Euler angles describing the proper
rotation from the z axis to the polarization vector S and εA and

 are the energy and the parity of the state, respectively. Let
us recall that the rotations involved act on the bound system
as a whole, and therefore they are interaction free. Through
Eq. (4) one can relate the spin-dependent spectral function
with a given polarization to the one with polarization S = ẑ
(see Appendix A).

As explained in Ref. [1], in the three-nucleon case the over-
laps LF 〈τS, TS; α, ε; JzJ; τσ, κ̃|ψJm; S, T Tz〉z can be evaluated
in terms of canonical (or instant-form) two- and three-body
wave functions, replaced by the nonrelativistic ones, after
applying the Melosh rotation matrices [56,57] (needed for
obtaining the LF spin states from the canonical ones). This
follows, once the Bakamjian-Thomas construction of the
Poincaré generators [42] is adopted. Then, it turns out that the
two- and three-body nonrelativistic wave functions have all
the needed properties with respect to rotations and translations
of the corresponding canonical wave functions.

In conclusion the LF spin-dependent spectral function is a
2 × 2 matrix, ̂Pτ

M(κ̃, ε, S), which depends on the direction of
the polarization vector S, and it is usually normalized for each
isospin channel τ = p(n), i.e.,∫∑

dε

∫
dκ

2E (κ )(2π )3
Tr
[
̂Pτ

M(κ̃, ε, S)
] = 1, (5)

with E (κ ) =
√

m2 + |κ|2 .
A general expression of ̂Pτ

M(κ̃, ε, S) can be obtained in
terms of the vectors at our disposal in the rest frame of the
system, i.e., (i) the unit vector n̂, which defines the LF com-
ponents of a four-vector, (ii) the polarization vector S, and
(iii) the transverse (with respect to the n̂ axis) momentum
component k⊥ = p⊥ = κ⊥. Let us recall that we adopt n̂ ≡ ẑ.
Then the LF spin-dependent spectral function reads

Pτ
M,σ ′σ (κ̃, ε, S) = 1

2

[Bτ
0,M + σ · F τ

M(κ̃, ε, S)
]
σ ′σ , (6)

where the function Bτ
0,M is the trace of P̂τ

M(κ̃, ε, S) and
yields the unpolarized spectral function, while

F τ
M(κ̃, ε, S) = Tr

[
̂Pτ

M(κ̃, ε, S)σ
]
. (7)

The quantity F τ
M(κ̃, ε, S) is a pseudovector and depends on

the direction of the polarization vector S. Therefore, it can be
written as a linear combination of the independent pseudovec-
tors at our disposal, viz., S, k̂⊥(S · k̂⊥), k̂⊥(S · ẑ), ẑ (S · k̂⊥),
and ẑ (S · ẑ). Furthermore, F τ

M depends on x,

x = κ+

M0[1, (A − 1)]
, (8)
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where M0[1, (A − 1)] (cf. Eq. (3)) is given in terms of κ̃ by [1]

M0[1, (A − 1)] = E (κ ) + ES = (κ+)2 + (m2 + |k⊥|2)

2κ+ +
{[

(κ+)2 + (m2 + |k⊥|2)

2κ+

]2

+ M2
S − m2

}1/2

, (9)

where ES =
√

M2
S + |κ|2 , with M2

S = 4m2 + 4mε for (A − 1) = 2, and k⊥ = κ⊥ = p⊥.
Hence F τ

M can be expressed as a sum of the five available independent pseudovectors multiplied by five scalar quantities,
Bτ

i,M (i = 1, . . . , 5), viz.,

F τ
M(x, k⊥; ε, S) = SBτ

1,M + k̂⊥(S · k̂⊥)Bτ
2,M + k̂⊥(S · ẑ)Bτ

3,M + ẑ(S · k̂⊥)Bτ
4,M + ẑ(S · ẑ)Bτ

5,M, (10)

where the dependence upon n̂ ≡ ẑ is understood for making light the notation. It should be pointed out that to fully address the
issue of TMDs one has to distinguish between the transverse degrees of freedom (DOF) and the one associated to n̂. Therefore,
one cannot anymore use the parametrization with only three scalar functions considered in Ref. [58].

The six scalar quantities Bτ
i,M in general can depend on the possible scalars at our disposal, i.e., x, |k⊥|, ε, (S · k̂⊥)2, (S · ẑ)2,

and (k̂⊥ × ẑ) · S. However, as shown in Appendix A, for a system of total angular momentum J = 1/2, as 3He or 3H, the
quantities Bτ

i,M can depend only on x, |k⊥|, and ε.

Through the trace of the spectral function P̂τ

M(κ̃, ε, S) one can define the LF spin-independent nucleon momentum
distribution, averaged on the spin directions, as follows (see Ref. [1]):

nτ (x, k⊥) =
∫∑

dε
1

2κ+(2π )3

∂κ+

∂x
TrPτ (κ̃, ε, S)

=
∫∑

dε
1

2(2π )3

ES

(1 − x)κ+ ρ(ε)
∑

σ

∑
JJzα

∑
TSτS

LF 〈τS, TS; α, ε; JzJ; τσ, κ̃|ψJM; S, T Tz〉

× 〈T Tz, S; ψJM|κ̃, σ τ ; JJz; ε, α; TS, τS〉LF . (11)

The completeness relation of the nonsymmetric basis for three-interacting-particle systems (see Eq. (51) of Ref. [1]) immediately
leads to the normalization of the nucleon momentum distribution, i.e., the baryon number sum rule,∫

dx
∫

dk⊥ nτ (x, k⊥) = 1, (12)

and to the momentum sum rule, ∫
xdx

∫
dk⊥nτ (x, k⊥) = 1

3
. (13)

From the LF spin-dependent spectral function, after performing the integration shown in Eq. (11), one can obtain the LF
spin-dependent momentum distribution, a 2 × 2 matrix defined by (see also Appendix C)

[N τ
M(x, k⊥; S)

]
σ ′σ =

∫∑
dε

1

2(2π )3

1

1−x

ES

κ+Pτ
M,σ ′σ (κ̃, ε, S) = π

4m

∫
d p+d p−

(2π )4
δ(p+ − ξP+)P+ ES

κ+Pτ
M,σ ′σ (κ̃, ε, S). (14)

As shown in Appendix C, one can obtain the LF spin-dependent momentum distribution from the three-body wave function,
using Eq. (4) and the expression for the LF spin-dependent spectral function given by Eq. (72) of Ref. [1].

As it occurs for the spectral function, the momentum distribution can be expressed through the three independent vectors
available in the rest frame of the system, i.e., k⊥, S, and n̂ ≡ ẑ, and six scalar functions bτ

i,M (i = 0, 1, . . . , 5), viz.,

N τ
M(x, k⊥; S) = 1

2 {b0,M + σ · f τ
M(x, k⊥; S)}, (15)

where f τ
M(x, k⊥; S) is a pseudovector (recall that the dependence upon n̂ ≡ ẑ has been dropped out for simplicity) that can be

decomposed as follows:

f τ
M(x, k⊥; S) = Sbτ

1,M + k̂⊥(S · k̂⊥)bτ
2,M + k̂⊥(S · ẑ)bτ

3,M + ẑ(S · k̂⊥)bτ
4,M + ẑ(S · ẑ)bτ

5,M. (16)
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The functions bτ
i,M, that depend upon x, |k⊥|, (S · k̂⊥)2, (S · ẑ)2, and (k̂⊥ × ẑ) · S, are integrals over the energy ε of the functions

Bτ
i,M [see Eq. (14)], viz.,

bτ
i,M[x, |k⊥|, (S · k̂⊥)2, (S · ẑ)2, (k̂⊥ × ẑ) · S]

= π

4m

∫
d p+d p−

(2π )4
δ[p+ − xP+]P+ ES

κ+Bτ
i,M[x, |k⊥|, ε, (S · k̂⊥)2, (S · ẑ)2, (k̂⊥ × ẑ) · S]. (17)

In Appendix C, for a three-nucleon system of total angular
momentum J = 1/2 explicit expressions for the quantities
bτ

i,M (i = 0, 1, . . . , 5) are obtained in terms of the wave
function of the three-nucleon system, according to the BT
procedure. It is also shown that these functions do not depend
on S, while they do depend on |k⊥| and x. Moreover, the
quantity b0 is independent of M, while for i = 1, . . . , 5 the
dependence on M is through the factor (−1)M+1/2.

From the actual expressions of the quantities bτ
i,M, the es-

sential role of the Melosh matrices to generate the six different
quantities bτ

i,M clearly emerges. Their effect is parametrized
by the angle ϕ present in the expression of the Melosh rota-
tions, RM (k̃), given in Appendix D, viz.,

D
1
2 [RM (k̃)]σσ ′ =

[
cos

ϕ

2
+ i sin

ϕ

2
n̂ · σ

]
σσ ′

, (18)

where

ϕ = 2 arctan
|k⊥|

k+ + m
. (19)

It has to be pointed out that ϕ is small if the relevant values
of |k⊥|/m are too, making the effect of the Melosh rotations
small.

Indeed, in absence of the Melosh matrices, the quanti-
ties bτ

2,M, bτ
3,M, bτ

4,M, and bτ
5,M are related to each other

by factors as cos2 θ , sin2 θ , and cos θ sin θ , with θ the an-
gle between the momentum k and the z axis. Then in
this case the spin-dependent momentum distribution can
be expressed in terms of only three independent scalar
quantities, bτ

0, bτ
1,M, and bτ

2,M/ sin2 θ = bτ
3,M/ cos θ sin θ =

bτ
4,M/ cos θ sin θ = bτ

5,M/ cos2 θ , as in the nonrelativistic
approximation.

Our aim is to obtain an expression of TMDs from the func-
tions bτ

i,M, just introduced. To accomplish this task, another
ingredient, the fermion correlator for a semi-inclusive process,
has to be added, along with its relation to the LF spectral
function. This is detailed in the following section.

III. THE SEMI-INCLUSIVE CORRELATOR FOR A J = 1/2
BOUND SYSTEM AND THE LF SPECTRAL FUNCTION

Let p be the momentum in the laboratory frame of an off-
mass-shell spin-1/2 particle, with isospin τ , inside a bound
system of A spin-1/2 particles with total momentum P and
spin S. The semi-inclusive fermion correlator in terms of the

LF coordinates is [8]

�τ
α,β (p, P, S) = 1

2

∫
dζ−dζ+dζ⊥eip−ζ+/2eip+ζ−/2e−ip⊥·ζ⊥

× 〈P, S, A|ψ̄τ
β (0)W (n̂ · A)ψτ

α (ζ )|A, S, P〉,
(20)

where |A, S, P〉 is the A-particle state (e.g., a nucleus or a nu-
cleon), ψτ

α (ζ ) the particle field (e.g., a nucleon of isospin τ if
the system is a nucleus, or a quark if the system is a nucleon),
and W (n̂ · A) is a link operator which makes �τ

α,β (p, P, S)
gauge invariant. By working in the A+ = 0 gauge, W can be
reduced to unity. Let us notice that the A+ gauge condition is
preserved under Lorentz transformation in the LF dynamics
[59,60]. Hereafter, we assume that the link operator is the
unity operator. Using the translation invariance relation

ψτ
α (ζ ) = eiP̂·ζ ψτ

α (0) e−iP̂·ζ , (21)

one can rewrite the correlator as

�τ
α,β (p, P, S) = 1

2

∫
dζ−dζ+dζ⊥ei(p−P)·ζ

×〈P, S, A|ψ̄τ
β (0)eiζ ·P̂ψτ

α (0)|A, S, P〉, (22)

where the explicit expression for the fermion field in ζμ = 0
is [60]

ψτ
α (0) =

∫
dp̃

2p+(2π )3

×
∑

σ

[
bτ

σ (p̃)uα (p̃, σ ) + dτ†
σ (p̃)vα (p̃, σ )

]
, (23)

with p̃ = (p+, p⊥) the LF particle momentum in the lab-
oratory frame and u(p̃, σ ) and v(p̃, σ ) the particle and
antiparticle LF spinors [60,61]. The following spinor normal-
ization is adopted:

ū(p̃, σ )u(p̃, σ ′) = 2 m δσσ ′ . (24)

The Fock operators satisfy the canonical anticommutation
relations,{

bτ
σ (p̃), bτ ′†

σ ′ (p̃′)
} = {

dτ
σ (p̃), dτ ′†

σ ′ (p̃′)
}

= 2p+(2π )3δσσ ′δττ ′δ(p̃ − p̃′). (25)
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By inserting in Eq. (22) for the correlator �τ
α,β (p, P, S) the fermionic field given in Eq. (23), the particle correlator reads

�τ
α,β (p, P, S) =

∫
dζ+

∫
d ζ̄ei(p−−P− )ζ+/2ei(p̃−P̃)·ζ̄

∫
dp̃′

2p′+(2π )3

∫
dp̃′′

2p′′+(2π )3
〈P, S, A|

×
∑
σ ′′

[
bτ†

σ ′′ (p̃′′)ūβ (p̃′′, σ ′′) + dτ
σ ′′ (p̃′′)v̄β (p̃′′, σ ′′)

]
eiP̂−ζ+/2

×
∑
σ ′

[ei(P̃−p̃′ )·ζ̄bτ
σ ′ (p̃′)uα (p̃′, σ ′) + ei(P̃+p̃′ )·ζ̄dτ†

σ ′ (p̃′)vα (p̃′, σ ′)]|A, S, P〉, (26)

with ζ̄ = (ζ−/2, ζ⊥). Recall that bτ
σ ′ (p̃′)|A, S, P〉 and dτ†

σ ′ (p̃′)|A, S, P〉 are eigenvectors of the LF momentum operator (it is a
kinematical one) with eigenvalues P̃ − p̃′ and P̃ + p̃′, respectively.

By performing the integration on {ζ+/2, ζ̄}, the term in Eq. (26) with vα (p̃′, σ ′) vanishes, since p′+ cannot be negative. Then
one has

�τ
α,β (p, P, S) =

∑
σ ′

uα (p̃, σ ′)
2π

p+

∫
dp̃′′

2p′′+(2π )3
〈P, S, A|

∑
σ ′′

[bτ†
σ ′′ (p̃′′)ūβ (p̃′′, σ ′′) + dτ

σ ′′ (p̃′′)v̄β (p̃′′, σ ′′)]

× δ(P̂− + p− − P−)bτ
σ ′ (p̃)|A, S, P〉

= 2π

p+
∑

σ

∑
σ ′

uα (p̃, σ ′)
∫

p̃′′

2p′′+(2π )3
〈P, S, A|bτ†

σ (p̃′′)δ(P̂− + p− − P−)bτ
σ ′ (p̃)|A, S, P〉ūβ (p̃′′, σ ), (27)

where in the last step the antiparticle contribution has been eliminated, since the LF momentum has to be conserved and p′′+
cannot be negative.

In the previous equation, let us introduce the completeness for the states of (A − 1) particles in valence approximation (see
also Ref. [1]): ∑

JJzα

∑
TSτS

∫∑
ρ(ε)dε

∫
dP̃S

(2π )32P+
S

|P̃S; JJzε, α; TSτS〉LF LF 〈τSTS; α, εJzJ; P̃S| = 1. (28)

In Eq. (28) P̃S is the total LF momentum of the fully interacting (A − 1)-particle system. The symbol
∫∑

means a sum over the
bound states of the (A − 1) system and an integration over the continuum.

For the bound states |P̃S; JJzε, α; TSτS〉LF , the normalization adopted is

LF 〈T ′τ ′; J ′J ′
zε

′α′, P̃′
S|P̃S; JJzεα; T τ 〉LF = 2P+

S (2π )3δ3(P̃′
S − P̃S )δT ′,T δτ ′,τ δα′,αδJ ′,JδJ ′

z,Jzδε′,ε, (29)

while for the LF continuum states the orthogonality reads (see Appendix A of Ref. [1])

LF 〈T ′τ ′; α′ε′J ′
zJ

′; P̃′
S|P̃S; JJzεα; T τ 〉LF = 2P+

S (2π )3δ3(P̃′
S − P̃S )δT ′,T δτ ′,τ δα′,αδJ ′,JδJ ′

z,Jz

δ(ε′ − ε)

ρ(ε)
. (30)

Then, one can define as follows the valence contribution to the particle correlator:[
�τ

V (p, P, S)
]
α,β

= 2π

p+

∫
dp̃′′

(2π )32p′′+
∑
JJzα

∑
TSτS

∑
J ′J ′

zα
′

∑
T ′

S τ ′
S

∫∑
ρ(ε)dε

∫∑
ρ(ε′)dε′

∫
dP̃S

(2π )32P+
S

∫
dP̃′

S

(2π )32P′+
S

×
∑
σσ ′

[uα (p̃, σ ′)〈P, S, A|p̃′′στ ; P̃′
S; J ′J ′

zε
′, α′; T ′

Sτ ′
S〉LF LF 〈τ ′

ST ′
S ; α′, ε′J ′

zJ
′; P̃′

S|

× δ(P̂− + p− − P−)|P̃S; JJzε, α; TSτS〉LF LF 〈τSTS; α, εJzJ; P̃S; p̃σ ′τ |A, S, P〉ūβ (p̃, σ )]

= 2π

p+

∫
dp̃′′

(2π )32p′′+
∑
JJzα

∑
TSτS

∫∑
ρ(ε)dε

∫
dP̃S

(2π )32P+
S

∑
σσ ′

[uα (p̃, σ ′)〈P, S, A|p̃′′στ ; P̃S; JJzε, α; TSτS〉LF

× δ(P−
S + p− − P−)LF 〈τSTS; α, εJzJ; P̃S; p̃σ ′τ |A, S, P〉ūβ (p̃, σ )], (31)

where the equality

b̂τ†
σ (p̃′′)|P̃′

S; J ′J ′
zε

′, α′; T ′
Sτ ′

S〉LF = |p̃′′στ ; P̃′
S; J ′J ′

zε
′, α′; T ′

Sτ ′
S, 〉LF (32)
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has been used; i.e., a free particle |p̃′′στ 〉, with momentum
p̃′′ in the laboratory frame, has been created. Moreover, it
has been taken into account that the operator P̂− acts on
|P̃S; JJzε, α; TS, τS〉LF as follows:

P̂−|P̃S; JJzε, α; TSτS〉LF

= P−
S |P̃S; JJzε, α; TSτS〉LF

= M2
S + |PS⊥|2

P+
S

|P̃S; JJzε, α; TSτS〉LF , (33)

with MS the mass of the interacting (A − 1)-particle system
(for A − 1 = 2, one has M2

S = 4m2 + 4mε).
By considering that the LF momentum is conserved (the

interaction is contained only in the minus component of the
momenta) and the kinematical nature of the LF boosts, one
has the exact separation of the intrinsic DOF from the center
of mass (CM) ones (see Appendix A of Ref. [45]), obtaining

|p̃στ ; P̃S; JJzε, α; TS, τS〉LF

=
√

ES

M0[1, (A − 1)]
|p̃ + P̃S〉LF |κ̃στ ; JJzε, α; TSτS〉LF ,

(34)

where |p̃ + P̃S〉LF is the total LF momentum eigenstate of the
cluster [1, (A − 1)]. The intrinsic state |κ̃στ ; JJzε, α; TSτS〉LF

is composed of a fully interacting intrinsic state of (A − 1)
constituents and a plane wave, describing a constituent that
freely moves in the intrinsic frame of the whole cluster
[1, (A − 1)] with LF momentum κ̃ [see Eq. (2)].

In Eq. (34) one has ES =
√

M2
S + |κ|2 , and M0[1, (A − 1)]

is defined by Eq. (3). The factor
√

ES/M0[1, (A − 1)] takes
care of the proper normalization of the momentum eigenstates
|p̃〉LF , |P̃S〉LF , and |p̃ + P̃S〉LF (see Ref. [45]).

Summarizing, the following overlap, present in Eq. (31),
can be written as follows:

〈P, S, A|p̃στ ; P̃S; JJzε, α; TSτS〉LF

= 2P+(2π )3

√
ES

M0[1, (A − 1)]
δ3(P̃ − P̃S − p̃)

×〈A, S, int|κ̃στ ; JJzε, α; TSτS〉LF , (35)

where the orthogonality of the plane waves is given
by 〈P̃|P̃′〉 = 2P+(2π )3δ(P̃ − P̃′) and |int, S, A〉 ≡ |ψJM;
S, T Tz〉 is the intrinsic eigenstate of the system.

The normalization for the intrinsic over-
laps LF 〈τSTS; α, ε; JzJ; κ̃στ |int, S, A〉 [see Eq. (5)]
reads ∫

d κ̃

2κ+(2π )3

∫∑
ρ(ε)dε

∑
σ

∑
TSτS

×
∑
JJzα

LF 〈τSTS; α, εJzJ; κ̃στ |int, S, A〉|2 = 1. (36)

Eventually, with the help of Eq. (35) the general expression
for the valence contribution to the semi-inclusive fermion
correlator becomes

[
�τ

V (p, P, S)
]
α,β

= 2π

(
P+

p+

)2∑
JJzα

∑
TSτS

∫∑
ρ(ε)dε

δ(P−
S + p− − P−)

(P+ − p+)

ES

M0[1, (A − 1)]

×
∑
σσ ′

[uα (p̃, σ ′)〈A, S, int|κ̃στ ; JJzε, α; TSτS〉LF LF 〈τSTS; α, εJzJ; κ̃σ ′τ |int, S, A〉LF ūβ (p̃, σ )], (37)

where P−
S = (M2

S + |PS⊥|2)/P+
S [see Eq. (33)]. Once the mass

MS is expressed in terms of the intrinsic energy, the integration
on ε can be easily performed, obtaining a relation between the
correlator and the spin-dependent LF spectral function defined
in Eq. (1).

In the case where (A − 1) = 2 and in the reference frame
where P⊥ = 0, the δ function in Eq. (37) implies the equation

M2

P+ = p− + 4m2 + 4mε + |PS⊥|2
P+ − p+ , (38)

i.e.,

ε =
(

M2

P+ − p−)(P+ − p+) − |PS⊥|2
4m

− m (39)

with PS⊥ = −p⊥ = −κ⊥. Then for A = 3 one obtains

[�τ
V (p, P, S)]α,β = 2π (P+)2

(p+)24m

ES

M0[1, (23)]

×
∑
σσ ′

{uα (p̃, σ ′)Pτ
M,σ ′σ (κ̃, ε, S)ūβ (p̃, σ )}.

(40)

Due to Eq. (24), the following equation holds:

ū(p̃, σ ′)�τ
V (p, P, S)u(p̃, σ )

= 2πmES

M0[1, (23)]

(
P+

p+

)2

Pτ
M,σ ′σ (κ̃, ε, S). (41)

From Eq. (40), using the relation (see Appendix C of
Ref. [61])

ū(p̃′, σ ′)γ +u(p̃, σ ) = δσ ′σ 2
√

p′+ p+, (42)

one has

Tr[γ +�τ
V (p, P, S)] = π (P+)2

mp+
ES

M0[1, (23)]

×
∑

σ

Pτ
M,σσ (κ̃, ε, S). (43)

Therefore, since (see Ref. [1])

∂x

∂κz
= (1 − x) κ+

ES E (κ )
(44)
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and [see Eq. (38)]

∂ p−

∂ε
= − 4m

(P+ − p+)
, (45)

one obtains (recall that x = p+/P+ and p⊥ = κ⊥)

1

2(2π )4

∫
d p−

∫
d p+

2P+

∫
dp⊥Tr[γ +�τ

V (p, P, S)]

= 1

(2π )4

∫
dε

∫
dκ

π

E (κ )

∑
σ

Pτ
M,σσ (κ̃, ε, S)

= 1, (46)

because of the spectral function normalization [see Eq. (5)].
Eventually we have the normalization condition for the

particle correlator,∫
d4 p

(2π )4

1

2P+ Tr[γ +�τ
V (p, P, S)]

= 1

2P+
1

(2π )4

1

2

∫
d p−

∫
d p+

∫
dp⊥Tr[γ +�τ

V (p, P, S)]

= 1. (47)

For a generic value of A, the above equations can be easily
generalized.

IV. T-EVEN TWIST-TWO TRANSVERSE
MOMENTUM DISTRIBUTIONS

As shown in Appendix B, in valence approximation the
leading-twist TMDs are related to the scalar functions bi,M,
that contain the relevant information on the dynamics inside
the bound system, by the equations

f (x, |p⊥|2) = b0, (48)

Sz � f + 1

M
p⊥·S⊥ g1T = [Szb1,M + (S · k̂⊥)b4,M

+ (S · ẑ)b5,M], (49)

Sxh1T + Sz

M
px h⊥

1L + p⊥·S⊥
M2

px h⊥
1T

=
[

Sxb1,M + kx

k⊥
(S · k̂⊥)b2,M + kx

k⊥
(S · ẑ)b3,M

]
, (50)

Syh1T + Sz

M
py h⊥

1L + p⊥·S⊥
M2

py h⊥
1T

=
[

Syb1,M + ky

k⊥
(S · k̂⊥)b2,M + ky

k⊥
(S · ẑ)b3,M

]
, (51)

where (see Ref. [62])

h1T =
∫

[d p+d p−] AV
3 . (52)

Let us recall that for a three-body system with total angular
momentum J = 1/2, the dependence of bi,M (i = 0, . . . , 5)
on S is absent and that the bi,M are invariant for rotations of
k⊥ around the z axis (see Appendix C). Then any dependence
on S and on the direction of k⊥ in the right-hand sides of
Eqs. (49)–(51) is explicitly written down.

To obtain the explicit expressions of the TMDs in terms of
the scalar functions bi,M from Eqs. (49)–(51), we consider
specific orientations of the target spin. From Eq. (49) one
obtains the following:

(a) For S = (0, 0, 1),

� f = b1,M + b5,M. (53)

(b) For S = (1, 0, 0) and S = (0, 1, 0),

g1T = M

|p⊥|b4,M. (54)

From Eq. (50) one obtains the following:

(a) For S = (0, 0, 1),

h⊥
1L = M

|p⊥|b3,M. (55)

(b) For S = (1, 0, 0),

h1T (Sx = 1) + |p⊥|2 cos2 φ

M2
h⊥

1T

= b1,M +
(

kx

k⊥

)2

b2,M. (56)

(c) For S = (0, 1, 0),

h⊥
1T = M2

|p⊥|2 b2,M. (57)

Eventually, from Eq. (51) one has the following:

(a) For S = (0, 1, 0),

h1T (Sy = 1) + |p⊥|2 sin2 φ

M2
h⊥

1T

= b1,M +
(

ky

k⊥

)2

b2,M. (58)

(b) For S = (1, 0, 0), an equation identical to Eq. (57) is
obtained.

(c) For S = (0, 0, 1), an equation identical to Eq. (55) is
obtained.

If Eq. (57) is inserted in Eqs. (56) and (58) one obtains

h1T = b1,M. (59)

The sum of Eqs. (56) and (58) gives

h1T + |p⊥|2
2M2

h⊥
1T = �′

T f = 1

2
(2b1,M + b2,M). (60)

In conclusion, from Eqs. (49)–(51) and the three possible
directions of the polarization vector S, nine equations are
obtained. However, only five out of these nine equations are
independent and allow one to determine the five TMDs, � f ,
g1T , h⊥

1L, h⊥
1T,, and �′

T f . Summarizing our results, we can
write the following expressions for the leading-twist TMDs
in valence approximation (recall p⊥ = k⊥ = κ⊥):

f τ (x, |p⊥|2) = bτ
0, (61)

� f τ (x, |p⊥|2) = bτ
1,M + bτ

5,M, (62)
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FIG. 1. Nucleon momentum distribution f τ (x, |p⊥|2) in an unpolarized 3He for the proton (left panel) and the neutron (right panel).

gτ
1T (x, |p⊥|2) = M

|p⊥|bτ
4,M, (63)

�′
T f τ (x, |p⊥|2) = 1

2

(
2bτ

1,M + bτ
2,M
)
, (64)

h⊥τ
1L (x, |p⊥|2) = M

|p⊥|bτ
3,M, (65)

h⊥τ
1T (x, |p⊥|2) = M2

|p⊥|2 bτ
2,M, (66)

where the isospin index τ has been reintroduced.
Since for a three-body system with total angular mo-

mentum J = 1/2 the dependence of bi,M on S is ab-
sent and the bi,M are invariant for rotations of k⊥
around the z axis, the transverse momentum distributions
� f (x, |p⊥|2), g1T (x, |p⊥|2), �′

T f τ (x, |p⊥|2), h⊥
1L(x, |p⊥|2),

and h⊥
1T (x, |p⊥|2) do not depend on the direction of k⊥, as

expected.
In Appendix C 4, explicit expressions for the functions

bτ
i,M are obtained in terms of the three-body wave func-

tion. From these expressions, according to Eqs. (61)–(66), the
twist-two T-even transverse momentum distributions can be
evaluated, directly from the wave function, without a cum-
bersome analysis of the spectral properties of the system,
described by the spectral function.

V. APPLICATIONS

In this section, the above formalism developed for the
valence contribution to the leading-twist TMDs for a J = 1/2
system is applied to the proton and neutron inside 3He. The
quantitative analysis allows one to clearly show the impact
of the inner dynamics on the evaluation of the TMDs, con-
firming the expectation of reaching a detailed 3D picture of
the investigated system in momentum space. Moreover, the
numerical information we have obtained could be exploited
for motivating further experimental efforts for measuring the
3He TMDs.

A. TMDs of the 3He nucleus

The T-even TMDs for 3He are evaluated by using the
3He wave function of Refs. [63,64] with the realistic nuclear
interaction of Ref. [65], but neglecting the small effect of
the Coulomb repulsion between the protons. The results are
shown in Figs. 1–6.

As a first observation one can notice that all of the TMDs
are distributed around x = 1/3, as expected. The structure of
f τ (x, |p⊥|2), presented in Fig. 1, is very smooth, while the
other five distributions have a rich structure, as a function
both of x and |p⊥|. Another relevant observation arises from
the comparison of the TMDs � f τ (x, |p⊥|2), Eq. (62), with
�′

T f τ (x, |p⊥|2), Eq. (64), shown in Figs. 2 and 3, respec-
tively. As is well known, these distributions should be equal
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FIG. 2. Absolute value of the nucleon longitudinal-polarization distribution, � f τ (x, |p⊥|2), in a longitudinally polarized 3He for the proton
(left panel) and the neutron (right panel).
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FIG. 3. Absolute value of the nucleon transverse-polarization distribution, �′
T f τ (x, |p⊥|2), in a 3He nucleus transversely polarized in the

same direction of the nucleon polarization, for the proton (left panel) and the neutron (right panel).

in a nonrelativistic framework, where boosts and transverse
rotations commute [66–69]. The same does not hold in a
relativistic treatment, as the LFHD one adopted here. Indeed,
the comparison shows that the two distributions are actually
different, a signature of remarkable relativistic corrections,
even in a system, the 3He nucleus, where the ratio of the
average nucleon momentum to the nucleon mass is rather
small.

The TMDs presented in Figs. 4–6, namely, gτ
1T (x, |p⊥|2),

h⊥τ
1L (x, |p⊥|2), and h⊥τ

1T (x, |p⊥|2), respectively, have relevant
peaks at low values of |p⊥|. Interestingly, h⊥τ

1T (x, |p⊥|2)
shows a sizable secondary bump at |p⊥| ∼ 2.5 fm−1, due
to the presence of the squared transverse momentum in
bτ

2,M, differently from the linear power occurring in the
other functions bτ

i,M. It is very important to notice that in
valence approximation |gτ

1T (x, |p⊥|2)|, shown in Fig. 4, and
|h⊥τ

1L (x, |p⊥|2)|, shown in Fig. 5, are very similar, as expected
by inspecting the two scalar functions, bτ

3,M and bτ
4,M given in

Eqs. (C37)–(C40), and recalling that the effect of the Melosh
rotations, parametrized through the angle ϕ, is small [see
below Eq. (19)].

The shape of the presented distributions demonstrates
that a comparison of these results with the TMDs extracted
from future measurements of appropriate spin asymmetries
in 3 �He(�e, e′ p)X experiments [55] could give very detailed
information on the 3 He wave function, on the validity of

the LF description, and consequently on the nuclear interac-
tion, once the possible final state interaction is properly taken
care of.

B. Effective polarizations

As a first application of our results, let us evaluate the LF
longitudinal, pτ

||, and transverse, pτ
⊥, effective polarizations

for the proton and for the neutron, viz.,

pτ
|| =

∫ 1

0
dx
∫

dp⊥ � f τ (x, |p⊥|2), (67)

pτ
⊥ =

∫ 1

0
dx
∫

dp⊥ �′
T f τ (x, |p⊥|2). (68)

They are used in the extraction of neutron polarized struc-
ture functions and of neutron Collins and Sivers single spin
asymmetries, respectively, from the corresponding quantities
measured for 3He (see, e.g., Refs. [70,71] and Refs. [72–74],
respectively). This kind of extraction is based on the validity
of the impulse approximation (IA), i.e., no final state interac-
tion between the struck particle and the interacting spectator
system, in the kinematics of the corresponding experiments.
In the SIDIS case and in the kinematics of both Jefferson
Lab and the future EIC, it has been shown [73] that effective
polarizations can be used for the single spin asymmetries,
even beyond the IA, including final state interaction effects.
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From the discussion in the previous section, and from
the expressions of Eqs. (C44) and (C45), it is clear that
the longitudinal and the transverse effective polarizations
are not anymore equal, as it occurs in the nonrelativis-
tic approximation. The difference between the two effective
polarizations is due to the effect of the Melosh rota-
tions for the spin. Indeed, without this effect one has [see
Appendix (C 5)]

pτ
|| = pτ

⊥ = (−1)M+1/2
√

3
∫

dk23k2
23

×
∫ ∞

0
k2dk2Hτ (0, 1, k23, k), (69)

where the function Hτ (0, 1, k23, k) can be obtained from
Eq. (C21). The LF results obtained for the effective polariza-
tions of proton and neutron in 3He with the nuclear interaction
AV18 of Ref. [65], without the Coulomb repulsion, are shown
in Table I, together with the corresponding normalizations,
and compared with the nonrelativistic result. In the first and
second lines the normalizations obtained from the proton and
neutron spectral functions through Eq. (5) and directly from
the wave function are shown, respectively. In the follow-
ing three lines the LF calculations for the longitudinal and
transverse polarizations and for the polarizations without the
Melosh rotations are presented. In the last line, the results for
the nonrelativistic polarizations with the same wave function

are shown. The comparison between the two normalizations
allows one to assess the numerical accuracy, which can be
estimated of the order of a few parts in 104. Therefore the
difference of a few parts in 103 between longitudinal and
transverse polarizations is a meaningful result. However, this
small difference indicates that the effects of the Melosh ro-
tations are tiny [see the result in the second-to-last line and
the comment below Eq. (19)], although for the proton it be-
comes sizable in percentage. Interestingly, the difference of
the LF polarizations with respect to the nonrelativistic results
is larger, up to 2% in the neutron case, and should be ascribed
to the transformations performed between the symmetric and
nonsymmetric intrinsic coordinate systems, not to the Melosh
rotations involving the spins. In any case, the important point
is that the relativistic results do not differ too much from
the nonrelativistic ones currently used by the experimental
collaborations. Therefore, the values of the effective polariza-
tions used to extract the neutron polarized structure functions
and the Collins and Sivers asymmetries from 3He data can
be considered reliable also from a Poincaré-covariant point
of view, although for a more precise determination the new
values for the effective polarizations should be adopted. In
closing this section, we observe that the longitudinal and
transverse polarizations of the nucleons in 3He are analogous
to the axial and tensor charges of the nucleon in terms of
its constituent quarks, in valence approximation. Since the
beginning of the transversity studies, their difference has been
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TABLE I. Normalization and effective longitudinal and trans-
verse polarizations for the proton and the neutron in 3He.

Normalization and effective polarizations Proton Neutron

Normalization from the spectral function 0.99915 0.99885
Normalization from the wave function 0.99929 0.99897
LF longitudinal polarization −0.02299 0.87261
LF transverse polarization −0.02446 0.87314
LF polarization without Melosh rotations −0.02407 0.87698
Nonrelativistic polarization −0.02118 0.89337

always considered a signature of the relativistic content of the
system [33,66–69].

C. Approximate relations

In Refs. [13,33], which define the TMDs as in Eqs. (B2)–
(B4), approximate relations between the TMDs were dis-
cussed, i.e.

� f (x, |p⊥|2) = �′
T f (x, |p⊥|2) + |p⊥|2

2M2
h⊥

1T (x, |p⊥|2), (70)

and

g1T (x, |p⊥|2) = −h⊥
1L (x, |p⊥|2). (71)

In principle, these relations put clear-cut phenomenological
constraints on the number of independent T-even twist-two
TMDs. Therefore, it is interesting to raise the question to
what extent the above relations are valid. To attempt a real-
istic answer, we tested Eqs. (70) and (71) in the case with a
refined dynamical content as the 3He nucleus, assuming the
nucleons as constituents. The first relation, Eq. (70), is not ex-
actly satisfied, since the equality should hold if bτ

2,M = bτ
5,M,

as it follows from Eqs. (62), (64), and (66). By inspecting
Eqs. (C35), (C36), (C41), and (C42), one gets bτ (0)

2,M = bτ (0)
5,M,

while bτ (2)
2,M and bτ (2)

5,M have not the same expressions. The
quantitative difference between the left- and right-hand sides
of Eq. (70) is quite small for the neutron, while it is not
negligible for the proton as shown in Fig. 7.

From the evaluation of the effective polarizations we
learned that the effects of the Melosh rotations are tiny, and
if these effects are neglected in bi,M, i.e., sin(ϕ/2) → 0 in

the expressions presented at the end of Appendix C 4, one
finds that the second relation, Eq. (71), holds, but with the
opposite sign. It is very interesting to analyze such a differ-
ent sign, which could have far reaching consequences. The
functions bτ

4,M and bτ
3,M determine g1T and h⊥

1L, respectively,
as shown in Eqs. (63) and (65). From Eqs. (C37) and (C39),
where the contribution with L = 0 is considered, one has
bτ (0)

3,M = −bτ (0)
4,M, but the two functions are of the order sin(ϕ)

and therefore very small. The contribution with L = 2 leads
to bτ (2)

3,M ∼ bτ (2)
4,M [see Eqs. (C38) and (C40)] and generates

the leading term, proportional to cos2(ϕ), of the two TMDs.
Therefore, the sign in Eq. (71) has to be considered as a
signature of the bound-state orbital content that prevails in
the actual value of g1T and h⊥

1L. As is clear from Appendix C
(where it is shown that only the values L = 0 and L = 2
are possible), if only the contribution from L = 0 is present,
this implies a vanishing value of the active fermion orbital
angular momentum Lρ in the bound-system wave function
[see Eqs. (C9)–(C19)]. On the other hand, a nonvanishing
value of Lρ implies a nonvanishing value of the contribution
from L = 2 to the momentum distribution.

For 3He, Eq. (71) is fulfilled in modulus, as pictorially
shown in Figs. 4 and 5.

For a system with a high average value of the ratio |p⊥|/m,
as occurs when we shift from the 3He case to the nucleon
one, where the constituents are the quarks with mq < mN , (see
Refs. [75,76]), Melosh rotations become relevant. If this is the
case, from the previous discussion, one expects that relations
(70) and (71) hold exactly in valence approximation when the
contribution to the transverse momentum distributions from
L = 2 is very small or totally absent.

Therefore, the validity of equalities (70) and (71) in a
bound system with a high average value of |p⊥|/m represents
a well-defined constraint on the allowed dynamics inside the
three-body bound system.

Another relation proposed in Refs. [13,33], i.e.,

[g1T (x, |p⊥|2)]2 = −2�′
T f (x, |p⊥|2)h⊥

1T (x, |p⊥|2), (72)

does not hold in our approach, even if the contribution from
the angular momentum L = 2 is absent, because of the pres-
ence of the integration on k23 in the expressions of the
transverse momentum distributions [see Eq. (C30)]. Namely, a
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genuine relativistic approach, related to the implementation of
the macroscopic locality, spoils the above relation. Therefore,
a signature of such a relativistic effect is given by the violation
of Eq. (72).

VI. CONCLUSIONS

A Poincaré-covariant description of bound systems, with
A constituents of spin 1/2, was developed within the light-
front Hamiltonian dynamics in Ref. [1] and applied in the
present work to the T-even twist-two transverse momentum
distributions of J = 1/2 systems. The explicit expressions
for the TMDs are obtained in terms of LF overlaps, between
the bound state and states described by tensor products of
a constituent plane wave and an (A − 1) fully interacting
system. These LF overlaps are the basic ingredients of the
spin-dependent spectral function [1], that is a 2 × 2 matrix
with the main-diagonal terms yielding the distribution proba-
bility to find a constituent with given spin and LF momentum,
once the (A − 1)-spectator system has an assigned mass. In-
deed, the leading-twist TMDs, in valence approximation, are
linked to proper traces of the valence contribution to the
semi-inclusive correlation function, which is linearly related
to the spin-dependent spectral function. The formalism was
applied to the 3He nucleus, keeping a twofold aim in mind:
(i) illustrating a realistic case, where a theoretical description
of the bound state takes into account a highly nontrivial dy-
namics, and consequently assessing the impact of dynamics
on the actual TMDs, and (ii) cumulating quantitative anal-
yses for supporting future experimental efforts dedicated to
achieve a detailed 3D picture of 3He. As a matter of fact,
for the 3He nucleus there exists a reliable LF spin-dependent
spectral function, obtained within the Bakamjian-Thomas
framework [42], suitable for embedding the wide knowledge
on the nuclear interaction and the successful phenomenology
developed for few-nucleon systems in a Poincaré-covariant
approach (preliminary calculations of the EMC effect in 3He
were presented in Refs. [44–47] and a full calculation will be
soon available [43]).

In addition to the Melosh rotations, the peculiar feature
of our LF approach is the macroscopic locality, implemented
through the use of nonsymmetric intrinsic variables, i.e., in-
trinsic internal variables for the A − 1 system and the LF
momentum of the active fermion in the intrinsic reference
frame of the [1, (A − 1)] cluster [1]. Their impact on the
3He TMDs was discussed, with particular attention to the
relevance from the experimental point of view. To this end,
we have evaluated, as a first application, the LF longitudinal
and transverse effective polarizations for the proton and the
neutron in 3He. These two quantities are widely used to ex-
tract the neutron polarized structure functions and the neutron

Collins and Sivers asymmetries from the corresponding quan-
tities measured in deep-inelastic scattering (DIS) and SIDIS
off 3He, respectively. Although this procedure is generally
used assuming the validity of the impulse approximation, in
Ref. [73] it was shown how it can be applied even including
the final state interaction.

We found that, for a system with a small average value
of p⊥/m, as the three-nucleon system, the effect of the spin
Melosh rotation is tiny and the longitudinal and the transverse
effective polarizations differ very little from each other, both
for the proton and the neutron. On the contrary, the difference
with respect to the nonrelativistic result is not negligible and
this effect, ascribed to the use of LF intrinsic variables, has
to be considered for a more accurate extraction of neutron
properties from 3He data.

A second important result we discussed is the validation
of the linear relations proposed in Refs. [13,35] between
the T-even twist-two TMDs. Although those relations were
introduced in the context of the nucleon studies in valence
approximation, we investigated their validity for the 3He case
to show how a rich dynamics actually impacts the extraction
of important information on the orbital momentum decompo-
sition of the three-body bound system. Namely, one recovers
the above-mentioned relations if the state has a simple S-wave
structure, while in presence of a D wave and a small effect
of the Melosh rotations, i.e., a small average value of p⊥/m,
the second relation even changes sign. The other relation pro-
posed in Refs. [13,35], between the TMDs, a quadratic one,
does not hold in any case, since the TMDs are given by inte-
grals over the relative momentum of the spectator interacting
pair, which represent an unavoidable feature of a genuinely
Poincaré-covariant framework. Hence, an experimental inves-
tigation, performed at high luminosity facilities, could open
a window directly on the orbital momentum content of the
bound state and the relativistic regime of the inner dynamics.

The twist-three TMDs can be also evaluated in our scheme
and will be the object of another study.

APPENDIX A: DEPENDENCE OF THE SPECTRAL
FUNCTION ON THE POLARIZATION VECTOR S

The LF spin-dependent spectral function for any direc-
tion of the polarization vector S can be written in terms of
the Wigner rotation matrices DJ

m,M(α, β, γ ) [see Eqs. (1)
and (4)]:

PM,σ ′σ (κ̃, ε, S) =
∑
m,m′

DJ ∗
m,M(α, β, γ )DJ

m′,M(α, β, γ )

×Pm′,m
σ ′σ (κ̃, ε, Sz ), (A1)

where Sz = (0, 0, 0, 1) and

Pm′,m
σ ′σ (κ̃, ε, Sz ) = ρ(ε)

∑
JJzα

∑
TSτS

LF 〈τSTS; α, ε; JJz; τσ ′, κ̃|Jm′; εA,
; T Tz〉zz〈T Tz; 
, εA;Jm|κ̃, σ τ ; JJz; ε, α; TSτS〉LF , (A2)

with |Jm; εA,
; T Tz〉z the system ground state with energy εA, parity 
, and isospin T, Tz, polarized along ẑ.
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For a system with J = 1/2, Eq. (A1) can be written as
follows:

PM,σ ′σ (κ̃, ε, S) =
∑
m,m′

D1/2
−m,−M(α, β, γ )(−1)m−M

× D1/2
m′,M(α, β, γ )Pm′,m

σ ′σ (κ̃, ε, Sz ). (A3)

Let us take advantage of the following property for the
product of two Wigner rotation matrices with the same argu-
ments (see Eq. (1) at p. 84 of Ref. [77]):

D j
m,k (α, β, γ )D j′

m′,k′ (α, β, γ )

=
j+ j′∑

J=| j− j′|
〈 jm, j′m′|J (m + m′)〉

× 〈 jk, j′k′|J (k + k′)〉DJ
(m+m′ ),(k+k′ )(α, β, γ ). (A4)

In our case it reads

D1/2
−m,−M(α, β, γ )D1/2

m′,M(α, β, γ )

=
1∑

J=0

〈
1

2
− m,

1

2
m′
∣∣∣∣J (m′ − m)

〉〈
1

2
− M,

1

2
M
∣∣∣∣J0

〉
× DJ

(m′−m),0(α, β, γ )

=
1∑

J=0

〈
1

2
− m,

1

2
m′
∣∣∣∣J (m′ − m)

〉〈
1

2
− M,

1

2
M
∣∣∣∣J0

〉

× (−1)m′−m

√
4π

2J + 1
YJ (m−m′ )(β, α). (A5)

Then the product of the two D j
m,k (α, β, γ ) matrices is a sum

of two terms. The first one, with J = 0, is independent of β,
α (i.e., of S). In the second one, with J = 1, the spherical
harmonics Y1(m−m′ )(β, α) can be replaced by the spherical
components Si of the polarization vector [77]:

YJ (m−m′ )(β, α) =
√

3

4 π
S(m−m′ ). (A6)

Hence the spectral function depends linearly on S. Since in
expansion (10) of the pseudovector F τ

M a linear dependence
on S already explicitly appears in the five pseudovectors S,
k̂⊥(S · k̂⊥), k̂⊥(S · ẑ), ẑ (S · k̂⊥), and ẑ (S · ẑ), as a conse-
quence for a system with total angular momentum J = 1/2
the quantities Bi for i = 1, . . . , 5 can depend only on |k⊥|, x,
and ε.

APPENDIX B: SEMI-INCLUSIVE FERMION
CORRELATOR, TWIST-TWO TRANSVERSE MOMENTUM

DISTRIBUTIONS, AND LF SPECTRAL FUNCTION

In this Appendix equations that link in valence approxi-
mation the leading-twist TMDs to the scalar functions bi,M,
which contain the relevant information on the dynamics inside
the bound system, are obtained.

For the sake of completeness, let us summarize the decom-
position of the semi-inclusive fermion correlator in terms of

the twist-two T-even TMDs as presented in Ref. [8]. Let us
recall that p⊥ = k⊥ = κ⊥, and to simplify the notation the
isospin index τ is omitted in what follows. The semi-inclusive
correlator at leading twist is given by

�(p, P, S) = 1

2
/PA1 + 1

2
γ5/P

[
A2 Sz + 1

M
Ã1 p⊥ · S⊥

]
+ 1

2
γ5/P

[
A3 /S⊥ + Ã2

Sz

M
/p⊥ + Ã3

p⊥ · S⊥ /p⊥
M2

]
,

(B1)

where M is the mass of the system, and the scalar functions,
Al and Ãl , contain the information on the inner dynamics
(l = 1, 2, 3). By performing the traces of the correlator with
suitable combinations of Dirac matrices one has

1

2P+ Tr(γ +�) = A1, (B2)

1

2P+ Tr(γ +γ5�) = Sz A2 + 1

M
p⊥ · S⊥ Ã1, (B3)

1

2P+ Tr(iσ j+γ5�) = − 1

2P+ Tr(γ jγ +γ5�)

= S j
⊥ A3 + Sz

M
pj

⊥ Ã2 + 1

M2
p⊥ · S⊥ pj

⊥ Ã3,

(B4)

where j = 1, 2. Finally, by integrating proper combinations
of Al , and Ãl on p+ and p−, one gets the TMDs as
follows [8]:

f (x, |p⊥|2) =
∫

[d p+d p−]A1, (B5)

� f (x, |p⊥|2) =
∫

[d p+d p−]A2, (B6)

g1T (x, |p⊥|2) =
∫

[d p+d p−]Ã1, (B7)

�′
T f (x, |p⊥|2) =

∫
[d p+d p−]

(
A3 + |p⊥|2

2M2
Ã3

)
, (B8)

h⊥
1L(x, |p⊥|2) =

∫
[d p+d p−]Ã2, (B9)

h⊥
1T (x, |p⊥|2) =

∫
[d p+d p−]Ã3, (B10)

with ∫
[d p+d p−] = 1

2

∫
d p+d p−

(2π )4
δ[p+ − xP+]P+. (B11)

Notice that on the right-hand side of the above equations,
a factor of 2 is missing with respect to the expressions in
Ref. [8], because of the different definitions of the variables
v±. If only the valence contribution to the correlator is re-
tained, the full �(p, P, S) is approximated by �V (p, P, S), and
in turn �V (p, P, S) is expanded in analogy with Eq. (B1) in
terms of AV

l and ÃV
l . Hence, instead of Eqs. (B2)–(B4), one
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can write

1

2P+ Tr(γ +�) ∼ 1

2P+ Tr(γ +�V ) = AV
1 , (B12)

1

2P+ Tr(γ +γ5�) ∼ 1

2P+ Tr(γ +γ5�V )

= Sz AV
2 + 1

M
p⊥·S⊥ ÃV

1 , (B13)

1

2P+ Tr(iσ j+γ5�) ∼ − 1

2P+ Tr(γ jγ +γ5�V )

= S j
⊥ AV

3 + Sz

M
pj

⊥ ÃV
2 + p⊥·S⊥

M2
pj

⊥ÃV
3 , (B14)

where AV
l and ÃV

l are the valence approximations for Al

and Ãl , respectively. Because of Eqs. (40) and (41), the
above traces of �V can be expressed by means of traces
of the spectral function, as shown in Appendix E [see also
Eq. (42)]:

1

2P+ Tr(γ +�V ) = P+

p+
2π

4m

ES

M0[1, (23)]

× Tr[ ̂PM(κ̃, ε, S)], (B15)

1

2P+ Tr(γ +γ5�V ) = P+

p+
2π

4m

ES

M0[1, (23)]

× Tr[σz
̂PM(κ̃, ε, S)], (B16)

− 1

2P+ Tr(γ jγ +γ5�V ) = P+

p+
2π

4m

ES

M0[1, (23)]

× Tr[σ j
̂PM(κ̃, ε, S)]. (B17)

As noted in Sec. II, the LF spectral function can be written in
terms of six scalar quantities, Bi,M.

Therefore, the following equations hold:

Tr( ̂PMI ) = B0,M, (B18)

Tr( ̂PMσx ) = SxB1,M + kx

k⊥
(S · k̂⊥)B2,M

+ kx

k⊥
(S · ẑ)B3,M, (B19)

Tr( ̂PMσy) = SyB1,M + ky

k⊥
(S · k̂⊥)B2,M + ky

k⊥
(S · ẑ)B3,M,

(B20)

Tr( ̂PMσz ) = SzB1,M + (S · k̂⊥)B4,M + (S · ẑ)B5,M.

(B21)

From Eqs. (B12)–(B21) one obtains

AV
1 = π

2m

ES

κ+ B0,M, (B22)

Sz AV
2 + 1

M
p⊥·S⊥ ÃV

1 = π

2m

ES

κ+ [SzB1,M + (S · k̂⊥)B4,M

+ (S · ẑ)B5,M], (B23)

SxAV
3 + Sz

M
px ÃV

2 + p⊥ · S⊥
M2

px ÃV
3

= π

2m

ES

κ+

[
SxB1,M + kx

k⊥
(S · k̂⊥)B2,M

+ kx

k⊥
(S · ẑ)B3,M

]
, (B24)

SyAV
3 + Sz

M
py ÃV

2 + p⊥·S⊥
M2

py ÃV
3

= π

2m

ES

κ+

[
SyB1,M + ky

k⊥
(S · k̂⊥)B2,M

+ ky

k⊥
(S · ẑ)B3,M

]
. (B25)

Let us integrate Eqs. (B22)–(B25) on p+ and p− as in
Eqs. (B5)–(B10). Then in valence approximation one has

f (x, |p⊥|2) = b0, (B26)

Sz � f + 1

M
p⊥·S⊥ g1T

= [Szb1,M + (S · k̂⊥)b4,M + (S · ẑ)b5,M], (B27)

Sxh1T + Sz

M
px h⊥

1L + p⊥·S⊥
M2

px h⊥
1T

=
[

Sxb1,M + kx

k⊥
(S · k̂⊥)b2,M + kx

k⊥
(S · ẑ)b3,M

]
,

(B28)

Syh1T + Sz

M
py h⊥

1L + p⊥ · S⊥
M2

py h⊥
1T

=
[

Syb1,M + ky

k⊥
(S · k̂⊥)b2,M + ky

k⊥
(S · ẑ)b3,M

]
,

(B29)

where (see Ref. [62])

h1T =
∫

[d p+d p−] AV
3 . (B30)

APPENDIX C: THE SPIN-DEPENDENT MOMENTUM
DISTRIBUTION AND THE THREE-BODY

WAVE FUNCTION

One can obtain the LF momentum distribution dependent
upon the spin directions, [N τ

M(x, k⊥; S)]σσ ′ , Eq. (14), for
any direction of the polarization vector S of the system, using
Eqs. (A1) and (A2):

[N τ
M(x, k⊥; S)]σσ ′ =

∫∑
dε

1

2(2π )3

ES

(1 − x)κ+ ρ(ε)
∑
JJzα

∑
TSτS

∑
m

DJ
m,M(α, β, γ )LF 〈τSTS; α, ε; JJz; τσ, κ̃|J jz = m; ε3,
; T Tz〉

×
∑

m′
[DJ

m′,M(α, β, γ )]∗〈T Tz; 
, ε3;J jz = m′; |κ̃, σ ′τ ; JJz; ε, α; TSτS〉LF , (C1)
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where |J jz = m; ε3,
; T Tz〉 is the three-body ground state, polarized along ẑ. Using the explicit expression for the overlaps
given by Eq. (62) of Ref. [1], the two-body completeness∑

J,Jzα

∑
T Tz

∫∑
dερ(ε)〈k′|JJz; ε, α; TSτS〉〈τSTS; α, ε; JzJ|k〉 = δ3(k′ − k), (C2)

and the unitarity of the D matrices, we have[N τ
M(x, k⊥; S)

]
σσ ′ =

∑
m

DJ
m,M(α, β, γ )

∑
m′

[
DJ

m′,M(α, β, γ )
]∗F τmm′

σσ ′ (x, k⊥), (C3)

where

F τmm′
σσ ′ (x, k⊥) = 1

(1 − x)

∑
τ2τ3

∫
dk23E (k )

E23

k+
∑
σ1σ

′
1

D
1
2 [RM (k̃)]σσ1 D

1
2 ∗[RM (k̃)]σ ′σ ′

1

×
∑
σ ′

2,σ
′
3

〈σ ′
3, σ

′
2, σ1; τ3, τ2, τ ; k23, k| j, jz = m; ε3

int,
; T Tz〉〈σ ′
3, σ

′
2, σ

′
1; τ3, τ2, τ ; k23, k| j, jz = m′; ε3

int,
; T Tz〉∗,

(C4)

with RM the Melosh rotation (see Appendix D) and 〈σ ′
3, σ

′
2,

σ ′
1; τ3, τ2, τ ; k23, k| j, jz = m; ε3

int,
; T Tz〉 the momentum-
space instant-form wave function.

The quantities k, E (k), and E23 in Eq. (C4) are easily
determined from the variables x, k⊥, and k23 [1]:

k+ = x M0(1, 2, 3) (C5)

with

M2
0 (1, 2, 3) = m2 + k2

⊥
x

+ M2
23 + k2

⊥
(1 − x)

,

(C6)
M23 = 2

√
m2 + |k23|2,

and eventually

kz = 1

2
(k+ − k−) = 1

2

(
k+ − m2 + k2

⊥
k+

)
, (C7)

while

E (k) =
√

m2 + |k|2 , E23 =
√

M2
23 + k2. (C8)

Let us recall that in the system rest frame one has P⊥ = 0.

1. Evaluation of F τmm′
σσ′

Let us take the instant-form three-body wave function as
the 3He nonrelativistic wave function [1]. The 3He wave func-
tion in momentum space can be written as follows from the
wave function in coordinate space [63,64]:

〈σ1, σ2, σ3; τ1, τ2, τ3; k23, k

∣∣∣∣3He;
1

2
m;

1

2
Tz

〉
=
∑

l23μ23

∑
LρMρ

Yl23μ23 (k̂23)YLρMρ
(k̂)

∑
T23,τ23

〈
1

2
τ2

1

2
τ3

∣∣∣∣T23τ23

〉〈
T23τ23

1

2
τ1

∣∣∣∣12 Tz

〉

×
∑
XMX

∑
j23m23

〈
XMX LρMρ

∣∣∣∣12 m

〉〈
j23 m23

1

2
σ1

∣∣∣∣XMX

〉 ∑
s23σ23

〈
1

2
σ2

1

2
σ3

∣∣∣∣s23σ23

〉
×〈l23μ23s23σ23| j23 m23〉G j23l23s23

LρX (k23, k) (C9)

with

G j23l23s23
LρX (k23, k) = 2(−1)

l23+Lρ

2

π

∫
r2dr jl23 (k23r)

∫
ρ2dρ jLρ

(kρ)φ j23l23s23
LρX (|r|, |ρ|). (C10)

The antisymmetrization of the wave function requires l23 + s23 + T23, where T23 is the isospin of the pair 23, to be odd. In
addition, l23 + Lρ has to be even, due to the parity of 3He.

Then, inserting Eq. (C9) in Eq. (C4), the function F τmm′
σσ ′ (x, k⊥) becomes

F τmm′
σσ ′ (x, k⊥) = 1

(1 − x)

∑
τ2τ3

∑
σ ′

2σ
′
3

∫
dk23

E23E (k)

k+
1

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
l23μ23

∑
LρMρ

Yl23μ23 (k̂23)YLρMρ
(k̂)

×
∑

T23,τ23

〈
1

2
τ2

1

2
τ3

∣∣∣∣T23τ23

〉〈
T23τ23

1

2
τ

∣∣∣∣12 Tz

〉∑
XMX

∑
j23m23

〈
XMX LρMρ

∣∣∣∣12m

〉〈
j23 m23

1

2
σ1

∣∣∣∣XMX

〉 ∑
s23σ23

〈
1

2
σ ′

2
1

2
σ ′

3

∣∣∣∣s23σ23

〉
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×〈l23μ23s23σ23| j23 m23〉G j23l23s23
LρX (k23, k)

∑
σ ′

1

D
1
2 ∗[RM (k̃]σ ′σ ′

1

∑
l ′23μ

′
23

∑
L′

ρM ′
ρ

Y ∗
l ′23μ

′
23

(k̂23)Y ∗
L′

ρM ′
ρ
(k̂)

×
∑

T ′
23,τ

′
23

〈
1

2
τ2

1

2
τ3

∣∣∣∣T ′
23τ

′
23

〉〈
T ′

23τ
′
23

1

2
τ

∣∣∣∣12 Tz

〉 ∑
X ′M ′

X

∑
j′23m′

23

〈
X ′M ′

X L′
ρM ′

ρ

∣∣∣∣12 m′
〉〈

j′23 m′
23

1

2
σ ′

1

∣∣∣∣X ′M ′
X

〉

×
∑
s′

23σ
′
23

〈
1

2
σ ′

2
1

2
σ ′

3

∣∣∣∣s′
23σ

′
23

〉
〈l ′

23μ
′
23s′

23σ
′
23| j′23 m′

23〉G∗ j′23l ′23s′
23

L′
ρX ′ (k23, k). (C11)

Since k is only a function of |k23|, then we are allowed to integrate the spherical harmonics in Eq. (C11) over d�k̂23
. Therefore,

taking care of the orthogonality of the Clebsch-Gordan coefficients, we can write

F τmm′
σσ ′ = 1

(1−x)

∫ ∞

0
dk23k2

23
E23E (k)

k+
∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃]σ ′σ ′

1

∑
s23

∑
j23

∑
l23

∑
T23,τ23

〈
T23τ23

1

2
τ

∣∣∣∣12 Tz

〉〈
T23τ23

1

2
τ

∣∣∣∣12 Tz

〉
×
∑
Lρ

∑
L′

ρ

∑
X

∑
X ′

R j23,mm′,σ1σ
′
1

LρL′
ρXX ′ (k23, k)G j23l23s23

LρX (k23, k)G∗ j23l23s23
L′

ρX ′ (k23, k), (C12)

where

R j23,mm′,σ1σ
′
1

LρL′
ρXX ′ (k23, k) =

∑
Mρ

YLρMρ
(k̂)
∑
MX

∑
m23

〈
XMX LρMρ

∣∣∣∣12 m

〉〈
j23 m23

1

2
σ1

∣∣∣∣XMX

〉∑
M ′

ρ

(−1)−M ′
ρYL′

ρ−M ′
ρ
(k̂)

×
∑
M ′

X

〈
X ′M ′

X L′
ρM ′

ρ

∣∣∣∣12m′
〉〈

j23 m23
1

2
σ ′

1

∣∣∣∣X ′M ′
X

〉
. (C13)

The quantity R j23,mm′,σ1σ
′
1

LρL′
ρXX ′ (k23, k) is invariant for parity, since Lρ and L′

ρ have the same parity.

2. Sum of products of five 3j symbols

By using the properties of the product of two spherical harmonics with the same argument [77] and 3j symbols, Eq. (C13)
becomes

R j23,mm′,σ1σ
′
1

LρL′
ρXX ′ (k23, k) =

∑
LM

√
(2Lρ + 1)(2L′

ρ + 1)

4π (2L + 1)
〈Lρ0L′

ρ0|L0〉YLM (θ, φ)(−1)(Lρ−L′
ρ+M )

×
∑

MρM ′
ρ

(−1)−M ′
ρ

√
2L + 1

(
Lρ L′

ρ L

Mρ −M ′
ρ −M

) ∑
MX M ′

X

∑
m23

(−1)(X−Lρ+m)(−1)( j23− 1
2 +MX )(−1)(X ′−L′

ρ+m′ )

× (−1)( j23− 1
2 +M ′

X )
√

2
√

2
√

2X + 1
√

2X ′ + 1

(
X Lρ

1
2

MX Mρ −m

)(
j23

1
2 X

m23 σ1 −MX

)

×
(

X ′ L′
ρ

1
2

M ′
X M ′

ρ −m′

)(
j23

1
2 X ′

m23 σ ′
1 −M ′

X

)
, (C14)

where the angles θ and φ define the direction of k̂. Only even values of L are allowed to satisfy the parity invariance of
R j23,mm′,σ1σ

′
1

LρL′
ρXX ′ (k23, k).

Through permutations of the columns in the 3j symbols, to have the indices m and m′ in the middle, and changing the sign of
the third momentum components in the 3j symbols where X appears, we obtain (see Eq. (16) at p. 457 of Ref. [77])

R j23,mm′,σ1σ
′
1

LρL′
ρXX ′ (k23, k) = −2(−1)σ

′
1 (−1)m(−1)(X+m)(−1)(X ′+m′ )(−1) j23

√
(2Lρ + 1)(2L′

ρ + 1)

4π
〈Lρ0L′

ρ0|L0〉√2X + 1
√

2X ′ + 1

×
∑
LM

(−1)(L+M )YLM (θ, φ)(−1)(X ′−L′
ρ−1/2−1/2−L−1/2)

∑
aαyη

(−1)(a−α+y−η)
2
ay

( 1
2

1
2 a

σ ′
1 −σ1 α

)

×
(

a L y

−α −M −η

)(
y 1

2
1
2

η m −m′

){ 1
2

1
2 a

X X ′ j23

}⎧⎪⎨⎪⎩
1
2

1
2 y

X X ′ a

Lρ L′
ρ L

⎫⎪⎬⎪⎭. (C15)

where 
2
ay = (2a + 1)(2y + 1).
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3. Sums involving the D matrices for the system polarization and the Melosh factors

Let us consider the following combination of Wigner functions and Melosh rotations:

D jM,a y
σσ ′ (S, k̃) = −2

∑
LM

(−1)M YLM (θ, φ)
∑

m

D j
m,M(α, β, γ )

∑
m′

[
D j

m′,M(α, β, γ )
]∗∑

σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

×
∑
μ,η

(−1)−μ−η

( 1
2

1
2 a

σ ′
1 −σ1 μ

)(
a L y

−μ −M −η

)(
y 1

2
1
2

η m −m′

)
(−1)σ1 (−1)2m+m′

. (C16)

If one applies Eq. (A4) to the product D j
m,M(α, β, γ ) D j

−m′,−M(α, β, γ ), then Eq. (C16) becomes

D jM,a y
σσ ′ (S, k̃) =

√
2

(−1)a+1

√
2a + 1

∑
LM

(−1)MYLM (θ, φ)
2 j∑

J=0

〈 jM, j − M|J0〉
∑
μ,η

(−1)−η
∑
mm′

(−1)m′−M〈 jm, j − m′|J (m − m′)〉

× DJ
(m−m′ ),0(α, β, γ )

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1
(−1)σ1 (−1)(1−a)

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣aμ

〉

×
(

a L y

−μ −M −η

)
(−1)1/2+2y(−1)1/2−m

√
2

2y + 1

〈
1

2
m,

1

2
− m′|y − η

〉
. (C17)

One has to recall that j = 1/2 and that (m − m′) has to be equal to −η. Then we obtain

D1/2M,a y
σσ ′ (S, k̃) = −2

1√
2a + 1

∑
LM

(−1)M YLM (θ, φ)

〈
1

2
M,

1

2
− M

∣∣∣∣y0

〉∑
μ,η

(−1)−MY ∗
y−η(β, α)

√
4π

2y + 1

∑
σ1

D
1
2 [RM (k̃)]σσ1

×
∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣aμ

〉
(−1)σ1

(
a L y

−μ −M −η

)
1√

2y + 1
. (C18)

4. Spin-dependent momentum distribution

Making use of Eq. (C18) to express the quantity D jM,a y
σσ ′ (S, k̃), we can now summarize our results for the spin-dependent

momentum distribution, Eq. (14), as follows:[N τ
M(x, k⊥; S)

]
σσ ′ = (−1)M2

(1 − x)

∫ ∞

0
dk23k2

23
E23E (k)

k+
∑
s23

∑
j23

∑
l23

∑
T23,τ23

〈
T23τ23

1

2
τ

∣∣∣∣12 Tz

〉〈
T23τ23

1

2
τ

∣∣∣∣12Tz

〉
(−1) j23

×
∑
Lρ

∑
L′

ρ

∑
X

∑
X ′

√
(2Lρ + 1)(2L′

ρ + 1)〈Lρ0L′
ρ0|L0〉√2X + 1

√
2X ′ + 1(−1)(−L′

ρ−1/2)

×G j23l23s23
LρX (k23, k)G∗ j23l23s23

L′
ρX ′ (k23, k)(−1)X

∑
ay

(−1)a
2
ay

∑
LM

YLM (θ, φ)
1√

2a + 1
〈1

2
M,

1

2
− M|y0〉

×
∑
μ,η

Y ∗
y−η(β, α)

1√
2y + 1

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣aμ

〉
(−1)σ1

×〈aμLM|y − η〉(−1)μ
1

2y + 1

{ 1
2

1
2 a

X X ′ j23

}⎧⎨⎩
1
2

1
2 y

X X ′ a
Lρ L′

ρ L

⎫⎬⎭. (C19)

It has to be noticed that (a + y) is an even number, as can be easily shown exchanging X with X ′ and Lρ with L′
ρ . Furthermore,

both a and y can be only zero or 1.
Then, if L = 0, one has a = y = 0 or a = y = 1. If L = 2, only a = y = 1 is possible.
Let us define the quantity

Zτ
σσ ′ (k23, k, S, a, y, L) = 
2

ay

1√
2a + 1

1

(2y + 1)3/2

〈
1

2
M,

1

2
− M

∣∣∣∣y0

〉
Hτ (L, a, k23, k)

∑
M

YLM (θ, φ)
∑
σ1

D
1
2 [RM (k̃)]σσ1

×
∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

∑
μη

Y ∗
y−η(β, α)〈aμ, LM|y − η〉(−1)μ

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣aμ

〉
(−1)σ1−1/2, (C20)
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where

Hτ (L, a, k23, k) = (−1)a
∑

j23

∑
l23

∑
s23

∑
T23,τ23

〈
T23τ23

1

2
τ

∣∣∣∣12Tz

〉〈
T23τ23

1

2
τ

∣∣∣∣12 Tz

〉
(−1) j23

×
∑
Lρ

∑
L′

ρ

∑
X

∑
X ′

(−1)(X+1/2)
√

(2Lρ + 1)(2L′
ρ + 1)〈Lρ0L′

ρ0|L0〉√2X + 1
√

2X ′ + 1(−1)X+X ′

×
{ 1

2
1
2 a

X X ′ j23

}⎧⎪⎨⎪⎩
Lρ X 1

2

L′
ρ X ′ 1

2

L a y

⎫⎪⎬⎪⎭(−1)l23G j23l23s23
LρX (k23, k)G∗ j23l23s23

L′
ρX ′ (k23, k). (C21)

Then the momentum distribution can be written as a function of the three independent quantities Zτ
σσ ′ (k23, k, S, 0, 0, 0),

Zτ
σσ ′ (k23, k, S, 1, 1, 0), and Zτ

σσ ′ (k23, k, S, 1, 1, 2) that notably depend on Hτ (0, 0, k23, k), Hτ (0, 1, k23, k), and Hτ (2, 1, k23, k),
viz., [N τ

M(x, k⊥; S)
]
σσ ′ = (−1)M+1/2 2

(1 − x)

∫ ∞

0
dk23k2

23
E23E (k)

k+ {Zτ
σσ ′ (k23, k, S, 0, 0, 0)

+Zτ
σσ ′ (k23, k, S, 1, 1, 0) + Zτ

σσ ′ (k23, k, S, 1, 1, 2)}. (C22)

We evaluate separately Zτ
σσ ′ (k23, k, S, a, y, L) for the three possible cases of the variables L, a, y. The first two quantities to

evaluate are

Zτ
σσ ′ (k23, k, S, 0, 0, 0) = 
2

00

〈
1

2
M,

1

2
− M

∣∣∣∣00

〉
Hτ (0, 0, k23, k)

∑
σ1

D
1
2 [RM (k̃)]σσ1

×
∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1
Y00(θ, φ)Y ∗

00(β, α)〈00, 00|00〉
〈

1

2
σ1,

1

2
− σ ′

1

∣∣∣∣00

〉
(−1)σ1−1/2

= δσσ ′ (−1)1/2−MHτ (0, 0, k23, k)
1

8π
(C23)

and

Zτ
σσ ′ (k23, k, S, 1, 1, 0) = 
2

1,1
1√
3

1

(3)3/2

〈
1

2
M,

1

2
− M

∣∣∣∣10

〉
Hτ (0, 1, k23, k)

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

×
∑

μ

Y00(θ, φ)
∑

η

Y ∗
1−η(β, α)〈1μ, 00|1 − η〉(−1)μ

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣1μ

〉
(−1)σ1−1/2

= 1√
2

1√
4π

Hτ (0, 1, k23, k)
∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

1

2

√
3

2π
[σ · Ŝ]σ1σ

′
1
, (C24)

where the identity (see Ref. [77])∑
μ

Y1−μ(β, α)(−1)μ
〈

1

2
σ1,

1

2
− σ ′

1

∣∣∣∣1μ

〉
(−1)σ

′
1 = 1

2
(−1)1/2

√
3

2π
[σ · Ŝ]σ1σ

′
1

(C25)

is used.
Through the actual expressions of the Melosh rotations [see Appendix D and in particular Eqs. (D5) and (D7)], Eq. (C24)

becomes

Zτ
σσ ′ (k23, k, S, 1, 1, 0) = 1

2

1√
8π

√
3

2π
Hτ (0, 1, k23, k)

[
cos

ϕ

2
+ i sin

ϕ

2
n̂ · σ

]
σσ1

[σ · Ŝ]σ1σ
′
1

[
cos

ϕ

2
− i sin

ϕ

2
n̂ · σ

]
σ ′

1σ
′

=
√

3

8π
Hτ (0, 1, k23, k)

{
[σ · S]σσ ′ − 2 sin

ϕ

2
cos

ϕ

2
{[(S · k̂⊥)ẑ − (S · ẑ)k̂⊥] · σ}σσ ′ − 2 sin2 ϕ

2

×{[(S · ẑ)ẑ − (S · k̂⊥)k̂⊥] · σ }σσ ′

}
, (C26)

where sin ϕ/2 and cos ϕ/2 are defined in Eq. (D3).
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The last quantity, Zτ
σσ ′ (k23, k, S, 1, 1, 2), is

Zτ
σσ ′ (k23, k, S, 1, 1, 2) = 
2

1,1
1√
3

1

(3)3/2

〈
1

2
M,

1

2
− M

∣∣∣∣10

〉
Hτ (2, 1, k23, k)

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

×
∑

M

Y2M (θ, φ)
∑
μη

Y ∗
1−η(β, α)〈1μ, 2M|1 − η〉(−1)μ

〈
1

2
σ1,

1

2
− σ ′

1

∣∣∣∣1μ

〉
(−1)σ1−1/2

= −1

2
Hτ (2, 1, k23, k)

∑
σ1

D
1
2 [RM (k̃)]σσ1

∑
σ ′

1

D
1
2 ∗[RM (k̃)]σ ′σ ′

1

∑
μ

(−1)μ
〈

1

2
σ1,

1

2
− σ ′

1

∣∣∣∣1μ

〉
(−1)σ1−1/2

×
[
Y ∗

1μ(θ, φ)
√

3Y1,0(k̂ · Ŝ) − Y ∗
1μ(Ŝ)

1√
4π

]
. (C27)

In the last step the first of the bipolar harmonics in Eq. (A5) of Ref. [58] was used. Therefore, using again Eq. (C25) and the
results of Appendix D [see Eq. (D5)] we have

Zτ
σσ ′ (k23, k, S, 1, 1, 2) = −1

4

√
3

8

1

π
Hτ (2, 1, k23, k)

⎡⎣3k̂ · Ŝ
∑
σ1σ

′
1

D
1
2 [RM (k+, k⊥)]σσ1 [σ · k̂]σ1σ

′
1
D

1
2 [RM (k+,−k⊥)]σ ′

1σ
′

−
∑
σ1σ

′
1

D
1
2 [RM (k+, k⊥)]σσ1 [σ · Ŝ]σ1σ

′
1
D

1
2 [RM (k+

1 ,−k⊥)]σ ′
1σ

′

⎤⎦. (C28)

Eventually from Eqs. (D7) and (D8) we have

Zτ
σσ ′ (k23, k, S, 1, 1, 2) = −1

4

√
3

8

1

π
Hτ (2, 1, k23, k)

{
3

k
k̂ · Ŝ

[(
cos2 ϕ

2
− sin2 ϕ

2

)
[σ · k]σσ ′

− 2 sin
ϕ

2
cos

ϕ

2
[(k⊥ẑ − kzk̂⊥) · σ]σσ ′

]
−
{

[σ · S]σσ ′ − 2 sin
ϕ

2
cos

ϕ

2

[(
(S · k̂⊥)ẑ − (S · ẑ)k̂⊥

) · σ
]
σσ ′

− 2 sin2 ϕ

2
[((S · ẑ)ẑ + (S · k̂⊥)k̂⊥) · σ]σσ ′

}}
. (C29)

Summarizing our results, the spin-dependent momentum distribution in terms of the pseudovectors S, k̂⊥(S · k̂⊥), k̂⊥(S · ẑ),
ẑ (S · k̂⊥), and ẑ (S · ẑ) is

[N τ
M(x, k⊥; S)

]
σσ ′ = (−1)M+1/2

4π (1 − x)

∫ ∞

0
dk23k2

23
E23E (k)

k+
{
δσσ ′ (−1)1/2−MHτ (0, 0, k23, k)

+
√

3

[
Hτ (0, 1, k23, k) +

√
1

2
Hτ (2, 1, k23, k)

][
[σ · S]σσ ′ − 2 sin

ϕ

2
cos

ϕ

2
[((S · k̂⊥)ẑ−(S · ẑ)k̂⊥) · σ]σσ ′

− 2 sin2 ϕ

2
[((S · ẑ)ẑ+(S · k̂⊥)k̂⊥) · σ]σσ ′

]
−
√

3

2
Hτ (2, 1, k23, k)

3

k2

[
k⊥ · S

[(
cos2 ϕ

2
−sin2 ϕ

2

)
(k⊥ · σ )σσ ′

+
(

cos2 ϕ

2
− sin2 ϕ

2

)
kz(ẑ · σ)σσ ′ − 2 sin

ϕ

2
cos

ϕ

2
[(k⊥ẑ − kzk̂⊥) · σ]σσ ′ + kz(ẑ · S)

[(
cos2 ϕ

2
− sin2 ϕ

2

)
× (k⊥ · σ )σσ ′ +

(
cos2 ϕ

2
− sin2 ϕ

2

)
kz(ẑ · σ )σσ ′ − 2 sin

ϕ

2
cos

ϕ

2
[(k⊥ẑ − kzk̂⊥) · σ]σσ ′

]]}
. (C30)

From a comparison of Eqs. (15), (16), and (C30) one can immediately obtain explicit expressions for the functions
bτ

i,M[|k⊥|, x, (S · k̂⊥)2, (S · ẑ)2, (k̂⊥ × ẑ) · S] (i = 0, 1, . . . , 5) and verify that actually they do not depend on S and then they do
not depend on the direction of k⊥. For i = 0 one has

bτ
0,M[x, |k⊥|] = (−1)

2π (1 − x)

∫ ∞

0
dk23k2

23
E23E (k)

k+ Hτ (0, 0, k23, k). (C31)

It can be useful to decompose the functions bτ
i,M (i = 1, . . . , 5) according to the values zero or 2 of the momentum L,

bτ
i,M = bτ (L=0)

i,M + bτ (L=2)
i,M , (C32)
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and one obtains

bτ (0)
1,M(x, |k⊥|) = (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+ Hτ (0, 1, k23, k), (C33)

bτ (2)
1,M(x, |k⊥|) = (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+

√
1

2
Hτ (2, 1, k23, k), (C34)

bτ (0)
2,M(x, |k⊥|) = − (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+ Hτ (0, 1, k23, k)2 sin2 ϕ

2
, (C35)

bτ (2)
2,M(x, |k⊥|) = − (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+

√
1

2
Hτ (2, 1, k23, k)

×
{

2 sin2 ϕ

2
+ 3

1

k2

[(
cos2 ϕ

2
− sin2 ϕ

2

)
k2
⊥ + 2 sin

ϕ

2
cos

ϕ

2
k⊥kz

]}
, (C36)

bτ (0)
3,M(x, |k⊥|) = (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+ 2 sin
ϕ

2
cos

ϕ

2
Hτ (0, 1, k23, k), (C37)

bτ (2)
3,M(x, |k⊥|) = (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+

√
1

2
Hτ (2, 1, k23, k)

×
{

2 sin
ϕ

2
cos

ϕ

2
− 3

1

k2

[
k⊥kz

(
cos2 ϕ

2
− sin2 ϕ

2

)
+ k2

z 2 sin
ϕ

2
cos

ϕ

2

]}
, (C38)

bτ (0)
4,M(x, |k⊥|) = −bτ (0)

3,M(x, |k⊥|), (C39)

bτ (2)
4,M(x, |k⊥|) = − (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+

√
1

2
Hτ (2, 1, k23, k)

×
{

2 sin
ϕ

2
cos

ϕ

2
+ 3

1

k2

[
k⊥kz

(
cos2 ϕ

2
− sin2 ϕ

2

)
− k2

⊥2 sin
ϕ

2
cos

ϕ

2

]}
, (C40)

bτ (0)
5,M(x, |k⊥|) = bτ (0)

2,M(x, |k⊥|), (C41)

bτ (2)
5,M(x, |k⊥|) = − (−1)M+1/2

2π (1 − x)

√
3
∫ ∞

0
dk23k2

23
E23E (k)

k+

√
1

2
Hτ (2, 1, k23, k)

×
{

2 sin2 ϕ

2
+ 3

1

k2

[(
cos2 ϕ

2
− sin2 ϕ

2

)
k2

z − 2 sin
ϕ

2
cos

ϕ

2
k⊥kz

]}
, (C42)

where the dependence upon ϕ is generated by the Melosh
rotations (see Appendix D). It has to be pointed out that,
in the case of a three-nucleon bound system, ϕ is small, as
one can deduce from its definition in Eq. (D3), and therefore
sin(ϕ/2)/ cos(ϕ/2) � 1.

One can immediately recognize that the quantities bτ
i,M

actually are invariant for rotations around the z axis, while
they do depend on |k⊥| and x. The quantity bτ

0 is independent
of M. For i = 1, . . . , 5, the dependence on M is through the
factor (−1)M+1/2.

5. Effective polarizations

Using the equations (see Appendix B of Ref. [1])

dx

dk+ = 1 − x

E23
,

(C43)
dk+

dkz
= k+

E (k)
,

the longitudinal and transverse effective polarizations of
Eqs. (67) and (68), respectively, are given by

pτ
|| = (−1)M+1/2

√
3
∫ ∞

0
dk23k2

23

∫ ∞

0
k2dk

×
∫ 1

−1
d cos θ f||(k, k23) (C44)

and

pτ
⊥ = (−1)M+1/2

√
3
∫ ∞

0
dk23k2

23

∫ ∞

0
k2dk

×
∫ 1

−1
d cos θ f⊥(k, k23), (C45)

where

f||(k, k23) = Hτ (0, 1, k23, k)
(

1 − 2 sin2 ϕ

2

)
+
√

1

2
Hτ (2, 1, k23, k)

{
1 − 2 sin2 ϕ

2
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− 3
[(

cos2 ϕ

2
− sin2 ϕ

2

)
cos2 θ

− 2 sin
ϕ

2
cos

ϕ

2
sin θcos θ

]}
(C46)

and

f⊥(k, k23) = Hτ (0, 1, k23, k)
(

1 − sin2 ϕ

2

)
+
√

1

2
Hτ (2, 1, k23, k)

{
1 − sin2 ϕ

2

− 3

2

[(
cos2 ϕ

2
− sin2 ϕ

2

)
sin2 θ

+ 2 sin
ϕ

2
cos

ϕ

2
sin θ cos θ

]}
. (C47)

In Eqs. (C46) and (C47) we defined cos θ = kz/k and sin θ =
k⊥/k.

Let us emphasize that without the effect of the Melosh
rotations one has sin ϕ

2 = 0 and cos ϕ

2 = 1. Then the two po-
larizations become equal, viz.,

pτ
|| = pτ

⊥ = (−1)M+1/22
√

3
∫ ∞

0
dk23k2

23

×
∫ ∞

0
k2dkHτ (0, 1, k23, k). (C48)

APPENDIX D: PRODUCTS OF MELOSH
AND PAULI MATRICES

The Melosh matrix

D
1
2 [RM (k̃)]σσ ′ = χ†

σ

m + k+ − ıσ · (ẑ × k⊥)√
(m + k+)2 + |k⊥|2

χσ ′ (D1)

can be rewritten as follows:

D
1
2 [RM (k̃)]σσ ′ =

[
cos

ϕ

2
+ i sin

ϕ

2
n̂ · σ

]
σσ ′

, (D2)

where

ϕ = 2 arctan
|k⊥|

k+ + m
,

cos
ϕ

2
= k+ + m√

(k+ + m)2 + k2
⊥

,

sin
ϕ

2
= |k⊥|√

(k+ + m)2 + k2
⊥

, (D3)

and

n̂ = − ẑ × k⊥
|k⊥| . (D4)

Then the equality

D
1
2 ∗[RM (k+, k⊥)]σσ ′ = D

1
2 [RM (k+,−k⊥)]σ ′σ

=
[
cos

ϕ

2
− i sin

ϕ

2
n̂ · σ

]
σ ′σ

(D5)

holds.

Let us now evaluate the sandwich of [σ · ê] between two
Melosh matrices [see Eqs. (C24), (C26), and (C28)], with ê a
unit vector. One gets

Dσσ ′ (k+, k⊥, ê) =
∑
σ ′

1σ̃
′
1

D
1
2 [RM (k+, k⊥)]σσ ′

1
[σ · ê]σ ′

1σ̃
′
1

×D
1
2 [RM (k+,−k⊥)]σ̃ ′

1σ
′

=
[
cos2 ϕ

2
− sin2 ϕ

2

]
[σ · ê]σσ ′ − 2 sin

ϕ

2

× cos
ϕ

2
{[(ê · k̂⊥)ẑ − (ê · ẑ)k̂⊥] · σ}σσ ′

+ 2 sin2 ϕ

2
{(n̂ · ê)(n̂ · σ)}σσ ′ . (D6)

For ê = S one has

Dσσ ′ (k+, k⊥, S) = [σ · S]σσ ′ − 2 sin
ϕ

2
cos

ϕ

2

×{[(S · k̂⊥)ẑ − (S · ẑ)k̂⊥] · σ}σσ ′

− 2 sin2 ϕ

2
{[(S · ẑ)ẑ + (S · k̂⊥)k̂⊥] · σ}σσ ′ .

(D7)

For ê = k̂, one obtains

Dσσ ′ (k+, k⊥, k̂) =
[
cos2 ϕ

2
− sin2 ϕ

2

]
[σ · k̂]σσ ′ − 2 sin

ϕ

2

× cos
ϕ

2

1

k
[[k⊥ẑ − kzk̂⊥] · σ]σσ ′, (D8)

where k⊥ =
√

k2
x + k2

y and kz = k · ẑ = 1
2 (k+ − k−) =

1
2 (k+ − m2+k2

⊥
k+ ).

APPENDIX E: TRACES OF THE VALENCE CORRELATOR
AND OF THE LIGHT-FRONT SPECTRAL FUNCTION

Let us denote by � a generic 4 × 4 matrix. The traces
of [� �V ] can be expressed through traces of the spectral
function or of the spectral function times σ matrices. Indeed
with the help of Eqs. (40) and (41) one has

1

2P+ Tr[��V ] = 1

2

1

2m

∑
σ

∑
σ ′

ū(p̃, σ )�u(p̃, σ ′)

× 1

p+
πES

ξM0[1, (23)]
PM,σ ′σ (κ̃, ε, S).

(E1)

As in Appendix B, to simplify the notation the isospin index
τ is understood.

The traces of �V in Eqs. (B12)–(B14), i.e., the traces
needed when the correlator is expanded at twist-two level
considering only the T-even terms, can be expressed by traces
of the spectral function with the help of Eq. (E1) and of the
following equalities for the matrix elements of γ matrices
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between LF spinors (see Ref. [61]):

ū(p̃′, σ ′)γ +u(p̃, σ ) = δσ ′σ 2
√

p′+ p+, (E2)

ū(p̃′, σ ′)γ +γ5u(p̃, σ ) = 2
√

p′+ p+χ
†
σ ′σzχσ , (E3)

ū(p̃′, σ ′)γ +γ5γxu(p̃, σ ) = −2
√

p′+ p+χ
†
σ ′σxχσ , (E4)

where χσ is the spin eigenfunction. Then one obtains

1

2P+ Tr(γ +�V) = cTr[PM(κ̃, ε, S)], (E5)

1

2P+ Tr(γ +γ5�V ) = cTr[σzPM(κ̃, ε, S)] (E6)

− 1

2P+ Tr(γ iγ +γ5�V) = cTr[σ iPM(κ̃, ε, S)], (E7)

where c = π ES/(2m κ+) and i = 1, 2.
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