
PHYSICAL REVIEW C 104, 065203 (2021)
Editors’ Suggestion

Measurement of the EMC effect in light and heavy nuclei
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Inclusive electron scattering from nuclear targets has been measured to extract the nuclear dependence of the
inelastic cross section (σA) in Hall C at the Thomas Jefferson National Accelerator facility. Results are presented
for 2H, 3He, 4He, 9B, 12C, 63Cu, and 197Au at an incident electron beam energy of 5.77 GeV for a range of
momentum transfer from Q2 = 2 to 7 (GeV/c)2. These data improve the precision of the existing measurements
of the EMC effect in the nuclear targets at large x and allow for more detailed examinations of the A dependence
of the EMC effect.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is the theory governing
the strong interaction, with quarks and gluons as elementary
degrees of freedom. The interaction between quarks is medi-
ated by gluons as the gauge bosons. Understanding QCD in
terms of the elementary quark and gluon degrees of freedom
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remains the greatest unsolved problem of strong interaction
physics. The challenge arises from the fact that quarks and
gluons cannot be examined in isolation. The degrees of free-
dom observed in nature (hadrons and nuclei) are different
from the ones typically used in the QCD formalism (quarks
and gluons). However, detailed studies of the structure of
hadrons, mainly protons and neutrons, provide a wealth of
information on the nature of QCD. Thus, one of the main
goals of the strong interaction physics is to understand how
the fundamental quark and gluon degrees of freedom give
rise to the nucleons and to inter-nucleon forces that bind
nuclei.

The investigation of deep-inelastic scattering of leptons
from the nucleon is one of the most effective ways for
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obtaining fundamental information on the quark-gluon sub-
structure of the nucleon. Nuclear structure functions are
sensitive the impact of the nucleon binding and motion in the
nucleus, as well as possible modification to the structure of
a nucleon in the nuclear medium. Measurements by the Eu-
ropean Muon Collaboration [1] showed the unexpected result
that the nuclear structure functions differed significantly from
the sum of proton and neutron distributions. This observation
was dubbed the “EMC effect,” and is still the focus of experi-
mental and theoretical efforts to understand the origin of these
differences in detail. We describe here an experiment where
electrons were scattered from the free proton and several
nuclear targets to better understand the possible modification
of hadron properties in the nuclear environment, with a focus
on light nuclear targets.

In the remainder of this section we briefly discuss electron
scattering, structure functions and introduce the kinematics. In
Sec. I, we discuss the EMC effect and briefly survey the find-
ings of earlier experimental and theoretical investigations and
discuss the physics motivation behind the present experiment.
Section II gives an overview of the experimental apparatus
used to collect the presented data. Section III describes the
data analysis procedures and Sec. IV discusses the details of
the systematic uncertainties. The final results are presented in
Sec. V with conclusions and an overview of the results given
in Sec. VI.

A. Kinematics and definitions

Consider electron scattering off a stationary nucleon
through the exchange of a single virtual photon,

e−(k) + N (P) −→ e−(k′) + X, (1)

where k and k′ are the four momenta of the initial and scat-
tered electrons and P is the four-momentum of the target
nucleon. The four momentum of the incoming electron is

k = (E ,
−→
k ) and of the scattered electron is k = (E ′,

−→
k′ ).

Since the target is at rest in the laboratory frame, its four-
momentum is P = (M,

−→
0 ), where M is the nucleon rest mass.

Experimentally, the produced hadrons X are not detected
in inclusive electron scattering. The scattering process takes
place through the electromagnetic interaction by the exchange
of a virtual photon γ ∗, with energy, ν = E − E ′ and momen-
tum −→q . In the laboratory frame, ignoring the electron mass,
one can express Q2, the negative of the four-momentum trans-
fer squared, as Q2 = 4EE ′ sin2(θ/2), where θ is the electron
scattering angle in the laboratory frame, and the invariant
mass of the final hadronic system as W =

√
M2 + 2Mν − Q2.

The Bjorken scaling variable, x = Q2/2Mν, represents the
longitudinal momentum fraction of the hadron carried by the
interacting parton in the infinite momentum frame. For elec-
tron scattering from a free nucleon, x ranges from 0 to 1. For
scattering from a nucleus of mass number A, x ranges from
0 to MA/M ≈ A.

In terms of the deep-inelastic structure functions F1(x, Q2)
and F2(x, Q2), the differential cross section for scattering of

an unpolarized electron in the laboratory frame can be written
as

d2σ

d�dE ′ = 4α2E ′2

Q4
cos2(θ/2)[F2(x, Q2)/ν

+2 tan2(θ/2)F1(x, Q2)/M], (2)

where α is the fine structure constant. For brevity, this doubly
differential cross section is denoted by the symbol σ . When
Q2 and ν → ∞, the structure functions will only depend on
the ratio Q2/ν or equivalently on the variable x [2]. Thus,
in this scaling region the structure functions are simply a
function x. In the quark parton model (QPM), this scaling
behavior is due to the elastic scattering from moving quarks
inside the nucleon. In this model, the structure function F2 is
given by

F2(x) =
∑

f

e2
f xq f (x), (3)

where the distribution function q f (x) is the expectation value
of the number of partons of flavor f (up, down, strange...) in
the hadron, whose longitudinal momentum fraction lies within
the interval [x, x + dx] and e f is the charge of the parton.

In the region of deep-inelastic scattering (DIS), the struc-
ture functions do not scale exactly, and instead depend
logarithmically on Q2. This is a consequence of QCD, in
which the parton distribution functions (PDFs) are not scale
independent, but evolve with Q2. The logarithmic scaling
violations associated with QCD do not break down the con-
nection between the structure function and the underlying
PDFs, but simply reflect the scale-dependence of the PDFs.

Along with the Q2 dependence associated with QCD, ad-
ditional power corrections appear at lower Q2 values, mainly
at large x. So-called “target mass corrections” [3] yield de-
viations from scaling at finite Q2 values arising from terms
neglected in the high-Q2 approximations used in the ideal
scaling limit. In addition, higher-twist effects, associated with
breakdown of the assumption of incoherent elastic scattering
from individual quarks at lower Q2, also modify the scaling
behavior. This is most clearly manifested in the appearance of
clear structures in the inclusive structure function associated
with production of individual resonances.

Analogous to the absorption cross section for real photons,
the F1 and F2 structure functions can be expressed in terms
of longitudinal (σL) and transverse (σT ) virtual-photon cross
sections

d2σ

d�dE ′ = �[σT (x, Q2) + ε σL(x, Q2)], (4)

where ε = �L/�T = [1 + 2(1 + Q2/4M2x2) tan2 θ
2 ]

−1
is the

virtual polarization parameter, � is the virtual photon flux,
and �L and �T defines the probability that a lepton emits a
longitudinally or transversely polarized virtual photon.

The ratio of longitudinal to transverse virtual-photon ab-
sorption cross section is given by

R(x, Q2) = σL

σT
=

[(
1 + ν2

Q2

)
M

ν

F2(x, Q2)

F1(x, Q2)

]
− 1. (5)
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Using Eqs. (2) and (5), the per-nucleon cross-section ratios
(cross section divided by the total nucleon number) for two
different nuclei A1 and A2 can be written as

σA1

σA2

= F A1
2

(
1 + ε RA1

) (
1 + RA2

)
F A2

2

(
1 + ε RA2

) (
1 + RA1

) . (6)

Note that when ε = 1 or RA1 = RA2 , the ratio of the F2 struc-
ture functions is identical to the cross section ratio. In this and
all previous extractions of the EMC effect, it is assumed that
R is target independent, and therefore the cross section ratios
correspond to the F2 structure function ratios.

Because the structure functions depend on Q2, the ratio
may also have a Q2 dependence which we must account for in
comparing our data to measurements at other different Q2 val-
ues. However, the effect of QCD evolution on the ratios should
be essentially negligible as the evolution is nearly identical for
all nuclei, and so cancels in the ratio. The main effect of the
target mass corrections can be applied with a simple change
of variables from Bjorken-x to Nachtmann-ξ when comparing
measurements at different Q2 (Sec. III K). Thus, in kinematics
where any remaining higher-twist contributions are small or A
independent, the comparison of EMC ratios from experiments
at different Q2 values is straightforward. Accounting for this
change of variables mentioned above, it has been shown that
the EMC ratios are independent of Q2 down to very low values
of Q2 and W 2, well below the typically-defined DIS regime
[4,5].

B. EMC effect

Nuclei consist of protons and neutrons bound together by
the strong nuclear force, with binding energies of 1–2% of
the nucleon mass, and characteristic momenta below 200–300
MeV/c. Because DIS involves incoherent scattering from the
quarks, and the energy and momentum scales associated with
nuclear binding are small compared to the external scales in
DIS, the naive assumption was that the nuclear structure func-
tion in high-energy scattering from a nucleus with Z protons
and N neutrons would simply be the sum of the proton and
neutron structure functions:

F A
2 (x, Q2) = ZF p

2 (x, Q2) + NF n
2 (x, Q2). (7)

Even before the discovery of the EMC effect, Fermi motion
of the nucleons in the nucleus was known to play a role
in nuclear structure functions. While the typical scale of the
Fermi momentum is small compared to the momentum scale
of the probe, the longitudinal component is directly added to
the momentum of the virtual photon and cannot be completely
neglected. It is necessary to perform a convolution of the PDFs
of the proton and neutron with the momentum distribution of
the nucleons in the nucleus [6]:

F A
2 (x) =

∫ A

x
dz f A

N (z, ε)F N
2

(
x

z

)
, (8)

where the longitudinal momentum distribution function
f A
N (z, ε) for the nucleon is given by,

f A
N (z, ε) =

∫
d4 p SN (p) δ

[
z −

(
pq

MN q0

)]
. (9)

Here, SN (p) is the spectral function of the nucleus (assumed
to be identical for protons and neutrons), z is the light-cone
momentum carried by the nucleon, and ε is its removal energy.
The four-momenta of the struck nucleon and virtual photon
are given by p and q, where q0 is the energy transferred by the
virtual photon. One can think of the convolution as “smear-
ing” the nucleon PDF in x, yielding little change where the
PDF is relatively flat in x, and larger effects where it grows or
falls rapidly. Calculations showed that the effect was minimal
at low x values, but that the convolution has a large impact for
x >∼ 0.6, where the PDF of the nucleon falls rapidly [7–9].

Therefore, it came as a surprise when this expectation
was shown to be incorrect by measurements which showed
significant effects on the nuclear PDF for nearly all values of
x [1]. As part of a comprehensive study of muon scattering,
the European Muon Collaboration compared data from iron
with data from deuterium by forming a per-nucleon structure
function ratio of these targets. Since the x distributions of up
and down quarks differ, yielding different structure functions
for the proton and neutron, EMC ratios are usually taken as a
ratio of a heavy isoscalar target to deuterium. This cancels out
the contribution due to the difference between the proton and
neutron structure function but yields a ratio which depends on
the nuclear effects in both the heavy nucleus and the deuteron.
For nonisoscalar nuclei, a correction is typically applied to
estimate the effect of the neutron excess in heavy nuclei. Note
that many calculations provide the ratio of the heavy nucleus
to the sum of free proton and neutron structure functions. This
provides a more direct measure of the nuclear effects in the
nucleus, but cannot directly be compared to the data, as the
lack of a free neutron target makes direct measurements of
the free neutron structure function impossible.

When plotted as a function of x, the EMC ratio shows
significant deviation from unity. The deviation of this ra-
tio from unity was unexpected, and, this A dependence in
deep-inelastic scattering is known as the EMC effect. This
discovery had a significant impact on views of the structure
of nuclei, and has spurred discussion of the importance of the
concepts of quarks, gluons and QCD to nuclear physics.

Though the boundaries are somewhat arbitrary, generally
the x dependence of the cross-section ratios are divided into
four regions in x. The gross features of the data are: (1) the re-
gion x < 0.1, where the nuclear cross sections are suppressed
(known as the shadowing region); (2) the region 0.1 < x <

0.3, where the nuclear cross sections are slightly enhanced
compared to nucleon cross sections (antishadowing region);
(3) the region 0.3 < x < 0.7, where a large suppression of
the nuclear cross section is observed (“EMC effect” region);
and (4) the region x > 0.7 where the A/D cross-section ratio
increases and grows beyond unity due to the convolution
(“Fermi smearing”) effects.

C. Previous measurements of the EMC effect

After the initial observation of an unexpected nuclear
dependence in the structure functions of heavy nuclei [1], ad-
ditional measurements were performed at both CERN [10–12]
and SLAC [13–16]. Further measurements by the Euro-
pean Muon Collaboration (EMC) [17] and the New Muon
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Collaboration (NMC) [18,19] significantly improved the pre-
cision and kinematic range of measurements at low x,
mapping out in detail the shadowing region for a range of
nuclei. The HERMES collaboration also measured DIS cross
sections on several nuclear targets including 3He [20,21]. The
data in the antishadowing region are consistent with unity,
while data at higher x have large uncertainties.

Focusing on the high-x region, SLAC experiment E139
[16] mapped out the EMC effect for 4He, Be, C, Al, Ca,
Fe, Ag, and Au in the range 0.09 < x < 0.9 and 2 < Q2 <

15 GeV2. Examining the target ratios, and in particular their
deviations from unity, the experiment showed no significant
Q2 dependence and an identical x dependence for all nuclei,
although the high-x behavior of 4He appeared to differ, but
not in a significant fashion given its large uncertainties. The
A-dependence of the nuclear effects could be parameterized
several different ways: varying logarithmically with A, lin-
early with A−1/3, or being proportional to the average nuclear
density (assuming a uniform sphere based on the measured
nuclear charge radius). Exploiting the local density approxi-
mation [22], it was found that the EMC effect scales as A−1/3

which allowed for data from finite nuclei to be extrapolated to
infinite nuclear matter [23].

The universal x dependence and weak A dependence for
heavy nuclei makes it difficult to evaluate models of the EMC
effect [24–26]. In addition, the EMC effect at very large x
values (>0.7) had not been well measured. The typical DIS
requirement, W 2 > 4 GeV2, yields extremely high Q2 mea-
surements for x >∼ 0.8, where the cross sections are extremely
small. However, an extraction of EMC ratios from JLab exper-
iment E89008 in the resonance region (1.2 < W 2 < 3.0 GeV2

with Q2 = 3–4 GeV2) demonstrated that the nuclear effects
in the resonance region and DIS region are identical [4].
This implies that relaxing the constraint on W 2 may allow
for measurements at larger x values than previously accessed.
Precise measurements at large x allow for tests of the con-
volution model where other effects are expected to be small,
providing a constraint on the convolution effects which must
be accounted for at all x values.

D. Theoretical models

Even though it has been almost four decades since the
discovery of the EMC effect and there are extensive data on
its x and A dependence for A � 12, there is no clear consensus
as to its origin. The EMC effect has been under intense the-
oretical and experimental study since the original observation
(see the reviews in Refs. [24–28] and references therein).
The models used to explain the observed effect range from
traditional nuclear descriptions in terms of pion exchange or
binding energy shifts, to QCD inspired descriptions that in-
clude effects from dynamical rescaling, multiquark clustering
and deconfinement in nuclei, some of which involve changes
to the nucleon’s internal structure when in the dense nuclear
medium.

Traditional calculations begin with the convolution model,
where the nucleon motion modifies the effective x and Q2

values of the e–N interaction, such that the virtual photon
probes a modified quark distribution compared to the station-

ary nucleons. In general, these convolution calculations result
in a suppression of the nuclear structure function at large
x, but do not describe the full depletion observed in EMC
effect measurements. Another drawback of the convolution
calculations is that they often fail to describe the nuclear de-
pendence of the Drell-Yan reaction observed by the Fermilab
E772 collaboration [29].

Although convolution calculations can be improved with
the addition of binding effects, Miller and Smith [30,31] have
demonstrated that binding alone is insufficient to reproduce
the EMC effect. However, these calculations do not include
off-shell effects. The calculation by Benhar et al. [32] uses
nuclear wave functions that include high-momentum tails in
the nucleon momentum distribution while adding a model
to handle the off-shell nucleon cross-section effects. The
combination of these two ingredients results in a significant
depletion of the structure function at large x (larger than
the observed EMC effect) and the addition of contributions
from “nuclear pions” is required to provide quantitative agree-
ment with EMC measurements. Kulagin and Petti [33] also
start from a convolution approach including binding effects,
shadowing, and contributions from nuclear pions, yielding
roughly half of the observed EMC effect. Off-shell effects are
then introduced and their contribution is tuned to give good
agreement with the experimental data. These calculations that
predict a significant role for off-shell effects are particularly
interesting in light of potential explanations for the observed
correlation between the size of the EMC effect and the number
of short-range correlated pairs (SRCs) in nuclei [34–36].

Frankfurt and Strikman [37,38] account for some of the
deficit in the momentum-sum rule for the nucleons by a mod-
ification to the Coulomb field of the nucleus. Starting from a
convolution model which uses the separation energy, account-
ing for the momentum in the Coulomb field simply accounts
for loss of momentum from the nucleons; it does not yield
an additional suppression of the structure function at large x.
However, it would suggest that proposed modifications to the
nuclear pion field, used to explain the deficit of the momentum
sum rule in some calculations, may be overestimated in heavy
nuclei where the modification of the Coulomb field is more
significant.

Additional contributions that have been examined are vir-
tual constituents of the nucleus which are not present in a
nucleon. In the dense environment of a nucleus, one may
have color-singlet clusters of 6, 9,... valence quarks [39,40]
or hidden-color configurations [41,42]. The PDFs of these
exotic objects is expected to differ significantly from the sum
of individual nucleons, leading to a modification to the nuclear
PDF. Estimates of such clusters predict a modest contribution
to the PDFs in the EMC region, but show a larger impact
that may be experimentally accessible at larger x, as such
configurations contribute to the structure function well beyond
x = 1 [24,26,43,44].

Finally, some calculations invoke a modification to the
internal structure of individual nucleons within the dense
medium of the nucleus. Different rescaling models [45–47]
have been proposed to explain the EMC effect, based on
a change in the nucleon radius due to partial deconfine-
ment in the nuclear medium. In terms of QCD, a change in
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confinement means a change in Q2. Thus, QCD evolution
starts at lower Q2 for a free nucleon, and, hence, the QCD
radiative processes per nucleon are larger in a bound nucleon
than in a free nucleon. In this case, scaling is referred to as
“dynamic” because of the evolution of the quark, antiquark
and gluon distributions. Close et al. [48] shows that an in-
crease in confinement size could explain the data on a medium
nucleus such as iron but fail to explain the data for x >∼ 0.65,
since there is no inclusion of Fermi motion effects.

There are other models involving medium-modified nucle-
ons that do not use a rescaling of Q2. In such models the
quark wave function of a nucleon is modified by external
fields generated by the surrounding nucleons. Quark-meson
coupling models [49] include the effect of the nuclear medium
by allowing quarks in nucleons to interact via meson exchange
and additional vector and scalar fields. These models have
been applied to the study the EMC effect in unpolarized
and polarized [50,51] structure functions, as well as other
observables for nuclei and nuclear matter [52]. In addition,
calculations for finite nuclei [51] show a significant difference
between the polarized and unpolarized EMC effect and also
predict flavor dependent effects [53]. Recent work by Miller
and Smith use a chiral soliton model to relate nucleon form
factor modification [54], the EMC effect in polarized [55] and
unpolarized [30] structure functions.

E. Physics motivation behind E03103

The experiment reported here, JLab E03103, was designed
to precisely map out the x, Q2 and A-dependence of inclusive
electron scattering from light to medium heavy nuclei, with
emphasis on light nuclei and the large x region [56]. Results
for the EMC ratios for the light nuclei have been reported in
reference [57]. The analysis presented in this work uses an up-
dated isoscalar correction prescription (described in Sec. III J)
as well as a slightly modified radiative correction scheme (see
Sec. III H) as compared to reference [57]. The impact of these
modifications on the light target results is not large (at most
1% for the isoscalar correction and 0.6% for the radiative
corrections), but does result in slightly different cross-section
ratios.

While the EMC effect has been well measured in heavy
nuclei, the SLAC E139 ratios for 4He have large uncertain-
ties and there were no previous measurements on 3He in the
valence region. Data on light nuclei are important in under-
standing the microscopic origin of the EMC effect as they
allow direct comparison to detailed few-body calculations
with minimal nuclear structure uncertainties. Data on light
nuclei can also help constrain nuclear effects in the deuteron
which are critical to the extraction of the neutron structure
function from measurements on the deuteron [58–62]. Light
nuclei allow for better tests of the A dependence of the EMC
effect, while also providing measurements of nuclei more
similar to the deuteron in mass and density.

In addition, studies of short-range correlations [63–70]
suggest that high-density configurations play an important
role in nuclei, which could potentially yield a modification
of the nucleon structure function in overlapping nucleons
[24,26,43,44,71,72]. If two-body effects have a significant

contribution to the EMC effect, then the EMC effect could
be different in few-body nuclei than it does in heavy nuclei,
where the effects may be saturated. There were also models
which predicted a very different x dependence for the EMC
effect for A = 3,4 [73–75], so the inclusion of light nuclei was
considered important as a way to look for two-body effects as
a possible source of medium modification in nucleon struc-
ture.

Beyond the focus on light nuclei, E03103 emphasized
large x, where Fermi motion and binding effect dominate.
Because of the lack of data in this region and the limited data
for few-body nuclei, many calculations of the EMC effect
are performed for nuclear matter and extrapolated to lower
density when comparing to nuclear parton distributions. In
such cases, the important contributions of binding and Fermi
motion are not modeled in detail, making it difficult to isolate
contributions beyond these more conventional effects.

While many models mentioned in the previous section have
had some success, most are incomplete. They may work only
in a limited x range, conflict with limitations set by other
measurements, or explain the data while neglecting Fermi
motion and binding. However, it is clear that the effects of
binding and Fermi motion are important and contribute over
the entire x region, not just at the largest x values. The large x
data are particularly sensitive to these effects and to the details
of nuclear structure. As such, precise high-x data for both light
and heavy nuclei can help to constrain these effects.

II. EXPERIMENTAL APPARATUS

Experiment E03103 was carried out in Hall C in 2004 at the
Thomas Jefferson National Accelerator Facility (JLab) [76].
The unpolarized electron beam from the Continuous Electron
Beam Accelerator Facility was incident on solid, liquid, and
high-pressure gas targets. The high momentum spectrometer
(HMS) (a magnetic focusing spectrometer) was used to detect
the scattered electrons. The nominal electron beam energy (E )
was measured with the Hall C arc energy measurement [77],
the scattered momentum (E ′) and angle (θ ) are reconstructed
from the particle trajectory in the HMS.

A. Experiment kinematics

Most of the data for the experiment were taken at
5.776 GeV beam energy with beam currents of 30–80 μA.
The cryogenic targets 2H, 3He, 4He and solid targets 9B, 12C,
63Cu, and 197Au were used for EMC ratio measurements while
1H was used primarily for calibration. Data on all targets
were taken at 40◦ and 50◦, and the cross-section ratios with
respect to deuterium were extracted. At high x, the kinematics
were not in the conventional DIS region (W 2 > 4 GeV2), so
additional data were taken for 12C and 2H at 8 additional
kinematic settings, half at E = 5.776 GeV and half at 5.01
GeV, as shown in Fig. 1.

B. Targets

E03103 measured inclusive electron scattering from a wide
range of nuclei using both cryogenic and solid targets. This

065203-5



J. ARRINGTON et al. PHYSICAL REVIEW C 104, 065203 (2021)

FIG. 1. Kinematic coverage for the experiment. Contours of con-
stant invariant mass squared are shown with black lines. Different
colors represent different angles, given in the legend. Closed symbols
were taken at E = 5.776 GeV beam energy and open symbols at
5.01 GeV.

experiment used the standard Hall C target ladder (see Fig. 2)
which was placed inside a vertical cylindrical vacuum scat-
tering chamber. The scattering chamber had entrance and exit
openings for the beam as well as a vacuum pumping port and
several view ports. The beamline was connected directly to the
scattering chamber, so the beam did not pass through any solid
entrance window. There were two cutouts on the chamber for
the two spectrometers to detect the scattered particles, which
are covered with thin (0.41 mm) aluminum windows.

The target assembly contained several loops for cryogenic
targets and the solid target ladder was attached above the
optics sled. The target stack could be raised or lowered by
an actuator to put the desired target in the beam path. The
cryogenic targets were contained in vertical cylindrical Al
cans with a diameter of ≈4 cm. Each loop consisted of a cir-
culation fan, a target cell, heat exchangers, and high-powered

FIG. 2. A schematic side view of Hall C target ladder.

TABLE I. Nominal cryotarget dimensions. Here, 〈t〉 represents
the average offset-corrected cryogen in the path of the beam and
R.R.L. is the relative radiation length (material thickness as a fraction
of its radiation length ).

〈t〉 Density Areal thickness R.R.L. Purity
Target (cm) (g/cm3) (g/cm2) (%) (%)

1H 3.865 0.0723 0.2794(36) 0.456 99.99
2H 3.860 0.167 0.6446(83) 0.526 99.95
3He 3.865 0.0708 0.2736(51) 0.419 99.9
4He 3.873 0.135 0.5229(85) 0.554 99.99

heaters. The target liquid in each loop was cooled with helium
gas using a heat exchanger. The liquid moved continuously
through the heat exchanger, to the target cell and back. A
high-power heater regulated the temperature of the cryogenic
targets, compensating for the power deposition by the beam
during low current or beam off periods. Solid targets were
attached above the optics sled and all the foils in the solid
target ladder were separated vertically.

The optics sled contained a dummy target, which consisted
of two aluminum foils (aluminum alloy Al-6061-T6—
identical to the cryotarget endcaps) placed ≈4 cm apart. These
dummy targets mimicked the cell walls of the cryogenic target
and facilitated the measurement of the background originating
from the cell walls. The dummy targets were flat aluminum
foils and were approximately eight times thicker than the
walls of liquid targets to reduce the time needed for back-
ground measurement.

Areal thicknesses of the cryotargets were computed (see
Table I) from the target density and the length of the cryogen
in the path of the beam. Since the target cans were cylindrical,
the effective target length seen by the beam differed from the
diameter of the can if the beam did not intersect the geomet-
rical center of the targets, and a correction accounting for
beam offset was applied run-by-run. The target density was
calculated using the knowledge of temperature and pressure.

Thicknesses of the solid targets were calculated using
measurements of the mass and area of the targets. For solid
targets, there is an uncertainty in the effective thickness due
to uncertainty in angle of the target relative to beam direction,
but this is estimated to be <0.01%. Solid targets used in the
experiment and their dimensions are given in Table II. No

TABLE II. Solid target dimensions, relative radiation length, and
purity. Here, Al(1) and Al(2) represent the aluminum foils which
mimicked the cell walls of cryogenic target.

Density Areal thickness R.R.L. Purity
Target (g/cm3) (g/cm2) (%) (%)

Be 1.848 1.8703(94) 2.87 99.0
C 2.265 0.6667(40) 1.56 99.95
Cu 8.96 0.7986(40) 6.21 99.995
Au 19.32 0.3795(38) 5.88 99.999
Al(1) 2.699 0.2626(13) 1.09 98.0
Al(2) 2.699 0.2633(13) 1.10 98.0
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FIG. 3. Schematic side view of the HMS. The first three magnets
(red) are Q1, Q2, and Q3; the blue magnet is the Dipole. Adapted
from Ref. [77].

correction is applied for the ≈ 1% impurities in the 9Be target,
as the cross section per nucleon for 9Be and heavier nuclei
differs at the few percent level, so the correction is typically
�0.1%.

C. High-momentum Spectrometer

E03103 used the HMS to detect the scattered electrons.
The HMS is a 25◦ vertical-bend spectrometer that consists of
three quadrupole magnets, one dipole magnet and a detector
package. The detectors are housed inside a concrete enclosure
and this shield hut, along with the HMS magnets, are mounted
on a steel carriage which can be rotated on a pair of concentric
rails to the desired scattering angle. An octagonal collimator
is placed before the entrance to the first magnet which is
used to define the acceptance for a short target for particles
within approximately 10% of the central momentum setting.
A schematic side view of the HMS is shown in Fig. 3. All
magnets in the HMS are superconducting and are cooled with
4K liquid helium. The focusing properties and acceptance of
the HMS are determined by the quadrupole magnets, and the
central momentum is determined by the dipole. The spectrom-
eter volume is under vacuum with thin (0.5 mm) mylar-kevlar
windows at the entrance (before the collimator) and exit (after
the dipole, in the detector hut). See Refs. [77,78] for more
details on the spectrometer and detector package.

There are two drift chambers in the HMS located at the
front of the detector stack [79]. The drift chambers are used
to find the position and trajectory of the particle at the fo-
cal plane, which are used to reconstruct the position and
momentum of the scattered particle at the interaction ver-
tex. Two sets of x-y scintillators hodoscopes were used for
triggering and time-of-flight measurements [77]. The detector
stack also contains a threshold gas Čerenkov counter used for
electron identification [77]. The HMS Čerenkov detector is
a large cylindrical tank (inner diameter ≈150 cm and length
≈165 cm). It has two front reflecting mirrors which focus the
light onto two PMTs. The circular ends of the tank are covered
with 0.1 cm aluminum windows. For E03103, the detector was
filled with 5.15 psi (≈0.35 atmospheres) of Perfluorobutane
(C4F10) at room temperature. At this pressure and tempera-
ture, the index of refraction of the gas is 1.00050, yielding a
threshold momentum of 16 MeV for electrons and 4.4 GeV
for pions. The pion threshold was above the momentum range

of E03103 except for the lowest angles, where the π/e ratio
is small and the separation between electrons and pions in the
calorimeter is sufficient to yield a negligible pion background.

A lead glass calorimeter detector [80] was used in conjunc-
tion with the Čerenkov detector for electron identification.
The HMS calorimeter consists of 10 cm × 10 cm × 70 cm
blocks of TF-1 lead glass, positioned at the rear of the detector
hut. The blocks are arranged in four layers with 13 blocks
per layer for a total thickness of 14.6 radiation lengths along
the particle direction. The calorimeter blocks are calibrated by
using the gas Čerenkov detector to identify a clean sample of
electrons, and the scale factor applied ADC signals from the
individual blocks are adjusted to provide a spectrum peaked
at the electron momentum as determined from the tracking.
Thus, Electrons (or positrons) entering the calorimeter de-
posit their entire energy and the normalized energy spectrum,
Ecal/E ′, is peaked around 1. Pions typically deposit ≈300
MeV in the calorimeter and the Ecal/E ′ distribution peaks
around 0.3 GeV/E ′.

III. DATA ANALYSIS

The data acquisition system used for E03103 was the
CODA (CEBAF Online Data Acquisition) software package.
CODA events from the individual run files were decoded
by the standard Hall C replay software (ENGINE). It reads
the raw data written by the data acquisition system, de-
codes the detector hits, locates possible tracks and particle
identification information for each event, and calculates dif-
ferent physics variables. Input and output of the ENGINE
are handled using the CEBAF Test Package (CTP). ENGINE
makes use of CERN HBOOK libraries and provides output
as ASCII report files (scalers, integrated charge . . .), his-
togram files (ADC/TDC spectra for different detectors) and
the reconstructed event-by-event data as ntuples. Detailed
cuts, corrections and other analysis details will be discussed
in the following sections.

A. Methodology of Cross-section Extraction

The measured inclusive electron scattering cross section
at scattered electron energy E ′ and a central angle θc was
extracted using a simulation of the electron scattering process
via the ratio method,

σ Born
data (E ′, θc) = Ydata

Ysim
σ Born

model(E
′, θc), (10)

where σ Born
data (E ′, θc) denotes the differential cross section

d2σ (E ′,θc )
dE ′d�

, Ysim represents the simulated yield which includes
the features of the detector acceptance and the model radiated
cross section, Ydata is the charge normalized yield integrated
over the acceptance of the experiment and σ Born

model(E
′, θc) rep-

resents the Born model cross section. To the extent that the
simulation properly includes the corrections, efficiencies, and
acceptance, the ratio of experimental to simulated yield will
simply reflect the error in the initial cross-section model.

Ydata is the number of detected electrons, averaged over the
kinematics, divided by the efficiency- and deadtime-corrected
luminosity of the measurement, so that Ydata represents the
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normalized yield for an ideal detector averaged over the ac-
ceptance of the experiment. The calculation of Ysim must result
in the same acceptance-averaged normalized yield, and so
must include a detailed model of the acceptance as well as
all of the physics effects required to go from the starting Born
cross-section model to the final observed counts, i.e., radiative
effects, multiple scattering, energy loss, etc.... In addition,
because this is the integrated yield over the acceptance, the
cross-section model must do a reasonable job of accounting
for the cross-section variation across the acceptance. Note
that the position-dependent inefficiencies are applied to the
simulation, rather than the data, as discussed in Sec. III B 4.
Energy loss is included event-by-event in the simulation, to
yield a realistic distribution. A single correction for the me-
dian energy loss was applied to both data and simulation to
remove the average kinematic offsets.

1. Extraction of experimental yield

Each kinematic setting contains data taken over one or
more runs. Each run is analyzed separately, with detector
and acceptance cuts applied and the efficiency and other
experimental correction factors calculated run-by-run. The
efficiency-corrected and charge-normalized yield for all the
runs in a given setting, with

Y tot
data =

∑
i N (i)

Nsc
∑

i Cdata(i) Qtot(i)
, (11)

where Ni is the total number of events that passed all cuts for
the ith run in the given setting, Qtot(i) is the total accumulated
charge and Nsc is the number of scattering centers in the target;
Nsc = ρtNA/M where ρ is the density, t is the thickness,
M is the atomic mass of the target and NA is Avogadro’s
number. The factor Cdata(i) in Eq. (11) is the correction factor
which includes experimental efficiencies and live times (frac-
tion of time that the DAQ and computer readout systems are
active); Cdata = PS/(εtrig × εtrack × εdet × tcomp × telec) where
PS is the prescale factor used to control the trigger rate when
the data is taken, εtrig corrects for the events lost due to ineffi-
ciency at the trigger level, εtrack is the tracking efficiency, εdet

denotes the global detector efficiencies, and tcomp and telec are
the computer and electronic live time, respectively.

Because we are only interested in primary beam electrons
which scatter in the target, we have to subtract the contribu-
tion of electrons which scatter in the target entrance and exit
windows (for the cryogenic targets) and secondary electrons
which come from other processes. The subtraction of the
cryotarget endcap contribution is discussed in Sec. III C 1,
and the secondary electrons in Sec. III C 2.

2. Extraction of simulated yield

To evaluate Ysim one needs to account for the finite accep-
tance of the HMS using a detailed model of the spectrometer
acceptance. Cuts are applied to the measured and simulated
distributions to limit the data to events where the momentum
acceptance is well understood. These cuts, given in Table III
are large enough in angle so that the collimator defines the
angular acceptance, but are effective in removing in-scattering
events. These are electrons that are outside of the nominal

TABLE III. Acceptance cuts used in the analysis for data and
simulation. Here, δ is the relative deviation from the central momen-
tum and x′

tar and y′
tar are the out-of-plane and in-plane angles of the

reconstructed tracks at the target.

Variable Cut value

abs(δ) <9%
abs(x′

tar) <120 mr
abs(y′

tar) <40 mr

acceptance but which reach the detectors because of scattering
from an aperture in the spectrometer. Because of the scattering
inside the spectrometer, these events tend to reconstruct to
trajectories outside of the acceptance and are thus removed
by the acceptance cuts.

The Hall C single arm Monte Carlo is used to extract
the simulated yield. Each event is randomly generated in the
target coordinates (x, y, z), while the quantities δ, y′

tar, x′
tar

are randomly chosen within their allowed limits. Then the
particles are projected forward and transported to the detector
hut using transport matrix elements calculated by the COSY
INFINITY program [81], which models magnetic transport
properties of the spectrometer. Events that fail to pass through
the different apertures defined in the Monte Carlo are rejected.
Multiple scattering is simulated as the electrons pass through
material in the spectrometer, and so the simulation is run
for each spectrometer momentum setting to account for the
energy-dependence of the scattering. If the particle success-
fully traverses the spectrometer and passes all the criteria in
the detector, then it is accepted.

After applying cuts and binning the Monte Carlo counts in
the same manner as data, the simulated yield is given by

Ysim = L
∑
events

ε′
det

(
dσ

d�dE ′

)rad

model

× J (� → x′
tary

′
tar )�E ′�x′

tar�y′
tar, (12)

where L is the Monte Carlo luminosity, ε′
det accounts for

any position-dependent efficiencies in the detectors, and
( dσ

d�dE ′ )rad
model is the cross-section model (including radiative ef-

fects). J (� → x′
tary

′
tar ) is the Jacobian that transforms between

the spherical solid angle (d�) and the spectrometer angles,
x′, and y′, which is required since the Monte Carlo event
generation is performed in spectrometer coordinates. In this
analysis 5 × 106 events were generated for each kinematic
setting with generation limits δ = ±15%, x′

tar = ±100 mr and
y′

tar = ±50 mr. Once the measured and simulated yields have
been obtained, their ratio is applied as a correction factor to
the initial Born cross section used in the simulation to extract
the final cross sections [Eq. (10)].

B. Efficiencies

In the cross-section analysis, we apply particle identifica-
tion (PID) cuts on the signals from the gas Čerenkov counter
and lead-glass calorimeter to distinguish electrons from other
negatively charged particles. Because of this, we must also
correct for losses of real electron events when these cuts are
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applied arising from detector-related inefficiencies. There are
additional losses due to trigger and tracking related inefficien-
cies.

1. Trigger efficiency

The trigger was designed to be efficient for electrons while
suppressing other particle types. The electron trigger is de-
scribed in detail elsewhere [77,82,83], and the key points are
summarized here. There are two main electron triggers. The
first (ELHI) requires signals from 3/4 hodoscope layers, and
both preshower and total calorimeter energy exceeding fixed
thresholds. The second (ELLO) requires a Čerenkov signal
and two out of three of the following: 3/4 hodoscope planes,
2/4 planes (one from the front and one from the back), or
a calorimeter signal exceeding a threshold that is lower than
used for ELHI. The final electron trigger is the combination of
ELLO and ELHI signals. This trigger provides modest pion
rejection while being relatively insensitive to possible lower
efficiency in a particular component of the trigger, i.e., the
Čerenkov, calorimeter, or hodoscopes.

Because there were no problems with the operation of the
detectors, the final trigger level efficiency was extremely high.
The efficiency for a good event to give a signal for ELHI was
determined run-by-run, and found to be 99.2% on average,
while the efficiency for ELLO was 99.7%. Although ELLO
required both a signal from the calorimeter and Čerenkov
detectors, ELHI required only one PID signal, making the
trigger efficiency high even if one of the detectors had a
low efficiency. Accounting for all of these effects, the trigger
efficiency is 99.7% [83], and was largely rate and kinematic
independent, yielding a negligible uncertainty in the cross-
section ratios.

2. Tracking efficiency

The normalized yields are also corrected for tracking inef-
ficiency. In some cases, real events do not yield a good track
because of noise, hardware inefficiency, or imperfections in
the tracking algorithm. In other cases, events are recorded
for which there is not a good electron track going through
the drift chambers, in which case the lack of a track does
not represent an inefficiency. A series of cuts are applied to
identify events for which an electron passed through the drift
chambers and should have yielded a good track. The fraction
of those events which fail to give a track is taken to be the
tracking inefficiency.

First, we select electrons by requiring that the event yielded
a large signal in the Čerenkov and calorimeter detectors. We
exclude events which hit scintillator paddles near the edges
of each plane, to suppress events which may have missed the
chamber but still hit the hodoscope and generated a trigger. Fi-
nally, we exclude events with more than 25 hits per chamber,
as previous studies indicate that these come from electrons
hitting apertures near the entrance of the detector, yielding
a shower of particles. Because they hit an aperture near the
entrance, they are not within the nominal acceptance of the
detector and should not be treated as good tracks that were
lost.

This tracking efficiency correction was applied on a run-
by-run basis. At low rates, the inefficiency was approximately
2%, with a small reduction at high rates (up to 4% total
inefficiency) which is consistent with the expected loss due
to rejection of events with real multiple tracks. When there
are two real tracks in the event, only one trigger is registered
and read out, so one track is corrected for in the deadtime
corrections, and the other is treated as a tracking inefficiency.

3. Calorimeter cut efficiency

To reject pions, we require that the energy deposited in the
calorimeter be at least 70% of the reconstructed momentum
(Ecal/E ′ > 0.7). It is important to know how many otherwise
valid events are lost when we place a cut on the calorimeter
distribution. To determine the fraction of electrons lost due to
the calorimeter cut, we need to identify a clean and unbiased
sample of electrons. For this analysis, we used elastic scatter-
ing data, where the initial fraction of pions is small, and then
apply a cut on the Čerenkov detector to yield a pure electron
sample. While elastically scattered electrons tend to populate
a limited region in the acceptance of the spectrometer, this
region can be moved across the acceptance by changing either
the angle or central momentum of the spectrometer, allowing
us to map out the response of the spectrometer throughout
the acceptance. We use these scans to verify that the cut
efficiency is uniform across the acceptance. The efficiency
is found to be constant for E ′ above 1.7 GeV (99.89%), but
below this momentum, the efficiency starts to decrease mainly
due to decreasing resolution of the calorimeter. This falloff
is approximately linear, dropping the efficiency by 0.3% for
E ′ ≈ 0.7 GeV/c [83] and is parameterized as a function of the
scattered electron momentum and is used to correct data in the
analysis. The efficiency measured with elastics is consistent
with the efficiency extracted using inelastic kinematics which
populate the full acceptance, where the kinematics have few
enough pions for the Čerenkov to yield a pure electron sample.

4. Čerenkov cut efficiency

Another cut was applied on the number of photoelectrons
collected by the Čerenkov detector to distinguish electrons
from pions. In addition to the pion-rejection cut in the
calorimeter, we also require the Čerenkov detector sees at
least 1.5 photoelectrons. To measure the electron efficiency of
this cut, we identify a pure sample of electrons using elastic
scattering kinematics along with a cut on the calorimeter.

During the analysis it was found that the signal from the
Čerenkov detector was lower near the vertical center of the de-
tectors, corresponding to δ = 0. This is due to the gap between
the upper and lower mirrors. In addition to this δ-dependent
inefficiency, the Čerenkov has a momentum-dependent ineffi-
ciency that was parameterized in terms of both δ and the HMS
momentum setting. The efficiency is close to 100% for mo-
menta above the spectrometer central momentum (δ > 0.5%),
1–2% lower on the low-momentum side of the acceptance,
with loss of up to 2–4% efficiency in the central ±0.5% of
the momentum acceptance (the inefficiencies are larger at low
momentum settings). For details, see Ref. [83].
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C. Backgrounds

In addition to the scattered electrons, there are secondary
electrons that are in the acceptance of the detector due
to other physical processes which constitute a background
for the measurement. This background mainly consists of
scattered electrons from the cryotarget cell wall, pions that
survive the nominal PID cuts and are treated as scattered
electrons, and secondary electrons from pair production after
bremsstrahlung in the target or π0 which decay to photons.
The following subsections discuss each of these processes,
and how we estimate and correct for them in the analysis.

1. Background from target cell wall

Since the cryogenic targets were contained in aluminum
cells, electrons scattered from the cell walls also contribute
to the total number of detected events. This contribution is
measured and subtracted from the total detected events. The
cryocells were made of Al 7075 which has a density of 2.7952
g/cm3 and the thickness of the cell walls was ≈0.12 mm.
The electrons traverse two cell walls, and since the cryotarget
thickness varies between 0.2 to 0.6 g/cm2, the typical size of
the background contribution is between 10% and 20%. We
used a dummy aluminum target to directly measure the cell
wall contribution to the total yield. The dummy target consists
of two Al foils (Al 6061-T6) separated by ≈ 4 cm which are
≈ 8 times thicker than the cryocell walls, thus allowing a
higher luminosity and a smaller data acquisition time. During
the experiment dummy data were taken at the same kinematics
as the cryotarget data. Dummy data are treated in the same
way as cryotarget data and the normalized dummy yield is
subtracted from the cryotarget yield. Thus, the total yield is

Y = Ycryo −
[Rext

dummy

Rext
walls

Twalls

Tdummy

]
× Ydummy, (13)

where Twalls and Tdummy are the thicknesses of the cell walls
and the dummy, respectively, Ycryo and Ydummy are the mea-
sured cryotarget yield and dummy yield, respectively, and
the ratio of Rext

dummy and Rext
walls represents a correction factor

which is applied to account for differences in radiative effects
between the dummy target and the cryotarget cell walls. The
correction was found to be about 5% for larger scattering
angles at low x values and smaller for other angles.

2. Charge symmetric background (CSB)

Most of the electrons observed in the spectrometer are
beam electrons that scattered in the target. However, the in-
cident electron can also interact with the target nuclei and
produce neutral pions in the target. These pions can decay
into high energy photons which produce an equal number of
positrons and electrons and these electrons can be detected in
the HMS and treated as scattered electrons. This contribution
is generally small, but it can be a significant at kinematics
corresponding to scattering at low x and high Q2.

The total number of electrons detected in the spectrometer
is e−

detected = e−
primary + e−

background. Since an equal number of
positrons and electrons are produced, the yield is charge sym-
metric. This allows us to estimate the number of secondary
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FIG. 4. The charge symmetric background as a function of x for
data taken at 50 degrees (top) and 40 degrees (bottom).

background electrons by running the spectrometer with pos-
itive polarity and detecting the positrons. During E03103,
we used the HMS to take positron data for each target at
all kinematic settings where the CSB was significant (the
40 and 50 degree settings at 5.78 GeV and the 46 degree
setting at 5.01 GeV) allowing for a direct subtraction of
the background by assuming e−

background = e+
detected. Luminosity

normalized yields are used to subtract the CSB, with identical
cuts applied to the positron and electron data. RCSB = Ye+

Ye−
is

the fraction of the detected electrons associated with CSB, and
is shown in Fig. 4 as a function of x for the 50 and 40 degree
data. Note that our final EMC ratios are formed from the 40
degree data, and so the correction is below 10% except for the
smallest values of x and the high-Z targets.

3. Pion backgrounds

Pion rejection factors for the Čerenkov and calorimeter de-
tectors are always greater than 500:1 and 100:1, respectively.
Nonetheless, for runs with a high π/e ratio, there could still
be a small contamination of pions after the PID cuts.

To estimate the pion background, we generate calorimeter
spectra first for a data sample using electron PID cuts and then
for a sample that is almost entirely pions. The pion spectrum at
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FIG. 5. Illustration of the extraction of pion contamination us-
ing calorimeter spectra. A pion data sample (black dotted curve) is
renormalized to the number of counts in an electron data sample
(blue solid curve) at low Ecal/E ′. The resulting spectrum (red dashed
curve) is then used to estimate the pion contamination in the region
Ecal/E ′ > 0.7 (solid red).

low Ecal/E ′ is renormalized to match the electron spectrum in
that region. The pion contamination is then determined from
the number of (renormalized) counts in the pion spectrum in
the region Ecal/E ′ > 0.7 (our nominal calorimeter electron
cut). This technique is illustrated in Fig. 5.

It was found that the final pion contamination is always be-
low 0.5%. This is further suppressed as the subtraction of the
positive-polarity data intended to remove charge-symmetric
backgrounds (see Sec. III C 2) will have a nearly identical con-
tribution from positive pions. We estimate that any residual
pion contamination is extremely small, and so we do not apply
any correction, but assign a 0.2% point-to-point uncertainty to
allow for a small net contribution of pions.

D. Target boiling corrections

When the electron beam passes through the target material
of cryogenic targets, it deposits energy in the form of heat.
This causes local density fluctuations, “target boiling,” along
the path of the beam. The boiling effects depend on the beam
current, beam raster size and the thermal properties of targets.
We perform luminosity scans, measurements of the yield at
fixed kinematics with varying beam currents, to estimate the
boiling effects. In addition to measuring the effect on the
cryogenic targets, we also take data on carbon as a reference
measurement, to ensure that corrections for rate-dependent
effects do not introduce variations which are misinterpreted
as density fluctuations.

A small current dependence was observed for the carbon
target, even after correcting for all known rate-dependent ef-
fects. Because the beam-current monitors have an uncertainty
in their DC offset, an error in that offset will produce an
error in the charge that goes like the inverse of the beam cur-
rent. The effect in carbon was small enough to be consistent
with the uncertainty in the BCM offset uncertainty, and so a

correction to the BCM offset was inferred from the current
dependence of the carbon yield. The hydrogen and deuterium
targets did not show any residual slope after correcting for
the BCM offset, but the helium targets show a linear reduc-
tion in the yield. For 3He, the measured density loss was
(−3.10 ± 0.64)% at 100 μA and for 4He, (−1.27 ± 0.50)%
at 100 μA. The yield for each run is divided by a correction
factor which depends linearly on the average current (exclud-
ing periods with no beam).

E. Computer and electronics deadtime

Events are also lost due to the finite time it takes to either
form a trigger for an event or read out the data. During the
time the trigger or DAQ systems are busy, no new events can
be taken. The dead time induced by the trigger electronics is
monitored on a run-by-run basis by looking at the number of
events generated with final trigger module gate widths of 50,
100, 150, and 200 ns. The electronic deadtime scales with the
trigger rate and nominal gate width except for the 50 ns mea-
surement, which has an effective latency time of 60 ns. While
the typical gate widths are 40 ns, the coincidences formed
between different hodoscope planes have variable widths, typ-
ically 50–60 ns, so our final trigger module is set to 60 ns to
minimize the event-to-event variation of the effective latency
time. We calculate and apply a deadtime correction of 60 ns
time the raw pretrigger rate, giving a maximum correction of
1.5% with typical values well below 0.5%.

Computer deadtime occurs when the DAQ computers are
busy processing events (either digitizing fastbus information
or sending the data to the DAQ computers), and are not
available for processing new events. Because the events are
buffered in the fastbus and VME modules, there is not a fixed
latency period for each event, so we make a direct measure-
ment of the computer deadtime and apply the correction on
a run-by-run basis. We take the number of events recorded
to disk divided by the number of generated triggers which
should have been read out and take the ratio to be the live time.
The deadtime was kept below 20% by adjusting the prescale
factors, although previous tests have shown reliable operation
and corrections for deadtimes well over 90% [77].

F. Cross-section Model

A cross-section model is required for the bin centering
corrections as well as modeling radiative effects and Coulomb
distortion. The Born cross-section model (known as the XEM
model) is broken down into contributions from inelastic and
quasielastic scattering:

σBorn = σinel + σqe. (14)

For the quasielastic contribution σqe, we use a y-scaling
model [84]. The scaling variable y can be interpreted as the
minimum momentum of the struck nucleon in the direction of
the virtual photon. The scaling function, F (y), is an energy
and momentum integral of the spectral function and is defined
as the ratio of the measured nuclear cross section to the off-
shell cross section for a nucleon, multiplied by a kinematic
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factor [64,84]:

F (y) = dσ

d�dν

1

Zσp + NσN

q√
M2 + (y + q)2

, (15)

where Z is the number of protons in the nucleus, N is the
number of neutrons, q is the three-momentum transfer, and
M is the proton mass. F (y) is expected to scale in y on the
low energy loss side of the quasielastic peak where inelastic
contributions and final state interactions are minimal. The
scaling function used for 2H is

F (y) = ( f0 − B)
α2 e−(ay)2

α2 + y2
+ B e−b|y|. (16)

For heavier targets the high-momentum components is modi-
fied and we take

F (y) = ( f0 − B)
α2 e−(ay)2

α2 + y2
+ B e−(by)2

, (17)

where the parameters a, b, f0, B, and α are fit to the F (y),
extracted from the data for each target. The model parameters
were varied to reproduce the data from this measurement,
along with the measurements covering x >∼ 1 on the same
targets from Refs. [44,69]. The model was also compared
to low Q2 quasielastic data, taken from Ref. [85]. This is
important because a reliable model in this region is needed
when applying radiative corrections, as events from low Q2

quasielastic scattering, which has a large cross section, can
radiate photons and contribute to higher Q2, lower x distribu-
tions.

F (y) was extracted from the data in the QE region, taken
as part of E03103 and E02019 [44,69] after subtracting the
model inelastic contribution (everything except the QE contri-
bution) [86]. After fitting F (y), the updated model was used as
the input for the cross-section extraction, and the process was
repeated until good agreement between data and the model
was achieved for all settings. A small additional correction
was added to improve the agreement to the QE data at large x
values [86].

The inelastic contribution to the cross section is evaluated
separately and added to the quasielastic contribution. For the
deuteron, parametrizations of the proton and neutron structure
functions (developed by Bosted and Christy [87]) are used
for the full x range. They are smeared using the momentum
distribution based on the fit to our QE peak [86].

For heavier nuclei, the inelastic cross section is computed
somewhat differently. As for the deuteron, the model cross
section is the sum of the proton and neutron structure func-
tions smeared by the momentum distribution based on the fit
to the QE peak for the nucleus [86]. In addition, for x < 0.8,
this inelastic model is then multiplied by a target-dependent
polynomial function to improve the agreement between data
and model (this is required since a pure-smearing calculation
will not reproduce the size or shape of the nuclear EMC
effect correctly). This is smoothly joined to the full smear-
ing prescription (with no correction) for x > 0.9, using an
x-weighted average for 0.8 < x < 0.9. An additional polyno-
mial correction is applied to both the deuteron and the heavier

FIG. 6. Data and model cross section for 2H and 197Au at selected
kinematics. Here, the circles show 18 degree data and the squares
show 50 degree data. Relative contribution from inelastic (dashed
line) and quasielastic (dotted line) to the total cross section (solid
line) are also shown in the figure.

targets to slightly suppress the inelastic cross section at large
x above the QE peak [86].

The smearing calculation described above, when per-
formed in combination with our full radiative corrections
procedure is quite time consuming. Therefore, the full radia-
tive correction was only calculated at the central spectrometer
angle for a given setting. Since a radiated model is also re-
quired to describe the variation of the cross section across
the spectrometer acceptance, a simplified, approximate form
of the radiative correction was used in combination with the
smearing calculation when calculating the two-dimensional
grid in E ′ and θ used for Monte Carlo weighting. An addi-
tional ad hoc correction (a polynomial in x) was applied to this
latter calculation, to compensate for the approximate form of
the radiative corrections used. The data as well as the model
cross sections, including the relative contributions from the
inelastic piece and the quasielastic piece for 2H and 197Au are
shown in Fig. 6.

At low Q2 values, the quasielastic peak accounts for a
significant portion of the total cross section at large x. The
low-Q2 QE cross section also has a large impact on the ra-
diated model at low x and high Q2. We have done extensive
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FIG. 7. Comparison of world data from the quasielastic electron
nucleus scattering archive [85] and our cross-section model for a
variety Q2 settings (quoted Q2 value corresponds to x = 1) for the
2H (top) and 197Au (bottom) targets. The shape of the QE peak is
well reproduced for both targets at both low and high Q2, yielding a
nearly flat ratio of data/model over the entire x range.

studies and compared our model with the data available from
the quasielastic electron nucleus scattering archive [85]. For
heavy nuclei, our model cross section was compared with
world QE data down to Q2 = 0.5 GeV2, and the agreement
between data and model was found to be at the 10% level near
the quasielastic peak, as shown in Fig. 7.

G. Other corrections

The XEM cross-section model is in the Born or one-photon
exchange approximation. However, higher order processes in
α also contribute to the measured cross sections [88,89] and
must be applied to the starting model. To compare to the
measured cross sections, all significant contributions from
higher order processes must be estimated and corrected for in
the measured cross section. These include traditional radiative
effects, as well as the Coulomb distortion associated with the
long-range interaction of the electron with the charge of the
nucleus.

H. Radiative corrections

Radiative corrections need to be applied to account for
higher order QED processes, the most significant of which
are the emission of one or more real photons by the incoming
or outgoing electron or the struck quark (in the DIS regime),
exchange of a virtual photon between the incoming and outgo-
ing electron, and the fluctuation of the exchange photon into
a lepton-antilepton pair. Because the elastic and quasielastic
cross sections are very large at low Q2, one must also account
for low-Q2 interactions which, due to radiation of a hard
photon, end up at low x and high Q2 values. Thus, we express
the total measured radiated cross section as

σmeas = σ rad
inelastic + σ rad

quasielastic + σ rad
elastic. (18)

Since the radiative tails from the QE and elastic processes
are small (<20%), as are the contributions from large x, low
Q2 inelastic processes, we used the multiplicative radiative
correction method. For the kinematics of this analysis, our
studies indicate that the nuclear elastic tail contributes less
than 0.1% to the total cross section for 2H, and significantly
smaller contributions for heavy nuclei, and so are neglected in
the analysis.

The program used to compute the radiative effects for this
analysis was developed at SLAC and is described in detail in
Ref. [90]. For E03103, the external corrections are computed
using a complete calculation of Mo-Tsai [88] with a few
approximations. Note that, in particular, the energy-peaking
approximation is not used for the computation of external
contributions. This approach, “MTEQUI,” uses the equiva-
lent radiator approximation [90]. In the equivalent radiator
method, the effect of “internal” Bremsstrahlung is calculated
using two hypothetical radiators of equal radiation length,
one placed before and one after the scattering. The internal
contribution in “MTEQUI” method is evaluated by setting the
radiation length of the material before and after the scattering
point to zero, and ignoring the target length integral. Then the
radiated model cross section is given by the sum of the internal
and external contributions.

Our simulations are performed using the radiated model,

σ model
rad = external ⊗ internal ⊗ σ model

Born , (19)

The convolution involves integrating over the “internal” and
“external” bremsstrahlung photon momenta and angles, and
the target dimensions. To obtain σ model

rad , one needs to know
the cross sections over the entire kinematic range (from elas-
tic threshold up to the kinematic point being calculated, see
Fig. C.1 in Ref. [90]). The effect of radiative correction on
measured cross sections varied from a few percent to about
40%, depending on the kinematics and targets. Because the
structure functions of nuclei are very similar, the internal
radiative corrections and some of the external corrections
cancel, yielding smaller corrections in the target ratios which
depend mainly on the difference in the targets’ radiation
length, as shown in Fig. 8.

I. Coulomb corrections

The incoming electron will interact with the Coulomb
field of the nucleus prior to interacting with the nucleus.
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FIG. 8. Radiative correction factor to the A/D cross-section ra-
tios for a range of targets at 40 degrees; the correction at 50 degrees
is nearly identical.

Classically, once the electron enters the electron cloud of the
atom, the screening of the nuclear potential is no longer per-
fect, and the electron will be accelerated towards the nucleus,
increasing its momentum at the interaction vertex. After the
scattering, there will be a similar interaction as the electron
leaves the nucleus. This change in the kinematics can have
a significant effect on the measured cross sections if either
the Coulomb potential is large compared to the energy of
the initial or final electron, or when the cross section varies
rapidly with the kinematics. In addition to the modification of
the scattering kinematics there is also a “focusing” of the in-
coming electron plane wave which also impacts the scattering
cross section. For the present analysis, we account for these
effects using the improved version of the effective momentum
approximation (EMA) [91], following the approach given in
Ref. [86].

The charge of the nucleus has two effects on the electron
wave function. The initial and final state electron momenta
(ki, f ) are modified in the vicinity of the nucleus due to the at-
tractive electrostatic potential. Second, the attractive potential
leads to focusing of the electron wave function in the interac-
tion region. The distorted electron wave can be approximated
by [91,92]

ψki, f
= |(ki, f )eff|

|ki, f |
ψ(0) exp(i ki, f · r), (20)

where ψ(0) is the Dirac-spinor with |(ki, f )eff| = |(ki, f )| − V ,
and V is the average electrostatic potential of the nucleus.

Treating the nucleus as a spherical charge distribution,
radius R0, central potential is given by

V(0) = −3α(Z − 1)

2R0
. (21)

Because the standard convention is to neglect Coulomb cor-
rections in Z = 1 targets, we use a factor Z − 1 rather than
Z to account only for the additional charge in the nucleus
compared to scattering from the proton or deuteron.

TABLE IV. The average effective potential �E and the values of
the charge radii for the different targets used in the analysis. The radii
for 3,4He are measured values while the rest are calculated from the
approximation R0(A) = 1.1 A1/3 + 0.86 A−1/3 [91].

Target R0 (fm) �E (MeV)

3He 2.32 0.66
4He 2.17 0.77
9Be 2.70 1.88
12C 2.89 2.92

63Cu 4.59 10.2
197Au 6.55 19.9

The central potential is an upper limit, as the potential
is smaller everywhere else in the nuclear volume, so it is
necessary to determine an appropriate average potential for
scattering from the nucleus. This effect is incorporated in
the EMA approach by an average potential 0.75–0.80 times
the central potential, V(0) [91]. For E03103, we take �E =
V = 0.775V(0) and estimate this potential to be known at the
10% level. Note that Ref. [91] uses Z rather than Z − 1 in
determining the average potential, but this has minimal impact
on their extraction of the optimal potential, as this is obtained
from calculations for heavy nuclei.

In the EMA approach, the focusing factor of the in-
coming wave, Fi = |(ki )eff|/|ki|, enters quadratically in the
cross-section calculation and produces an enhancement in
cross-section strength. However, the focusing factor of the
outgoing wave cancels with the enhanced phase space factor
in the effective cross section. The Coulomb correction factor
in the EMA approach is given by the ratio of the model cross
sections with nominal and shifted kinematics, scaled by the
square of the focusing factor:

Fccor = σ(E ,E ′ )

σ(E+�E , E ′+�E )

[ E

E + �E

]2

, (22)

where the σ s are the Born model cross sections. The measured
cross sections are then multiplied by Fccor, to get the Coulomb-
corrected cross sections.

Table IV shows the values for the RMS charge radii, and
the magnitude of the average energy boost for the targets used
in E03103. The Coulomb correction factors as applied to the
data are shown in Fig. 9. This figure shows the importance
of the Coulomb distortion effects for the cross-section and
cross-section-ratio extractions in the medium energy range.
These are relatively small for light nuclei, but for the heavy
nuclei and near the quasielastic peak, these corrections are
significant. The largest corrections are for the Au data at
40 and 50 degrees. With no Coulomb corrections applied,
the EMC ratios are systematically 3–5% lower for the 50
degree data than the 40 degree data. After applying the EMA
corrections described above, they are in excellent agreement,
suggesting that the correction yields agreement at the 2%
level or better, given the uncertainties in the comparison. This
supports the idea that the EMA does a good job estimating this
correction, though it assumes that no other effect modifies the
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FIG. 9. Coulomb correction factors as a function of x for several
targets as noted in the legend for a few selected kinematics for
5.776 GeV beam energy. The filled symbols show the correction for
the 50 degree data while the open symbols represent 18 degree data.

cross-section ratios in going from 40 to 50 degrees. This will
be discussed further in Sec. V B.

Since this is a target- and x-dependent correction, neglect-
ing the effect will modify both the extracted size of the EMC
effect and the overall A dependence. In addition, for a given
x value the angular dependence of the Coulomb correction
factor implies a Q2 dependence in the correction. Thus, one
should be careful about Q2 averaging of the cross section
or cross-section ratios and the correction factor needs to be
properly accounted for before applying such an averaging
procedure. While Coulomb corrections were not applied to
previous EMC measurements, the effect was estimated to be
�3% [4] for SLAC E139 [16], owing to the higher beam
energy and smaller scattering angles. Nonetheless, neglecting
this correction would imply some overestimate of the EMC
effect in medium-heavy nuclei. We will discuss this further in
the results section.

J. Isoscalar corrections

EMC ratios are expressed as the cross-section ratio (per
nucleon) of a target nucleus with an equal number of protons
and neutrons (isoscalar nucleus) to that of deuterium. Thus,
the EMC ratio for an isoscalar nuclei is just σ A/σ D. Since the
protons and neutrons have different cross sections, the cross
sections for nuclei with Z �= N will significantly differ from
that of nuclei with Z = N . Thus, one typically applies a cor-
rection function to convert the measured F A

2 to a hypothetical
isoscalar nucleus with the same mass number:

(
F p

2 + F n
2

)
/2 = f A

iso

(
ZF p

2 + NF n
2

)
/A. (23)

This correction function reduces to a function of F n
2 /F p

2 , the
neutron to proton structure function ratios of the nucleus under
investigation:

f A
iso =

(
F p

2 + F n
2

)
/2(

ZF p
2 + NF n

2

)
/A

= A
(
1 + F n

2 /F p
2

)
2
(
Z + NF n

2 /F p
2

) . (24)
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FIG. 10. The ratio F n
2 /F p

2 vs x for various parametrizations of the
free nucleon structure functions along with the ratio of the smeared
structure functions in deuterium [59,62] extracted for the 40 deg
kinematics of the E03013 experiment.

The measured cross-section ratios are multiplied by f A
iso,

which depends only on N , Z , and the neutron-to-proton struc-
ture function ratio, to get the isoscalar-corrected cross-section
ratios. Note that the structure functions in Eq. (23) correspond
to the proton and neutron contributions to the heavy nucleus,
as one is trying to convert from a nonisoscalar heavy nucleus
to the isoscalar equivalent. In the past, these were simply
replaced with the free neutron and proton structure function
ratio.

There is significant uncertainty in the free neutron cross
section in the large x region and so the extracted EMC ratios
are sensitive to the choice of isoscalar correction factor. The
F n

2 /F p
2 ratio has been extracted from proton and deuteron

DIS measurements by SLAC [93] and NMC [94,95]. Since
there is no free neutron target, the extraction of F n

2 is always
model-dependent. The SLAC extraction included Fermi mo-
tion while the NMC F n

2 /F p
2 ratios were extracted neglecting

all nuclear effects (including binding) in the deuteron. The
EMC effect results from SLAC E139 [16] took σn = σp(1 −
0.8 x) when calculating the isoscalar correction. Figure 10
shows different representative parametrizations for F n

2 /F p
2

along with F n
2 /F p

2 constructed from parton distributions from
CTEQ [96] computed at Q2 = 10 GeV2. The CTEQ fit also
neglects the Fermi motion of nucleons. NMC mostly had
data in the low x region, however, the x range covered by
SLAC data is mainly in the large x region and overlaps with
x range covered by E03103. All of these extractions are based
on measurements of the deuteron-to-proton ratios in different
Q2 regions, and so any Q2 dependence in the ratio would
be expected to generate scatter in these results, beyond that
associated with differences in the assumptions made in the
extraction.

In our analysis we make a modified isoscalar correction.
Instead of using free proton and neutron structure functions,
we have used the contributions of F p

2 and F n
2 in 2H, F n

2 ,

and F p
2 , in the above equation to correct the nuclear cross

sections. As such, we are converting the deuteron structure
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FIG. 11. Our extracted σ D/2σ p ratio along with calculations
based on different F n

2 /F p
2 extractions (dashed line from Ref. [97]

and solid line using Refs. [59,62]). The structure above x ≈ 0.65,
is mainly due to the resonance in the proton structure function.

in the denominator to a nonisoscalar deuteron, with the same
Z/N ratio as the nucleus. The alternative would be to evaluate
the neutron-to-proton ratio for all nuclei, which would involve
significantly larger model dependence in heavier nuclei. In
addition, we use the F n

2 /F p
2 ratio at the kinematics of our

experiment, rather than taking the result from a high-Q2 anal-
ysis. We determine the in-deuteron F n

2 /F p
2 ratio following

the approach of Refs. [59,62]. The extraction was performed
taking the average of the values obtained using the different
NN potentials and off-shell effects evaluated in Ref. [62],
using the calculated value of F p

2 in the deuteron, and taking

F n
2 /F p

2 = (F d
2 − F p

2 )/F p
2 . This does not involve removing the

nuclear effects to extract the free neutron structure function,
as is usually the case, and so this procedure is somewhat
less model dependent than the extraction of the free F n

2 /F p
2

ratio. We note that these analyses also demonstrated that the
model-dependence is smaller than assumed in some previ-
ous comparisons where the nuclear effects evaluated at a
fixed Q2 were applied to extract F n

2 /F p
2 spanning a range

in Q2. A similar result was seen in the analysis of the
impact of nuclear effects on the extraction of the proton
PDFs [61].

Figure 11 shows the σ D/2σ p cross-section ratios extracted
from the E03103 data for the 40 degree kinematics. Represen-
tative extractions [62,97] of the same ratio are also shown in
the figure. It should be noted that the isoscalar correction de-
pends on Q2 [59,62], and this effect is not negligible at large x.
The correction factors derived using various parametrizations
for 3He and Au are shown in Fig. 12.

In the case of 3He, one can avoid the uncertainty associated
with the isoscalar corrections by extracting the ratio of 3He
to (2H + 1H). This ratio and the comparison to the isoscalar-
corrected 3He / 2H ratio are presented in Sec. V B.
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FIG. 12. Magnitude of isoscalar corrections for 3He (top) and Au
(bottom) targets for the 40 degree data for the different parametriza-
tions of F n

2 /F p
2 as discussed in the text. The solid black line

represents the multiplicative correction factors obtained using the
smearing method discussed in the text and was used in the E03103
analysis for the EMC ratio extraction.

K. Scaling violation effects at high x

As discussed in Sec. I A, deviations from the scaling of the
simple quark parton model arise due to QCD evolution of the
PDFs, target-mass corrections which involve finite-Q2 correc-
tions to the approximations made in the infinite ν, Q2 limit,
and higher twist contributions which go beyond incoherent
scattering from individual partons.

The kinematic effects due to target mass corrections were
first calculated in the framework of the operator product ex-
pansion OPE in Ref. [98]. In the nucleon case, the measured
structure function F meas

2 can be related to the massless limit
structure function F (0)

2 [3] via

F meas
2 (x, Q2) = x2

ξ 2r3
F (0)

2 (ξ, Q2) + 6M2x3

Q2r4
h2(ξ, Q2)

+12M4x4

Q4r5
g2(ξ, Q2), (25)

065203-16



MEASUREMENT OF THE EMC EFFECT IN LIGHT … PHYSICAL REVIEW C 104, 065203 (2021)

0.7 0.8 0.9 1x
0

0.2

0.4

0.6

0.8

1

σ q
e_

m
od

el
/σ

bo
rn

_m
od

el

2
H

12
C

197
Au

FIG. 13. Fractional quasielastic contribution to the cross section
based on our model at 40 degrees for 2H, 12C, and 197Au. Here, σqe is
the contribution from the quasielastic piece of the model (in the Born
approximation) and σBorn is the total Born cross section.

where h2(ξ, Q2) = ∫ 1
ξ

du u−2F (0)
2 (u, Q2), g2(ξ, Q2) =∫ 1

ξ
dv(v − ξ )v−2F (0)

2 (v, Q2), r =
√

1 + Q2

4x2M2 , and ξ = 2x
1+r .

F (0)
2 does not contain target mass effects and this is

the function which obeys the QCD evolution effects in
the absence of higher twist effects. It should be noted
that there are different prescriptions [3,99,100] available
for these kinematical corrections with slightly different
results, however, the appropriate prescription for target mass
corrections in nuclei is not well defined.

In the extraction of EMC effect, A-independent scal-
ing violations will cancel in the cross-section ratios. If the
h2 and g2 corrections are negligible or target independent,
then F meas

2 (x, Q2) is directly connected to F (0)
2 (ξ, Q2) [see

Eq. (25)] through a simple relation. In that case, the target
mass effects on cross-section ratios can be well approximated
by the substitution x → ξ . Our investigations show that the
h2 and g2 terms yield significant corrections to the structure
function for lower x and Q2 data, but that these are nearly
target independent. Up to x = 0.7, the impact of neglecting
these additional model-dependent corrections is below 1%.

Higher-twist effects can also lead to scaling violations,
although it has been argued based on quark-hadron duality
[101,102] that for nuclei, the Fermi motion of the nucleons
samples a sufficient kinematic region that the observed struc-
ture function reproduces the DIS limit even down to extremely
low Q2 and W 2 values [4]. This will be examined in Sec. V
using the extensive measurements taken to examine the Q2

dependence of the EMC ratio.
It is unclear if the extended scaling of the EMC ratio

will hold true in the presence of significant contributions
from quasielastic scattering [5,102,103]. Figure 13 shows
the quasielastic contribution, σqe/σBorn, based on our cross-
section model for the 40 degree kinematics. In our model, the
quasielastic contribution is negligible for x <∼ 0.7, and <∼ 10%
for all nuclei up to x = 0.9, with further suppression when
examining target ratios. In the next section, we will compare

TABLE V. Typical sources and magnitude of the systematic
uncertainties in extracting cross-section ratios. These are added in
quadrature with the statistical uncertainties to get the total random
uncertainties.

Absolute
Item uncertainty(±) δR/R (±%)

Beam Energy (offset) 5 × 10−4 –
Beam Energy (tgt-dep) 2 × 10−4 0.08
HMS Momentum (offset) 5 × 10−4 –
HMS Momentum (tgt-dep) 2 × 10−4 0.0–0.12
HMS angle (offset) 0.5 mr –
HMS angle (tgt-dep) 0.2 mr 0.29–0.60
Beam Charge 0.5% 0.31
Target Boiling 0.45% 0.0–0.1
End-cap Subtraction 2–3% 0.28–0.45
Acceptance 1% 0.3
Tracking Efficiency 0.7% 0.3
Trigger Efficiency 0.3% 0.0
Electronic Dead Time 0.06% 0.0
Computer Dead Time 0.3% 0.3
Charge Symmetric BG 0.0–1.0
Coulomb corrections 0.2% 0.1
Pion Contamination 0.2% 0.1
Detector Efficiency 0.2% 0.0
Radiative Corrections 1% 0.5
Bin-centering 0.2% 0.1
Quadrature sum 0.90–1.11

our results at large x to those from SLAC [16] and the CLAS
collaboration at Jefferson Lab [104]. At SLAC kinematics, the
QE contribution is highly suppressed due to the large values
of Q2 at large x. For the CLAS data [104], the QE contribution
is larger but because of the limited x range, its contribution is
<∼ 0.5% for all targets, small enough that we do not apply a
correction.

IV. SYSTEMATIC UNCERTAINTIES

Statistical uncertainties for the cross-section ratios pre-
sented here are ≈0.5% per bin (size 0.025) up to x ≈ 0.75,
with gradually increasing uncertainty as x increases. The total
systematic uncertainty in the cross-section extraction is taken
as the sum in quadrature of all systematic uncertainties of the
quantities that contribute to the cross section. The components
of the systematic uncertainty can be broadly divided into
two groups: point-to-point uncertainties and normalization
uncertainties. Point-to-point uncertainties are due to effects
which may vary with time, kinematic conditions, or detector
location, and so their effect is (or at least can be) uncor-
related between different data points. Normalization (scale)
uncertainties affect the measurement globally (e.g., target
thickness). Most corrections involve a mixture of point-to-
point and normalization uncertainties. The resulting overall
uncertainty in the cross-section ratios is less than the total
uncertainty in the cross section itself because many of the
scale uncertainties and some point-to-point type errors cancel
in the ratios. Table V summarizes the systematic uncertainties
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in extracting the cross-section ratios. The dominant remaining
contributions from the scale uncertainties are those associated
with the absolute target thicknesses, radiative and background
corrections. These range from 1.5–2.0% on the EMC ratios,
and are provided for each target ratio in the Supplemental
Material tables [105]. Individual contributions are discussed
below.

Kinematic offsets in the beam energy, spectrometer mo-
mentum, and spectrometer angle can yield errors in our
extracted cross sections. We use our model cross section to
assess the uncertainty in the cross sections due to these effects.
The cross-section ratios, however, are largely insensitive to
such offsets.

The point-to-point uncertainty in the beam charge mea-
surement was estimated to be 0.5% via studies of the residuals
to calibration fits taken throughout the experiment. A scale
uncertainty of 0.2% was assumed for the charge measured,
due to the uncertainty in the calibration against the UNSER
parametric beam current calibration [83].

As mentioned in Sec. II B, thicknesses of the solid targets
were calculated using measurements of the mass and area
of the targets. Thicknesses of the cryotargets were computed
from the target density and the length of the cryogen in the
path of the beam. The absolute uncertainty in the 2H thickness
is estimated to be 1.29%. When comparing to other cryo-
genic targets, part of this uncertainty cancels and the overall
uncertainty in the cross-section ratio (A/D) is 1.59% and
1.29% for 3He /D and 4He /D, respectively. For heavy nuclei,
the scale uncertainty in the cross-section ratio due to target
thickness is found to be between 1.4% to 2.4%. In addition to
the nominal target densities, there are corrections associated
with beam heating effects and fluctuations in the pressure and
temperature. The uncertainty associated with this correction
comes from the uncertainties in the fits to target luminosity
scans. Though no boiling correction is made in the case of
the deuterium target, the uncertainty from the luminosity scan
data is still included in the A/D ratios. We assign a scale
uncertainty of 0.24% (solid targets) to 0.38% (helium targets)
for the target ratios.

The scale uncertainty of the acceptance in the HMS was es-
timated to be 1% from the elastic cross-section studies, while
the point-to-point uncertainty comes from the comparison of
the model in the inelastic region (where the cross section is
smoothly varying) to data, and is estimated to be 0.5%. In
the cross-section ratios, these uncertainties partially cancel.
The scale uncertainty in the solid target ratios is estimated to
be 0.5% and 0.2% for helium target ratios. The point-to-point
uncertainty is estimated to be 0.3% for both.

The normalization uncertainty of the tracking efficiency
is determined to be 0.7%, mainly due to the limitations of
the algorithm used for tracking and the efficiency calculation
algorithm. A point-to-point uncertainty of 0.3% is assigned
to the tracking efficiency in the target ratios, primarily due to
differences in rates between the targets.

At very low x values, the structure functions are expected
to scale, and any deviation is possibly due to the charge
symmetric background (since this is the dominant uncertainty
for heavy nuclei at small x and large scattering angles). A
comparison of 40 and 50 degree data suggests that scaling is

satisfied if the CSB varies by no more than 5%. A polynomial
fit was made to the charge symmetric background as a func-
tion of x, and 5% of the magnitude of the charge symmetric
background is applied as the point-to-point uncertainty in the
charge symmetric background subtraction.

The model dependence in the radiative correction was
studied by varying the strength of the DIS and QE contri-
butions to our model independently, and by comparing to a
completely independent fit by Bosted and Mamyan [106]. The
change in extracted cross section was rather pronounced in
the low x region when comparing to the Bosted-Mamyan fit
(several percent for heavier nuclei). This was primarily due to
contributions to the radiative tail from the QE process. Inves-
tigations comparing the QE cross section used in the model
described here and the Bosted-Mamyan fit showed similar
levels of agreement with existing data at low Q2, although
both models displayed deviations at the 10% level. In the end,
the final results were generated by taking the average of the
target ratios generated with both models with an additional
(correlated) x-dependent uncertainty added due to the differ-
ence in the models. In addition to this x-dependent uncertainty
(coming from differences in the QE model), an additional
1% uncertainty in the cross section is assigned due to the
inelastic model, and additional point-to-point uncertainties are
assigned to account for kinematic dependent differences. The
point-to-point uncertainty for the target ratios is estimated to
be 0.5%. An additional scale uncertainty, associated with the
difference in radiation lengths between the targets, is taken to
be 0.1% except for the high-radiation length targets (Cu and
Au) for which it is 1%.

The efficacy of the model used to describe the Monte Carlo
yield across the acceptance of the spectrometer was studied
by varying the shape of the model. This is done by supplying
artificial x and Q2 dependencies as input to the individual DIS
and QE pieces in the model cross section. The variation was
found to be most pronounced for the x > 0.8 region, and we
estimate a point-to-point uncertainty of 0.2% for the cross
sections, and 0.1% for the cross-section ratios. Uncertainties
in the Coulomb corrections are mainly due to the knowledge
of the energy shift, �E , used in the EMA calculation. We
estimate this to be known at the 10% level. For the Au target
at 40 degrees, this uncertainty ranged from 0.5% at low x to
1.5% at high x.

V. RESULTS AND DISCUSSION

Before presenting the results, it is instructive to com-
pare our kinematics to the earlier SLAC experiments. This
will help identify potential issues in the comparison of
the EMC ratios and elucidate the possible role of the Q2

dependent effects when comparing data from different ex-
periments. Figure 14 shows kinematics for our measurement
and SLAC E139 and E140, as well as the recent results from
CLAS.

E03103 took data on all targets at 40◦ and 50◦, and the
cross-section ratios with respect to deuterium were extracted.
The EMC ratios are extracted from the 40 degree angle (solid
line in Fig. 14) where the data have better statistics and more
complete kinematic coverage. Data were also collected for a
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FIG. 14. The E03103 kinematics, indicated with dashed and dot-
ted lines, along with the SLAC experiments E139 [16] (triangles) and
SLAC E140 [107] (squares). Kinematics are shown for the target
with maximum coverage (Fe for the SLAC measurements, C for
E03103). The solid line and filled symbols represent the kinematics
used in the main comparison of the results. Contours of constant
invariant mass squared are also shown in the figure.

detailed Q2 dependence study at eight additional kinematic
settings on C and 2H.

In the cross-section ratio plots, representative world data is
displayed with the corresponding nuclei where available. In
the kinematics comparison plot we chose to display kinemat-
ics of SLAC experiments because of the overlap in kinematics
with our experiment at high x. For comparison of the EMC
ratios we use the SLAC data averaged over all Q2 values at
each x; note that at the highest x measured by SLAC (x = 0.8),
only Q2 = 10 GeV2 is available. For each x, Q2 value, the
published SLAC E140 results are averaged over several ε

points—this point is addressed later in this section.
To be consistent, the SLAC data are presented with updated

Coulomb and isoscalar corrections using the same prescrip-
tions used for the analysis of E03103 data. The updated data
points and corrections factors are available online in the Sup-
plemental Material [105].

A. Q2 dependence of the ratios

The scaling of the structure functions for nucleons is ex-
pected to hold in the conventional DIS region (W 2 > 4 and
Q2 > 1), where the nonperturbative, resonance structure is no
longer apparent and QCD evolution is the only source of Q2

dependence. At smaller values of W 2, corresponding to large
x, additional scaling violations can originate from resonance
contributions. For E03103, the data are in the conventional
DIS region up to x ≈ 0.6. There are indications [4] that the nu-
clear structure functions in the resonance region, down to very
low W 2 values (W 2 > 1.5 GeV2 for Q2 > 3 GeV2), shows the
same global behavior as in the DIS region. Therefore, we took

FIG. 15. Ratio of C and 2H cross sections for the five largest Q2

(top panel) and five lowest Q2 (bottom panel) settings as a function
of x. Uncertainties are the combined statistical and point-to-point
systematic. The Q2 values quoted are for x = 0.75, and the data
labeled Q2 = 5.33 correspond to our primary results, taken at 40◦.
The solid black line is the SLAC parametrization of the EMC effect
for carbon [16].

data at large x extending below W 2 = 4 GeV2, and we made
detailed measurements of the Q2 dependence of the ratios to
ensure that there was no indication of any systematic deviation
from the DIS limit.

The EMC ratios for carbon at several Q2 values are com-
pared in Fig. 15. The top panel shows the EMC ratios for the
five highest Q2 settings from our experiment, along with the
fit to the EMC effect from Ref. [16]. The data do not show
any systematic Q2 dependence, and the scatter at the largest
x values is consistent with the uncertainties in the individual
measurements. This suggests that any Q2 dependence in the
structure function is either small or cancels in the target ratios.
The bottom figure shows the low Q2 measurements, where
there is a clear difference in the Q2 dependence of carbon and
deuterium below Q2 ≈ 3 GeV2 and x > 0.6, corresponding to
W 2 values below 2–3 GeV2, where one expects large reso-
nance contributions.

Figure 16 shows the Q2 dependence of the structure
functions for C (top) and Cu or Fe (bottom) at several
x values, to allow for a more careful examination of the
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FIG. 16. EMC ratios for C (top) and Cu and Fe (bottom) as a
function of Q2 at fixed x values as indicated in legend. For clarity,
an additive offset is applied along the y axis. Open symbols are
from updated SLAC E139 [16] results while the closed symbols
are E03103 values. Inner error bars show the combined statistical
and point-to-point systematic while the outer error bars represent
the total uncertainty including the normalization uncertainties. The
dashed lines indicate the values of W 2 = 2, 4 GeC2 for each x value.

Q2 dependence as a function of x. The carbon data have
additional Q2 values for E03103, due to the data taken us-
ing a lower beam energy, while the Cu data have more
high-Q2 data from the SLAC measurements. There is a fair
agreement with the SLAC data over the kinematic regions
where data are available, and clear deviations from a con-
stant ratio are visible below Q2 = 4 GeV2 and at large x
values.

B. x dependence of the ratios

We now examine the x dependence of the EMC ratios for
all of the targets from E03103, SLAC, and CLAS, including
Coulomb corrections and our updated isoscalar corrections.
We first discuss the cross-section ratios for C and 4He, as
these ratios have no isoscalar correction, and the Coulomb
distortion effects are small (<1%) for these nuclei. Figure 17
shows the cross-section ratios for 4He and 12C, along with the

FIG. 17. EMC ratios for 4He (a) and 12C (b) as a function of x for
the 40 degree results. Error bars show the combined statistical and
point-to-point systematic uncertainties. The solid error band denotes
the correlated uncertainty due to the size of the quasielastic tail in the
radiative corrections; overall normalization uncertainties are shown
in the parenthesis. Also shown are the updated SLAC E139 [16] and
NMC data [18,19]. The solid curves show the A dependent fit to the
EMC effect from Ref. [16].

updated SLAC E139 data and the NMC data [18,19]. Note that
the red curve is a global fit to the A dependence from SLAC
[16], which yields a smaller EMC effect for 4He than seen in
their data or our updated measurement. CLAS results [104]
are also shown for carbon. There is overall good agreement
between the data sets. Both the CLAS and E03103 results are
of high precision, with E03103 extending to larger x, although
at a lower W 2 than previous measurements.

Figure 18 shows the cross-section ratios for 3He and 9Be.
Both of these nuclei are light enough that the Coulomb
corrections are small, but require a proton (neutron) excess
correction to obtain the isoscalar EMC ratios (see Sec. III J).
The magnitude of this correction is significant for 3He,
ranging from about 5% to 15% for our kinematics. For
9Be, the correction is of the opposite sign and roughly a
factor of three smaller. The 3He EMC ratios exhibit the
general shape observed for the cross-section ratios for heavy
nuclei.

One can avoid the uncertainty associated with the isoscalar
correction, and thus better evaluate models of the EMC ef-
fect, by taking the ratio of 3He to (2H + 1H) which allows
comparisons to calculations that are independent of the neu-
tron structure function. These ratios are extracted for our
40 degree setting and shown in Fig. 19 (red squares), along
with the isoscalar-corrected 3He / 2H ratios (blue circles). The
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FIG. 18. Isoscalar EMC ratios for 3He (a) and 9Be (b) for the 40
degree data. Uncertainties are as described in Fig. 17. Also shown
are the HERMES 3He data [20,21] (updated to include our mod-
ified isoscalar correction). The solid curve shows an A dependent
parametrization [16] for the EMC effect.

isoscalar-corrected 3He / 2H ratio and the 3He /(2H + 1H) re-
sults are in good agreement below x ≈ 0.65, but the resonance
structure at large x in the proton is not washed out, and so
the extended scaling observed in nuclei [4] is not as effective,
limiting the useful range for this ratio to x <∼ 0.65.

Next, we examine the ratios for heavy nuclei in Fig. 20.
Several corrections to the data on heavy nuclei are larger
or more uncertain than for light nuclei. At low x, the ra-

FIG. 19. Comparison of the isoscalar-corrected 3He /D ratio
(blue circles) to 3He /(D + p) (red squares). The agreement is very
good below x = 0.65 (which corresponds to W ≈ 1.9 GeV). At
larger x, the resonance structure in the free proton is evident.

FIG. 20. EMC ratios for Fe and Cu (a) and for Au and Pb (b) as a
function of x for the 40 degree data. Uncertainties are as described in
Fig. 17. The SLAC E139 and E140 data include updated Coulomb
and isoscalar corrections, while the CLAS data has been updated
with isoscalar corrections only since Coulomb corrections had al-
ready been applied. BCDMS [108] Fe results are shown as published.

diative corrections and charge symmetric background (see
Sec. III C 2) are quite large. At high x, Coulomb distor-
tion becomes large for high-Z targets; the correction for Au
ranges from 3% at low x to 12% at high x values for the 40◦
data.

Taking normalization uncertainties into account, our large-
x results are in generally good agreement with the SLAC
data, although the SLAC ratios at x = 0.8 are always slightly
higher than our results. This is possibly because the x = 0.8
SLAC points were taken at higher Q2 values (Q2 = 10 GeV2)
than the E03103 data (Q2 ≈ 6 GeV2), leading to a noticeable
difference between the target mass corrections needed for the
two data sets. Figure 21 shows the points plotted as a function
of x (left panels) and ξ (right panels), where plotting the
ratio versus ξ provides the dominant part of the target mass
correction. The target mass correction shifts all points lower
values of ξ with the largest shifts occurring at large x. When
plotted as a function of ξ , the EMC ratios are consistent within
the scale uncertainties.

At small x values, we find systematic disagreements with
the SLAC measurements. While the light isoscalar nuclei
are in relatively good agreement with the E139 results, the
3He ratios are systematically lower than HERMES for x �
0.4 (although the region of overlap is small), and the very
heavy nuclei are systematically higher. Given the normaliza-
tion uncertainties, it is difficult to conclude that there is a
true inconsistency between the data sets, but we examine the
pattern of disagreement to evaluate possible explanations for
the small differences.
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FIG. 21. EMC ratios for our Cu and Au data compared to the
SLAC Fe and Au data, respectively, shown using four different sets
of corrections. The panels on the left (right) side show the ratio
vs x (ξ ), while the panels on the top (bottom) show the ratios
with (without) Coulomb corrections applied. For each target, panel
(b) shows the comparison where one expects the best agreement
between different measurements, assuming that the Coulomb and so-
called target mass corrections account for any θ and Q2 dependence
in the cross-section ratios. For all nuclei, high-x SLAC and JLab
results are in good agreement, after taking into account the scale
uncertainties in the measurements.

First, note that these nuclei have large isoscalar corrections,
which are of the opposite sign for 3He and the heavy nuclei.
However, the low-x region has the least uncertainty in the
ratio of F n

2 /F p
2 [61,62], and the correction becomes smaller

at low-x values, where the F n
2 /F p

2 becomes closer to unity.
In addition, the SLAC data as presented here include the
updated isoscalar correction that we apply to our data, and
thus such a discrepancy would have to be associated with the
Q2 dependence of the isoscalar correction. It therefore seems
unlikely that it could be responsible for the difference between
data sets at small x.

The heavy nuclei also have significant corrections due
to Coulomb distortion, radiative corrections, and charge-
symmetric backgrounds. The charge-symmetric background
is directly measured for all nuclei so it is unlikely this is the
source of the discrepancy. It is interesting to note that while

effects due to Coulomb distortion tend to be smaller at low
x, the agreement between the E03103 and SLAC results for
heavy targets is apparently better with no Coulomb correc-
tions applied to either data set.

Since the Coulomb correction factors (see Sec. III I) are
substantial for the heavy nuclei, it motivated us to further
investigate the details of this correction; in particular the
impact of its strong angular dependence. This angular de-
pendence could potentially affect the apparent ε dependence
of the cross-section ratios. As mentioned in the Introduction,
the identification of the cross-section ratio with the F2 ratio,
and thus the EMC effect, is valid only if ε = 1 or RA1 = RA2

(identical ratio of longitudinal to transverse virtual-photon
absorption cross section for the two nuclei). This idea was
tested by SLAC E140 [107], which set limits on any possible
nuclear dependence for R. They assumed the Coulomb distor-
tion effects were small and did not include these corrections
in their analysis. However, a re-examination of the SLAC
140 [107], SLAC E139 [16] (including updated Coulomb and
isoscalar corrections) and preliminary results for the Cu target
from E03103 data suggested a nonzero nuclear dependence in
RA − RD [109].

Here we present an updated version of the analysis initially
performed in Ref. [109]. Figure 22 shows the ε dependence
of the extracted cross-section ratios for the Cu (Fe target for
the SLAC experiments) target extracted for x = 0.5, Q2 ≈
5 GeV2 point. In this analysis, the data at low ε values
from the E03103 experiment are combined with the mea-
surements from SLAC [16,107] to study the ε dependence
of the cross-section ratios. The slope derived using a linear
fit after accounting for the appropriate normalization uncer-
tainties between different experimental data sets is found to
be consistent with zero (see top plot in figure 22). However,
after the application of Coulomb corrections there is a change
in the slope (from −0.007 ± 0.043 to −0.053 ± 0.044). This
analysis hints at the interesting possibility that there may be a
nontrivial ε dependence for the cross-section ratios, implying
a detectable nuclear dependence of R = σL/σT at large x.

There have been other indications of possible A depen-
dence to R [110–113]. These previous results are consistent
with a decrease in R for nuclei with more neutrons, which
could explain the observation of an increase in σA/σD for
3He and a decrease for heavier nuclei with a significant neu-
tron excess. However, we cannot exclude the possibility that
these features are the result of errors in our knowledge of the
thickness of these targets which give shifts in the ratios which
happen to vary with the N/Z ratio of the nucleus. More defini-
tive information with respect to a possible A dependence of R
will be forthcoming in the final analysis of Hall C experiments
E02109 [114] and E04001 [115], which took data primarily
(although not exclusively) in the resonance region, and the fu-
ture E12-14-002 [116], which will emphasize measurements
in the DIS region.

C. A dependence of the EMC effect

The overall size of the EMC effect is parameterized
in terms of the x dependence (slope) of the EMC ratios,
REMC(x). Table VI shows the EMC slopes, |dREMC/dx| for
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FIG. 22. Extracted cross-section ratios using the updated data
from Refs. [16,107] and E03103 experiment as a function of ε for
the Fe/Cu targets for x = 0.5 and Q2 values as mentioned in the
legend. The top (bottom) plot shows the target ratio without (with)
Coulomb corrections applied. Inner error bars denote statistical and
point-to-point uncertainties combined in quadrature while out error
bars include contributions from normalization uncertainties. The un-
certainty on the slope is calculated from point-to-point errors as well
as the experiment-dependent normalization uncertainties.

TABLE VI. EMC slopes extracted from SLAC [16,36], CLAS
[104], and this experiment. Slopes are extracted using consistent
isoscalar corrections for all three experiments, and with Coulomb
corrections applied to all three data sets.

A JLab E03103 SLAC E139 CLAS

3He 0.085 ± 0.027 – –
4He 0.186 ± 0.030 0.186 ± 0.043 –
9Be 0.250 ± 0.032 0.208 ± 0.028 –
12C 0.264 ± 0.033 0.305 ± 0.032 0.351 ± 0.025
27Al – 0.293 ± 0.025 0.375 ± 0.026
40Ca – 0.329 ± 0.037 –
56Fe – 0.346 ± 0.021 0.483 ± 0.023
63Cu 0.376 ± 0.040 – –
107Ag – – –
197Au 0.435 ± 0.059 0.386 ± 0.029 –
208Pb – – 0.488 ± 0.024

FIG. 23. EMC slope vs A for JLab E03103 (this work), SLAC
E139 [16], and CLAS [104]. The linear fit excludes A < 12 nuclei,
with the upper fit (and reduced χ 2 value including all data sets), and
the lower excluding the CLAS data.

0.3 < x < 0.7, extracted from data from SLAC, CLAS, and
this experiment. This table is an updated version of Table 1
provided in Ref. [36] which includes some of the updated
results from E03103 as well as the recent CLAS data [104].
The slopes are shown versus A in Fig. 23. The CLAS slopes
are systematically higher than those from the other exper-
iments. This, combined with the fact that CLAS does not
provide results on nuclei lighter than carbon, means that a
combination of the slopes for all nuclei (or A � 4) will yield
a larger A dependence than any of the individual data sets.
Each experiment uses a single deuteron data set for all A/D
ratios, so the deuteron uncertainties should be treated as a
common normalization uncertainty for all ratios from a given
experiment in a complete analysis of the A dependence.

It is not clear why the CLAS EMC ratios yield larger
slopes. This data set is taken at lower Q2 than the E03103
and SLAC data, but target mass corrections yield a larger
slope [when fitting F (0)

2 (x) rather than F2(x)], and this increase
is largest for CLAS because it is at lower Q2. So applying
target mass corrections would only increase the discrepancy
between CLAS and the higher-Q2 data sets. Reference [104]
extracts the EMC ratios with a Q2 cut of Q2 > 1.5 GeV2, but
also examines the impact of other cuts. In their analysis requir-
ing Q2 > 2.0 GeV2, the average slope is decreased by 0.02
with little impact on the uncertainties, while Q2 > 2.5 GeV2

decreases the average slope by 0.035 but with much larger
uncertainties. This suggests that inclusion of the lower Q2

data may be increasing the slope, but it is difficult to quantify
exactly how this impacts the comparison to the SLAC and
JLab E03103 measurements.

Radiative corrections may also play a role in the difference
in the CLAS EMC slopes. While CLAS, E03103, and SLAC
all treat radiative effects based on the Mo and Tsai formal-
ism [88], the detailed implementation and the cross-section
models used differ. The radiative corrections program used by
E03103 is based on that used for the earlier SLAC analysis,
while CLAS uses the program described in Ref. [117]. In
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particular, it is possible that differing approximations in the
two approaches may result in systematic differences in the
cross section and EMC slopes which can have a significant
impact at smaller x values.

The measurements on light nuclei, in particular for 9Be,
show a clear deviation from scaling with density [57], while
the lightest nuclei show deviations from a smooth scaling with
A. It has been suggested that the local density or the overlap
of the struck nucleon with nearby neighbors may drive the
scaling of the EMC effect [36,57,118], or that off-shell effects
in the highly virtual nucleons may in fact be responsible
[34,104]. In connection with these ideas, it has been suggested
that there may be both an A dependence and an isospin de-
pendence, with additional modification in neutron-rich nuclei
[36,119,120]. So far, examinations of the A dependence of the
EMC ratios under different assumptions about the isospin de-
pendence are inconclusive, with the data being consistent with
a significant flavor dependence based on the isospin structure
of SRCs [104], but somewhat better described under the as-
sumption of isospin independence [36,118]. The additional
data on heavy nuclei presented here and the small changes
in the results for light nuclei do not significantly impact the
conclusions of such comparisons, as a larger range of N/Z is
needed to increase the sensitivity [121].

VI. CONCLUSIONS

Deep inelastic scattering from 1,2H, 3,4He, Be, C, Cu, and
Au targets was measured by the E03103 experiment at Jeffer-
son Lab. The ratios of inclusive nuclear cross sections with
respect to the deuterium cross section have been determined
for x > 0.3 for Q2 values between 3 and 8 GeV2. We include
new data on heavy nuclei, not included in the original results
[57], and provide a combined analysis of our results with
previous SLAC measurements [16] and recent CLAS data
[104], applying consistent isoscalar and Coulomb corrections
to the different data sets.

E03103 addressed several of the limitations of previous
measurements. We have provided benchmark data for calcu-

lations of the EMC effect in light nuclei. Predicted deviations
from the x dependence observed in heavy nuclei [73,74] were
not observed in 3He and 4He, but clear deviations from the
simple assumption of mass or density scaling of the EMC
effect are observed. At large x, where binding and Fermi
motion effects dominate, our new data for light and heavy
nuclei can serve as a base-line for traditional nuclear physics
calculations, including several few-body nuclei where struc-
ture related uncertainties are minimal.

The data presented in this work will bridge the gap between
measurement of the EMC effect in light nuclei and medium
heavy nuclei, thus providing a comprehensive basis to test
state of the art models that attempt to explain the observed
nuclear dependence. For the moment, few models provide an
explicit prediction for the A dependence, thus limiting the
ability to directly constrain these models without further effort
on the theory side.

While these data provide important new information about
the EMC effect, there are still limitations on how well these
results could be used to constrain explanations of the EMC
effect. Some of these limitations will be addressed by 12 GeV
experiments at Jefferson Lab [121,122]. This will provide
further information on the detailed behavior of the observed
nuclear nuclear dependence with an expanded set of light
nuclei, including nuclei with significant cluster structure and
medium-to-heavy nuclei covering a range of N/Z to increase
sensitivity to flavor-dependent effects.
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