
PHYSICAL REVIEW C 104, 064904 (2021)

Baryon transport and the QCD critical point
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Fireballs created in relativistic heavy-ion collisions at different beam energies have been argued to follow
different trajectories in the QCD phase diagram in which the QCD critical point serves as a landmark. Using a
(1+1)-dimensional model setting with transverse homogeneity, we study the complexities introduced by the fact
that the evolution history of each fireball cannot be characterized by a single trajectory but rather covers an entire
swath of the phase diagram, with the finally emitted hadron spectra integrating over contributions from many
different trajectories. Studying the phase diagram trajectories of fluid cells at different space-time rapidities, we
explore how baryon diffusion shuffles them around, and how they are affected by critical dynamics near the QCD
critical point. We find a striking insensitivity of baryon diffusion to critical effects. Its origins are analyzed and
possible implications discussed.
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I. INTRODUCTION

One of the primary goals of nuclear physics [1] is
studying the phase diagram of quantum chromodynamics
(QCD), which is generally mapped to a plane expanded with
temperature T and baryon chemical potential μ axes [2]. First-
principles calculations from lattice QCD show that, at zero
μ, the phase transition from a deconfined quark-gluon plasma
(QGP) phase to a confined hadron resonance gas (HRG) phase
from high to low temperature is a rapid but smooth crossover
[3–6]. At large μ, calculations of the phase transition using
lattice QCD are not yet available, since there the standard
techniques suffer from the “sign problem” [7,8]. Nevertheless,
theoretical models indicate that at large chemical potential the
phase transition is first order [2], and this implies that a critical
point exists at nonzero chemical potential [9,10], at the end of
the first-order phase transition line. Confirming the existence
and finding the location of the hypothetical QCD critical point
have attracted a tremendous amount of attention over the last
two decades [11,12].

Heavy-ion collisions are the main method to tackle these
unsolved problems [9–22]. Such collisions have been car-
ried out at different experimental facilities, such as the Large
Hadron Collider (LHC) at CERN and the Relativistic Heavy-
Ion Collider (RHIC) at Brookhaven National Laboratory, at
various beam energies, and large sets of data have been accu-
mulated. One of the most promising signatures of the QCD
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critical point is a nonmonotonic beam energy dependence of
higher-order cumulants of the fluctuations in the net proton
production yields [9,10,16,17,19,20]. This is based on the idea
that these observables are more sensitive to the correlation
length of fluctuations of the chiral order parameter which, in
the thermodynamic limit, diverges at the critical point [23].
Fireballs created in heavy-ion collisions at different beam en-
ergies should freeze out with correlation lengths that depend
nonmonotonically on the collision energy, and this should be
reflected in the net baryon cumulants. Strongly motivated by
this, a Beam Energy Scan (BES) program has been carried
out at RHIC during the last decade. During a first campaign
that ended in 2011 (BES-I), Au-Au collisions were studied
at collision energies

√
sNN from 200 GeV down to 7.7 GeV

(BES-I) [12,24,25]. A second campaign, BES-II, with signifi-
cantly increased beam luminosity is expected to be completed
this year, after having explored collision energies down to√

sNN = 3.0 GeV in fixed-target mode. Additional experi-
ments at even lower beam energies, probing the phase diagram
in regions with even higher baryon chemical potential, are
planned at the newly constructed FAIR and NICA facilities.

Unfortunately, the dynamical nature of the fireballs created
in heavy-ion collisions renders attempts to confirm the above
static equilibrium considerations experimentally anything but
straightforward. Within their short lifetimes of several dozen
yoctoseconds the fireballs’ energy density decreases rapidly
by collective expansion, from initially hundreds of GeV/fm3

to well below 1 GeV/fm3 at final freeze-out (see, e.g.,
Refs. [11,26]). The rapid dynamical evolution of the ther-
modynamic environment keeps the latter permanently out of
thermal equilibrium such that critical fluctuations never reach
their thermodynamic equilibrium distributions. In addition, in
those parts of the fireball which pass through the quark-hadron
phase transition close to the QCD critical point, the dynamics
of critical fluctuations is affected by “critical slowing down”
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[27]. This is both a curse and a blessing: If critical fluctuations
would relax quickly to thermal equilibrium, all memory of
critical dynamics might have been erased from the hadronic
freeze-out distributions by the time the hadron yields and mo-
menta decouple. If, on the other hand, the dynamical evolution
of fluctuations is slowed in the vicinity of the critical point,
some signals of critical dynamics may survive until freeze-out
but they will then most definitely not feature their equilibrium
characteristics near the critical point [27].

Thus, to confirm or exclude the critical point via system-
atic model-data comparison, reliable dynamical simulations
of off-equilibrium critical fluctuations and the associated
final particle cumulants, on top of a well-constrained com-
prehensive dynamical description of the bulk medium at
various beam energies, are indispensable [28–39]. Recently,
the Hydro+/++ framework [34,40] was developed for in-
corporating off-equilibrium fluctuations and critical slowing
down into hydrodynamic simulations, and some practical
progress within simplified settings has since been made using
this framework [21,22]. On the other hand, while a fully
developed and calibrated (2+1)-dimensional multistage de-
scription of heavy-ion collisions (including initial conditions
+ prehydrodynamic dynamics + viscous hydrodynamics +
hadronic afterburner) exists (see, e.g., the most recent versions
described in [41–44]) and has met great phenomenological
success at top RHIC and LHC energies [11,12,26], such a
comprehensive and fully validated framework is still missing
for collisions at the lower BES energies.

Compared to high-energy collisions at LHC and top RHIC
energies, collisions at BES energies introduce a number of
additional complications [45,46]. These include (i) a much
more complex, intrinsically (3+1)-dimensional and tempo-
rally extended nuclear interpenetration stage and its associated
dynamical deposition of energy and baryon number [47–51],
(ii) the need to account for and properly propagate conserved
charge currents for baryon number and strangeness [51–57],
(iii) a consistent treatment of singularities in the thermody-
namic properties associated with the critical point [23,58],
(iv) the aforementioned off-equilibrium nature of critical dy-
namics [21,22,34,38,40,59], and (v) the dynamical effects of
nucleation and spinodal decomposition in the metastable and
unstable regions associated with the first-order phase transi-
tion [60–63]. The situation is made even more complicated
by the back-reaction of the nonequilibrium critical fluctuation
dynamics on the bulk evolution of the medium. This back-
reaction causes a potential dilemma: On the one hand, locating
the critical point requires reliable calculations at various beam
energies of critical fluctuations on top of a well-constrained
bulk evolution of the fireball medium; on the other hand, the
back-reaction of the off-equilibrium critical fluctuations from
a critical point whose location is yet to be determined onto
the medium evolution might interfere with the calibration of
the latter and turn it into an impossibly complex iterative
procedure whose convergence cannot be guaranteed.

Guidance on how (and perhaps even whether) to incorpo-
rate critical effects when constraining the bulk dynamics is
direly needed, not least since dynamical simulations for low
beam energies are computationally very expensive. Some ef-
fects on the bulk medium evolution arising from singularities

in the thermodynamic properties of the QCD matter [23,58],
by adding a critical point to the QCD equation of state (EoS)
[53,64–67] and/or explicitly including critical scaling of its
transport coefficients, have been explored, with special atten-
tion to the bulk viscous pressure since critical fluctuations of
the chiral order parameter, which couples to the baryon mass,
can be directly related to a peak of the bulk viscosity near the
critical point [68–71]. The authors of [72] showed that crit-
ical effects on the bulk viscous pressure have non-negligible
phenomenological consequences for the rapidity distributions
of hadronic particle yields, implying that critical effects might
indeed play an important role in the calibration of the bulk
medium.

In a similar spirit we study here critical effects on the bulk
evolution in the baryon sector, by including the critical scaling
of the relaxation time for the baryon diffusion current and
of the baryon diffusion coefficient, as well as (in a simpli-
fied treatment) the critical contribution to the EoS [64,65,67].
We study the phenomenological consequences of baryon dif-
fusion in a system both away from and close to the QCD
critical point; the former is essential for modeling heavy-ion
collisions at the high end of the BES collision energy range
[51–57]. Including only the baryon diffusion while neglecting
other dissipative effects helps us to study its hydrodynamical
consequences in isolation. A more comprehensive study in-
cluding all dissipative effects simultaneously is left for future
work.

This paper is organized as follows. We discuss the hy-
drodynamic formalism with nonzero baryon diffusion current
in Sec. II. In Sec. III, we illustrate our setup near the QCD
critical point, particularly by discussing the critical behavior
of thermodynamic and transport coefficients for the hydrody-
namic evolution. After completing the setup of the framework
in Sec. IV we discuss results for a fireball created at low beam
energies in Sec. V, with a focus on baryon diffusion current
effects, first away from (Sec. V A) and then close to (Sec. V C)
the critical point, followed by a discussion of general features
of the time-evolution of the diffusion current in Sec. V D.
We summarize results and draw conclusions in Sec. VI. In
the Appendices, we discuss causality near the QCD critical
point in Appendix A, estimate the size of the critical region in
Appendix B and, finally, validate the numerical methods used
in this work in Appendix C.

Throughout this article we use natural units where factors
of h̄, c, and kB are not explicitly exhibited but implied by
dimensional analysis. We also use Milne coordinates, xμ =
(τ, x, y, ηs), where τ and ηs are the (longitudinal) proper
time and space-time rapidity, respectively, and are related to
the Cartesian coordinates via t = τ cosh ηs, z = τ sinh ηs. We
employ the mostly-minus convention for the metric tensor,
gμν = diag (+1,−1,−1,−1/τ 2).

II. VISCOUS HYDRODYNAMICS WITH BARYON
DIFFUSION

In this section we discuss the viscous hydrodynamic
framework including baryon diffusion. Hydrodynamics is
an effective theory for describing long-wavelength degrees
of freedom, which, from a macroscopic viewpoint, can be
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formulated by conservation laws of hydrodynamic variables
that are ensemble averaged at certain coarse-grained scales
[26,73]. In heavy-ion collisions, the conserved quantities are
energy, momentum, and various charges, including net baryon
charge, electric charge and strangeness. In this work, we only
study the net baryon charge; the extension to incorporate
other conserved charges is conceptually straightforward [56]
and will be studied elsewhere. The conservation equations
for energy-momentum and net baryon charge are formulated
covariantly as

dμT μν = 0, (1a)

dμNμ = 0, (1b)

where dμ is the covariant derivative in an arbitrary coordinate
system (Milne coordinates here), T μν and Nμ are the energy-
momentum tensor and (net) baryon current, respectively. In a
given arbitrary reference frame, they can be decomposed into
the ideal and dissipative parts as

T μν = T μν
id + �μν, (2a)

Nμ = Nμ
id + nμ, (2b)

where T μν
id and Nμ

id are the ideal parts which are well defined
in local equilibrium, while �μν and nμ are the dissipative
components describing the deviations from local equilibrium.
The former can be expressed as

T μν
id = euμuν − p�μν, (3a)

Nμ
id = nuμ, (3b)

where e and n are the energy density and baryon density in the
local rest frame, uμ is the four-velocity of the fluid element
(normalized as u2 = 1), p the pressure given by the EoS, p =
p(e, n), and �μν ≡ gμν − uμuν . The local rest frame in this
work is chosen as the Landau frame specified by the Landau
matching conditions [74]

uμT μν = euν, uμNμ = n, (4)

which implies uμnμ = 0 and uμ�μν = 0.
The dissipative term �μν in the energy-momentum ten-

sor can be written as �μν = −��μν + πμν , where � is
the bulk viscous pressure, and πμν the shear stress tensor.
The dissipative term nμ in the net baryon current describes
its nonzero spatial components in the local rest frame of
the fluid. The evolution of these dissipative terms are gov-
erned by both microscopic and macroscopic physics, and
thus their equations of motion can not be obtained directly
from conservation laws. We use the evolution equations from
the Denicol-Niemi-Molnar-Rischke (DNMR) theory [75,76],
which uses the methods of moments of the Boltzmann equa-
tion. In this work, to isolate the effects from baryon diffusion
current nμ clearly, we shall ignore the dissipative effects from
πμν and �, focusing only on nμ.

The equation of motion for nμ from the DNMR theory is
an Israel-Stewart type equation,

τnṅ〈μ〉 + nμ = κn∇μα + J μ, (5)

where ṅ〈μ〉 ≡ �μ
ν ṅν (the overdot denotes the covariant time

derivative D ≡ uμdμ), κn is the baryon diffusion coefficient

(also referred to as the baryon conductivity), α ≡ μ/T is the
chemical potential μ in the unit of temperature T , and τn is
the relaxation time, on whose scale baryon current relaxes
towards its Navier-Stokes limit:

nμ
NS ≡ κn∇μα; (6)

here ∇μ ≡ �μνdν is the spatial gradient in the local rest
frame. The term J μ contains higher order gradient contribu-
tions [75,76]. Rewriting Eq. (5) as a relaxation equation,

ṅ〈μ〉 = − 1

τn
(nμ − κn∇μα) + 1

τn
J μ, (7)

shows that ∇μα is the driving force for baryon diffusion while
κn controls the strength of the baryon diffusion flux arising
in response to this force. τn characterizes the response time
scale. We note that both τn and κn depend on the micro-
scopic properties of the medium, which have been calculated
in various theoretical frameworks, including kinetic theory
[52] and holographic models [77,78]. In principle, they can
also be constrained phenomenologically by data-driven model
inference, but as of today such studies are still very limited for
baryon evolution.

Rewriting Eq. (5) more specifically for baryon diffusion,
we arrive at

uν∂νnμ = κn

τn
∇μα − nμ

τn
− δnn

τn
nμθ − nνuμDuν − uα

μ
αβnβ,

(8)
where θ ≡ d · u, the nμθ term arises from J μ (the only term
we keep from J μ as given in [54]), δnn is the associated trans-
port coefficient, and the last two terms come from rewriting
ṅ〈μ〉 explicitly, with 

μ

αβ being the Christoffel symbols. Equa-
tion (8) is the equation we use to evolve the baryon diffusion
current in this work. We remark that the Navier-Stokes limit
of the baryon diffusion current can be rewritten in terms of
density and temperature gradients,

nμ
NS = DB∇μn + DT ∇μT, (9a)

where the two coefficients are

DB = κn

T χ
, DT = κn

T n

[(
∂ p

∂T

)
n

− w

T

]
. (9b)

Here χ ≡ (∂n/∂μ)T is the isothermal susceptibility, and w =
e + p is the enthalpy density. We note that the gradient ex-
pansion is not unique, and writing it in different ways can
be used to explore individual contributions separately (see
Appedix C 2). In Sec. III B we will discuss the benefits of
decomposing the Navier-Stokes limit as Eq. (9) where critical
singularities manifest themselves.

For later convenience of discussing critical behavior, we
also introduce the heat diffusion coefficient,

Dp = λT

cp
, (10)

where cp ≡ nT (∂m/∂T )p is the specific heat, with m ≡ s/n,
i.e., the entropy per baryon density [34,79]; λT is the thermal
conductivity, which can be related to the baryon diffusion
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coefficient κn by

λT =
( w

nT

)2
κn. (11)

Using Eq. (11) one can also relate the heat diffusion coeffi-
cient Dp to DB by

Dp =
(

w2χ

n2T cp

)
DB. (12)

The above system of hydrodynamic equations is closed by
the EoS, either in the form p(e, n) or, equivalently, through
the pair of relations (μ(e, n), T (e, n)). Again, the EoS is
controlled by microscopic physics. We discuss the EoS used
in this study in Sec. IV below.

III. CRITICAL BEHAVIOR

In this section we focus on the effects of the QCD critical
point on baryon transport in a relativistic QCD fluid. Critical
phenomena, albeit ubiquitous, can be classified into certain
universality classes determined by the effective degrees of
freedom and symmetries of the system. It has been well
argued that the QCD critical point belongs to the static uni-
versality class of the three-dimensional Ising model [13,14],
and the dynamical universality class of Model H in the
Hohenberg-Halperin classification [23,79]. It is also believed
that the critical point, if it exists, is beyond the reach of first-
principles approaches such as lattice QCD, and consequently
little else is known beyond its universality classification.

Much work has been done to lift the fog from the physics
lurking beyond the above universality argument. First, a ro-
bust construction of a family of EoS exhibiting the appropriate
universal critical properties and matching to existing lattice
QCD calculations has been proposed [65,67]. The EoS en-
codes the microscopic properties of the QCD matter and
is indispensable for solving the macroscopic hydrodynamic
equations. Second, a hydrodynamic framework incorporating
fluctuations and critical slowing down has been established,
in order to overcome the breakdown of hydrodynamics near
the critical point. A deterministic framework, known as
hydro-kinetic theory, extends conventional hydrodynamics
by consistently including fluctuations as additional dynamic
degrees of freedom (modes) [80–83]. The feedback of fluc-
tuating modes renormalizes the bare hydrodynamic variables
and gives rise to a delayed response in the form of so-called
long-time tails. The hydrokinetic approach can be imple-
mented in the critical regime where the fluctuating modes
relax to equilibrium on parametrically long timescales [34,40]
(see also the reviews [46,84]).

Of course, the inclusion of fluctuations does not by it-
self cure pathological issues such as acausality or instability
of the underlying hydrodynamic framework that arise when
straightforwardly extending the non-relativistic Navier-Stokes
equations into the relativistic domain [85,86]. The most
widely used resolution of these issues follows the approach
pioneered in Ref. [87], by elevating the dissipative compo-
nents of the energy-momentum tensor to dynamical degrees
of freedom subject to their own relaxation-type equations (for
which Eq. (7) for the baryon diffusion current is an example).

In this approach the causality and stability conditions can be
shown to continue to hold in the proximity of the critical point
(see Appendix A).

In the following subsections we discuss how we implement
the static and dynamic universal critical behavior, using a
simplified setup. Possible future improvements using a more
realistic implementation will be discussed in the conclusions
(Sec. VI).

A. Implementation of static critical behavior

One significant feature of critical phenomena is that, when
the system approaches a critical point adiabatically, the equi-
librium correlation length, which is typically microscopically
small, becomes macroscopically large and eventually di-
verges. With the purpose of identifying qualitative signatures
of a critical point, we characterize all equilibrium quanti-
ties exhibiting critical behavior in terms of their parametric
dependence on the correlation length.1 We parametrize the
correlation length as follows:

ξ (μ, T ) = ξ0(μ, T )

{
tanh[ f (μ, T )]

(
1 −

(
ξ0

ξmax

) 2
ν

)

+
(

ξ0

ξmax

) 2
ν

}− ν
2

. (13)

Here ξ0(μ, T ) is the noncritical correlation length (measured
far away from the critical point) while ξmax is an infrared
cutoff regulating the divergence at the critical point by im-
plementing a maximum value for the correlation length. The
crossover between the critical and non-critical regimes is char-
acterized by the hyperbolic function tanh[ f (μ, T )], where

f (μ, T ) =
∣∣∣∣ (μ−μc) cos α1 − (T −Tc) sin α1

�μ

∣∣∣∣
2

+
∣∣∣∣ (μ−μc) sin α1 + (T −Tc) cos α1

�T

∣∣∣∣
2
βδ

. (14)

In the above expression (Tc, μc) is the location of critical
point, and �μ and �T characterize the extent of the critical
region along the μ and T axes of the phase diagram; α1

is the angle between the crossover line (h = 0 axis in the
Ising model) and the negative μ axis (see Fig. 1); ν = 2/3,
β = 1/3, and δ = 5 approximate the critical exponents of the
three-dimensional Ising universality class [13,14]. Equation
(13) is designed to ensure the following properties:

(i) ξ = ξmax when μ = μc and T = Tc;
(ii) ξ ∼ |T − Tc|−

ν
βδ when μ = μc and |T − Tc| � �T ;

(iii) ξ ∼ |μ − μc|−ν when T = Tc and |μ − μc| � �μ;
(iv) ξ = ξ0 when |μ − μc| � �μ and/or |T − Tc| �

�T .

1If we knew the critical EoS explicitly, these dependencies would
naturally follow from the thermodynamic identities relating these
quantities to the thermal equilibrium partition function.
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FIG. 1. A schematic phase diagram for the mapping from Ising
variables (r, h) to the QCD phase diagram coordinate (μ, T ). The
black circle (μc, Tc) the is QCD critical point, in the critical region
with width (2�μ, 2�T ).

To limit the number of free parameters, we ignore the T and
μ dependence of the noncritical correlation length ξ0 and
parametrize the crossover line as [88]

T (μ)

T0
= 1 − κ2

( μ

T0

)2
+ O(μ4), (15)

where T0 = 155 MeV and κ2 = 0.0149 are the transition tem-
perature and the curvature of the transition line T (μ) at μ = 0.
Location of the critical point (Tc, μc) is assumed to be on the
crossover line [65], and as a consequence

α1 = arctan

(
2κ2μc

T0

)
. (16)

Thus Tc and α1 are determined once μc is provided. Based
on the above discussion we choose the following parameter
values:

ξ0 = 1 fm, ξmax = 10 fm,

μc = 250 MeV, Tc = 149 MeV, α1 = 4.6◦,

�μ = 92 MeV, �T = 18 MeV. (17)

Among these, �μ and �T are determined by additional pa-
rameters provided in Eq. (B9) of Appendix B. With those
parameters, we visualize the correlation length as function of
(μ, T ) in Fig. 2.

Several comments are in order: First, our parametrization
of the correlation length applies to the crossover region in the
left part of the QCD T -μ phase diagram, at μ < μc, and not
to the presumed first-order phase transition at μ > μc where
the theoretical description is complicated by possible phase
coexistence and metastability [63]. This suggests choosing
the collision beam energy sufficiently high to avoid the latter
situation, but not too high to be far from the critical point.
Motivated by experimental hints [89] and earlier theoretical
studies [52,72] we here set

√
sNN = 19.6 GeV. Second, al-

though the correlation length diverges in the thermodynamic
limit, heavy-ion collisions create small, rapidly expanding
QGP droplets in which finite-size and finite-time effects as

FIG. 2. Distribution of the correlation length ξ (μ, T ), with a crit-
ical point located in the T -μ plane at Tc = 0.149 GeV and μc = 0.25
GeV (indicated by the red star), parametrized by Eq. (13) with the
parameters in Eq. (17).

well as the critical slowing down [10,27] prevent the corre-
lation length from growing to infinity. A robust estimate for
the largest correlation length the system might achieve in this
dynamical environment is about 3 fm [27]. The system will
thus never get close to our static infrared cutoff ξmax = 10 fm,
and our final predictions turn out not to be sensitive to the
precise value of this cutoff.

Once all thermodynamic quantities and transport co-
efficients (introduced in the following subsection) are
parametrized in terms of ξ as given in Eq. (13), they are de-
fined in both the noncritical and critical regions and thus ready
for use in dynamical simulations describing the trajectory of
the QGP fireball through the phase diagram. For economy
we include in the following discussion not only the dynamic
(transport) coefficients but also the thermal susceptibility χ

and the specific heat cp which are static (thermodynamic)
coefficients.

B. Implementation of dynamic critical behavior

Near the critical point, fluctuations at the length scale ξ

significantly modify the physical transport coefficients, giv-
ing rise to their correlation length dependence. In Model
H, the shear stress tensor and bulk viscous pressure play
important roles in critical dynamics through fluid advection
[21,22]. We shall only focus on critical dynamics arising from
fluctuations in the hydrodynamic regime (i.e., carrying small
wave numbers/frequencies, q � 1/ξ ), as large-wave-number
fluctuations equilibrate fast compared to the hydrodynamic
evolution rate ω ∼ csk, with cs being the speed of sound.
Feedback from off-equilibrium fluctuations that are non-
analytic in ω or k, commonly referred to as longtime tails,
is suppressed by phase space [21,22] and will be neglected.
In other words, the scaling parametrizations below derive
from equilibrium fluctuations for thermodynamic quantities
and from analytic nonequilibrium fluctuations for transport
coefficients.
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In the presence of a bulk viscous pressure, the critical
contribution to bulk viscosity diverges as ξ z where z = 3 for
the QCD critical point [23]. Besides, the associated relax-
ation time for the bulk viscous pressure also diverges as ξ 3

[72]. In this case, the relaxation rate of the fluctuation modes
contributing to bulk viscous pressure is much smaller than
the typical hydrodynamic frequency, and they can no longer
be treated hydrodynamically, requiring instead an extended
framework such as Hydro+ [34,40]. In this work we focus
on effects from baryon diffusion and neglect bulk and shear
stress effects on the bulk evolution dynamics of the fireball;
however, we use the same critical scaling laws for the trans-
port coefficients in Model H as if they were restored (i.e., with
nonvanishing shear viscosity η and bulk viscosity ζ ).

The following second-order thermodynamic coefficients
(isothermal susceptibility χ and specific heat cp) as well as the
first-order transport coefficients (baryon diffusion coefficient
κn and thermal conductivity λT ) scale with the correlation
length as [23]

χ ∼ cp ∼ ξ 2, κn ∼ λT ∼ ξ, (18)

where the exponents are rounded to their nearest integers for
simplicity. Therefore, according to Eqs. (9b) and (10),

DT ∼ ξ, DB ∼ Dp ∼ ξ−1. (19)

In this work we apply the following parametrizations:

χ = χ0

(
ξ

ξ0

)2

, κn = κn,0

(
ξ

ξ0

)
, (20)

where ξ0 is the noncritical correlation length, κn,0 is the non-
critical value of baryon diffusion coefficient (see Eq. (37)
below), χ0 is the isothermal susceptibility evaluated in the
noncritical region, χ0 ≡ (∂n0/∂μ)T where n0 is the noncrit-
ical baryon density.2 With Eq. (20) the parametrizations with
critical scaling for DB, DT and λT are readily obtained from
Eqs. (9b) and (11).

We now turn to the critical behavior of the relaxation
time τn. It is worth remembering that the Israel-Stewart type
equations [cf. Eq. (5)] provide an ultraviolet completion of
the naive (Landau-Lifshitz) hydrodynamic theory. The micro-
scopic relaxation times associated with the new dissipative
dynamical degrees of freedom (such as, in our case here,
the baryon diffusion current nμ) play the role of ultraviolet
regulators which modify the short-distance (high-frequency)
behavior of the theory. For the baryon diffusion current nμ, τn

characterizes the relaxation time to its Navier-Stokes limit nμ

NS
(which is zero in a homogeneous background). Since nμ can
only equilibrate as long as all fluctuating degrees of freedom
contributing to nμ also equilibrate, τn can be considered as
the typical equilibration time scale of the slowest fluctuation
mode near the critical point. Indeed, in Hydro+/++, the
nonhydrodynamic slow-mode evolution equations for critical
fluctuations with typical momenta q ∼ ξ−1 have a structure

2While the notational distinction between χ and χ0 is needed here
for clarity, we generally drop the subscript “0” for thermodynamic
quantities away from the critical region elsewhere to avoid clutter.

similar to the Israel-Stewart relaxation equations for the dis-
sipative flows arising from thermal fluctuations with wave
numbers ξ−1 ∼ T (see Sec. III C for detailed discussion).
Here we assume the scale hierarchy adopted in [40], i.e., the
fluctuation wave number q is much bigger than the gradient
wave number k, but still much small than the inverse of
thermal length T , i.e., k 
 q 
 T . As already mentioned,
Israel-Stewart type equations neglect the nonanalytic contri-
butions from long-time tails which we argued above to be
negligible (see also Sec. III C).

According to Ref. [40], the slowest mode contributing to
nμ is the diffusive-shear correlator between the entropy per
baryon density fluctuations δm ≡ δ(s/n) and the flow fluctu-
ations δuμ, i.e., Gmμ ∼ 〈δmδuμ〉. The relaxation rate for this
mode with wave number q is given by G(q) = (γη + Dp)q2,
where γη = η/w. The two contributions to this rate stem from
the relaxation of the shear stress and of the baryon diffusion,
respectively. Near the critical point, G is dominated by con-
tributions with typical wave numbers q ∼ 1/ξ . Given Dp ∼
ξ−1 and approximately γη ∼ η ∼ ξ 0 [23], one finds G(q) =
(γη + Dp)q2|q∼ξ−1 ∼ ξ−2 and hence τG = −1

G ∼ ξ 2.3 Thus it
is natural to expect τn ∼ τG ∼ ξ 2. We therefore parametrize
τn as

τn = τn,0

(
ξ

ξ0

)2

, (21)

where τn,0 is the noncritical relaxation time [given explicitly
below in Eq. (38)]. As we shall discuss in Appendix A, the
parametrization (21) ensures causality.

As an aside, let us comment on the consequences, had we
tried to ensure the absence of shear stress by demanding that
η = 0. In this case G(q) = Dpq2|q∼ξ−1 ∼ ξ−3, and therefore
τn = −1

n ∼ τG ∼ ξ 3, which is larger compared to that in the
case with shear stress. This arises from the fact that, near
the critical point, the shear mode (δuμ) relaxes to equilibrium
parametrically faster than the diffusive mode (δm). As a result,
its dissipation changes the scaling exponent of the relaxation
time of the diffusive-shear-mode correlator.

Substituting Eq. (13) into Eqs. (20) and (21) we arrive at a
complete set of relevant thermodynamic quantities and trans-
port coefficients (i.e., χ , κn, and τn) as explicit functions of T
and μ that hold in the entire crossover domain of the QCD
phase diagram, both far away from and within the critical
region.

3Another mode contributing to the baryon diffusion current is
the pressure-shear mode Gpμ ∼ 〈δpδuμ〉 [40]. Its relaxation rate at
wave number q is (γζ + 4

3 γη + γp)q2 where γζ = ζ/w, γη = η/w,
and γp = κnc2

s T w(∂α/∂ p)2
m. In the presence of bulk viscosity (as

we assume in order to ensure the correct scaling in Model H), the
relaxation rate for Gpμ is dominated by γζ q2|q∼ξ−1 ∼ ξ considering
γζ ∼ ζ ∼ ξ 3, which is much faster than the rate for the diffusive-
shear mode which scales like G ∼ ξ−2. Even in the absence of
the viscosities (i.e., for η = ζ = 0), the dominated relaxation rate
γpq2|q∼ξ−1 ∼ ξ−1 is still faster than G ∼ ξ−2. Therefore, the contri-
bution from the pressure-shear mode, which is not the slowest, can
be neglected.
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C. Connection to Hydro+
We close this section by discussing the connection between

the Israel-Stewart-like second-order hydrodynamic equations
[cf. Eq. (7)] and the evolution equations proposed in the
Hydro+ formalism [34].

When comparing the conventional Israel-Stewart formal-
ism without critical effects with the Hydro+ framework, we
note that both approaches add nonhydrodynamic degrees of
freedom to the conventional hydrodynamic framework, to-
gether with their associated relaxation timescales that are not
negligible in rapidly evolving systems. The Hydro+ formal-
ism distinguishes itself by the fact that the dynamics of some
of these additional nonhydrodynamic modes, the critical slow
modes, are controlled by a separate small parameter (different
from the conventional Knudsen number for the hydrodynamic
gradient expansion) that characterizes the relative “slowness”
of the relaxation of the critical slow modes when com-
pared with standard dissipative effects arising from thermal
fluctuations.

In our study the critical scaling for the transport co-
efficients is included in the Israel-Stewart formalism, and
consequently it becomes directly comparable to the Hydro+
framework with a single wave number (q ∼ ξ−1) slow mode.
To derive the former from the latter, we introduce a nonhy-
drodynamic slow mode described by a vector field, in contrast
to the scalar field considered as a primary example in the
Hydro+ formalism [34].4 We denote this field by φμ and
demand that it is a transverse vector, i.e., u · φ = 0, for the
sake of later convenience. This vector field will be treated
as the slowest mode contributing to nμ, corresponding to
Gmμ ∼ 〈δmδuμ〉 discussed above.

Including this field, the first law of thermodynamics is
generalized as follows:

ds(+) = β(+)de − α(+)dn + π · dφ. (22)

Here and below, the subscript (+) labels the generalized
quantities by taking into account the additional contributions
arising from the field φμ (more precisely, from its deviation
from its equilibrium value φ̄μ). The variable πμ is thermody-
namically conjugate to φμ, playing the role of a generalized
thermodynamic potential with the constraint u · π = 0. β(+)

and α(+) are the associated inverse temperature and chemical
potential in units of the temperature, respectively. We require
that in thermal equilibrium, where the slow mode φμ reaches
its equilibrium value φ̄μ, the entropy density is maximized and
equal to its standard equilibrium value:

s(e, n) = max
φ

s(+)(e, n, φμ) = s(+)(e, n, φ̄μ),

πμ(e, n, φ̄μ) = 0. (23)

In other words, deviations of the slow mode φμ from its equi-
librium value φ̄μ reduce the entropy for a given hydrodynamic
cell.

4If, however, a scalar slow mode does exist (such as the bulk
viscous pressure � in the critical regime [72]), its dynamics can be
formulated similarly; see Ref. [34].

We also need to supply the evolution equation for φμ,
which describes its relaxation to the equilibrium value φ̄μ (cf.
Ref. [34] for a scalar field). Using the same notation as in
Eq. (5) we write

φ̇〈μ〉 = −Fμ

φ + Aμ
ν ∇να(+) + · · · . (24)

The external force ∇α(+) drives the slow mode away from
equilibrium, Fμ

φ is a “returning force” driving φμ back to equi-
librium [thus Fμ

φ = 0 when φμ = φ̄μ and hence, according to
(23), πμ = 0], and Aμ

ν is the (inverse) susceptibility of φμ to
the external force ∇α(+). Equation (24) requires uμAμ

ν = 0,
thus we can introduce a scalar Aφ so that Aμ

ν = Aφ�μ
ν . The

form of Fμ
φ and Aφ shall be specified below. In general,

φμ can also change in response to additional external forces
[indicated by · · · in Eq. (24)], such as collective expansion
of the background [the θ term in Eq. (8) arising from J μ],
long-range electromagnetic fields, etc. Here, we focus on its
change in response to the gradient of chemical potential in
units of the temperature, α(+), as relevant for our study of
baryon diffusion.

The generalized (partial-equilibrium) entropy current is
given by

sμ
(+) = s(+)u

μ + �sμ, (25)

where �sμ describes a spatial nonequilibrium entropy current
in the local rest frame. Using hydrodynamic equations we
arrive at

d · s(+) = (s(+) − β(+)w + α(+)n)θ + β(+)∂μuν�
μν

−π · Fφ + (Aφπν − nν )∇να(+)

+ dμ(�sμ + α(+)n
μ), (26)

where Eqs. (22) and (24) were used. The second law of
thermodynamics requires the above expressions to be positive
semidefinite, resulting in the following constraints:

s(+) = β(+)w − α(+)n, (27a)

Fμ
φ = γππμ, (27b)

nμ = κn(+)∇μα(+) + Aφπμ, (27c)

�sμ = −α(+)n
μ. (27d)

Here γπ and κn(+) are (positive semidefinite) transport coef-
ficients. We note that in Eq. (27c) Aφπμ corresponds to the
contribution to nμ arising from φμ. Thus κn(+) amounts to the
baryon transport coefficient in the absence of φμ (i.e., κn(+) =
κn,0), and nμ approaches the conventional Navier-Stokes limit
when φμ is ignored. The constraint on �μν (not displayed)
leads to its conventional Navier-Stokes form. The last term
in (26) can in general have either sign; to always satisfy the
second law of thermodynamics we must require it to vanish,
giving rise to Eq. (27d).

The extended entropy can be decomposed as

s(+)(e, n, φμ) = s(e, n) + �s(e, n, φμ), (28)

where we postulate the longitudinal entropy correction due to
the mode φμ as (motivated by, e.g., Ref. [87])

�s = 1
2πμφμ ≡ 1

2πφφμφμ, (29)
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where πφ is the susceptibility. Equation (29) is quadratic in the
spacelike vector φμ and always decreases the entropy. Using
the Landau-Khalatnikov formula, the susceptibility πφ can be
rewritten as

1/πφ = Aφ = κφφ, (30)

where φ = γππφ is the relaxation rate of φμ, and κφ is intro-
duced as a new transport coefficient whose physical meaning
shall become clear right away. Substituting the above expres-
sions into Eq. (24) and ignoring other external force terms, we
find

φ̇〈μ〉 = −φ (φμ − κφ∇μα(+) ). (31)

Now one can choose φμ to represent the slowest mode con-
tributing to nμ, i.e., Gmμ ∼ 〈δmδuμ〉 and, near the critical
point, think of φμ as the “critical sector” of the baryon dif-
fusion current. As discussed in Sec. III B, for φμ ∼ Gmμ with
a typical wave number q ∼ ξ−1, φ ∼ ξ−2 and κφ ∼ ξ ; near
the critical point, it controls the relaxation of the slowest
mode contributing to the baryon diffusion. Considering the
Navier-Stokes limit of the baryon diffusion given by Eq. (27c),
we can write down the relaxation equation for nμ. It receives
a contribution of typical wave number q ∼ ξ−1 from φμ,

ṅ〈μ〉 = −n(nμ − κn∇μα(+) ), (32)

where we have used the fact that n � φ ∼ ξ−2 near the
critical point. Here κn ≡ κn,0 + κφ , with κn,0 denoting the
noncritical value of the baryon transport coefficient. Near
the critical point κφ ∼ ξ dominates κn and consequently
κn � κφ ∼ ξ . The parametrization in Eq. (20) is designed to
reproduce this behavior approximately. Finally α(+) is the nor-
malized chemical potential with modifications from φμ which
generate critical behavior in the Equation of State near the
critical point. One sees that the single-mode Hydro+ equation
(32) (which includes only a single wave number q ∼ ξ−1)
matches the Israel-Stewart type equation (7) for nμ when the
critical scaling (20),(21) in the critical regime is accounted
for.5

Equation (32) can be solved in frequency (ω) space as

nμ(ω) = κn(ω)∇μα(+), (33)

where

κn(ω) ≡ fκ (ω/n) κn (34)

is the frequency-dependent baryon diffusion coefficient, with

fκ (x) = 1 + ix

1 + x2
(35)

and κn ≡ κn(ω = 0) being the frequency-independent part.
While the imaginary part of Eq. (35) relates the baryonic
analog of the electric permittivity, its real part gives rise to
the frequency dependence of the baryon transport coefficient:

Re[κn(ω)] = Re[ fκ (ω/n)] κn = κn

1 + (ω/n)2
. (36)

5The last term in Eq. (7), which is ∼θnμ, is subdominant in the
critical regime.

One can infer from Eq. (36) that, at small ω, κn(ω) − κn(0) ∼
κn(0) ω2, while, at large ω, κn(ω) ∼ κn(0) ω−2, different from
the results given in Ref. [40].6

Equations (33) and (34) generalize the Navier-Stokes so-
lution for the baryon diffusion current into the critical region
where, due to critical slowing down, the slow critical fluctua-
tion modes are not in thermal equilibrium. That is to say, these
equations indicate that at large frequencies ω/n � 1 baryon
diffusion is suppressed, hence a naive extrapolation of hydro-
dynamics with the frequency-independent coefficient κn(0) ∼
ξ [see Eq. (18)] to this regime would overestimate the amount
of baryon diffusion. Knowing from Eq. (21) that n ∼ ξ−2,
this further implies that the suppression affects modes with
frequencies ξ−2 � ω 
 ξ−1, i.e., inside the Hydro++ regime
discussed in Ref. [40]. When analyzed within the Hydro+
framework with only a single slow mode, the switching off of
critical contributions to baryon diffusion occurs at ω ξ 2 ≈ 1;
this is consistent with the general analysis in Ref. [40], where
the full wave number spectrum is taken into account. In other
words, the switching off of the critical contribution to baryon
diffusion at finite frequency is taken care of by Eq. (32) [and
similarly by Eq. (7)].

Summarizing briefly, we emphasize that in the critical
regime the Hydro+ equation (32) leads to similar dynamics
as the Israel-Stewart equation (7) for the diffusion current
nμ since both equations correctly account for critical slowing
down through n = 1/τn. This correspondence is expected
since in the critical regime the off-equilibrium effects are
dominated by fluctuations that are effectively frozen. How-
ever, Eq. (32) still differs from the Hydro++ equations
presented in Ref. [40], since only a single representative mode
(with the typical wave number q ∼ ξ−1) is analyzed. The
exact asymptotic suppression behavior as well as the non-
analytic frequency dependence of κn (cf. footnote 6) arising
in Hydro++ from the phase-space integration over all crit-
ical modes are both missed by Eq. (32). Indeed, the critical
effects on κn are overestimated by Eq. (32) at small ω (i.e.,
κn is less suppressed compared to Ref. [40]). However, we
shall see in the following that the resulting overestimation of
critical effects is negligible when compared to much stronger
suppression effects arising from different origins. For these
reasons the single-mode Hydro+ formalism (or, equivalently,
the generalized Israel-Stewart formalism amended by critical
scaling) serves as a good prototype of the state-of-the-art
Hydro+/++ theory: it is sophisticated enough to capture
the phenomenologically important feature of critical slowing
down while preserving computational economy.

IV. SETUP OF THE FRAMEWORK

In this section we set up the framework for simulating the
evolution of a fireball close to the QCD critical point. The core
of our framework is the hydrodynamic equations discussed in

6In an analysis that takes modes with all wave numbers into account
[40], κn(ω) − κn(0) ∼ κn(0)ω1/2 at small ω, and κn(ω) ∼ κn(0)ω−1/2

at large ω. The noninteger power indicates the nonanalytic behavior
of the long-time tails.
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Sec. II. This requires specification of the EoS and the trans-
port coefficients, as well as initial and final conditions. We
also discuss the particlization process of converting the fluid
dynamic output into particles whose momentum distributions
(after integrating over the conversion hypersurface) can be
compared with experimental measurements.

Initial conditions. We start with the initial conditions
which, from a physics perspective, describe the initial state
of the systems while mathematically providing the initial
data for solving the initial value problem associated with
our coupled set of partial differential equations. At collision
energies of order

√
sNN ∼ O(10) GeV, the longitudinal in-

terpenetration dynamics of the two colliding nuclei becomes
complicated, in principle requiring a time-dependent, (3+1)-
dimensional description of the initial energy-momentum
deposition and baryon number doping processes that pro-
duce the QGP fluid. Recently, several so-called dynamical
initialization algorithms have been proposed to address this
problem (see Refs. [47,48,51,90] and the reviews [45,46]).
In this exploratory study, however, we try to establish a ba-
sic understanding of baryon diffusion dynamics for Au-Au
collisions at

√
sNN = 19.6 GeV in which we focus entirely

on the longitudinal dynamics, modeling a (1+1)-dimensional
system without transverse gradients initiated instantaneously
at a constant proper time τi (see also Refs. [72,91]). More
specifically, we evolve the system hydrodynamically using
the longitudinal initial profiles e(τi, ηs), n(τi, ηs) provided in
Ref. [52], starting at τi = 1.5 fm/c.7 The initial hydrodynamic
profiles are shown as gray curves in Fig. 4 below. The initial
energy density has a plateau covering the space-time rapidity
ηs ∈ [−3.0, 3.0] whereas the initial net baryon density fea-
tures a double peak structure and covers a narrower region
ηs ∈ [−2.0, 2.0], reflecting baryon stopping.8 For the initial
longitudinal momentum flow we take the “static” flow pro-
file uμ = (1, 0, 0, 0) in Milne coordinates (corresponding to
Bjorken expansion [92] in Cartesian coordinates), and the
initial baryon diffusion current is assumed to vanish, nμ =
(0, 0, 0, 0).

EoS and transport coefficients. Given these initial condi-
tions, the hydrodynamic equations (1) and (8) are solved by
BESHYDRO [54]. For the EoS at nonzero net baryon density
we use NEOS [53] which was constructed by smoothly join-
ing lattice QCD data [93–96] with the hadron resonance gas
model. As already mentioned, we here focus on baryon dif-
fusion dynamics by ignoring shear and bulk viscous stresses.
For the transport coefficients related to baryon diffusion we

7Reference [52] provides longitudinal initial distributions for the
entropy and baryon densities. We here adopt the functional form of
their initial entropy profile as our energy profile, after appropriate
normalization.

8We note that baryon stopping affects the initial momentum ra-
pidity y of the baryon number carrying degrees of freedom and
is typically modeled by a rapidity shift �y ≈ 1–1.5, depending on
system size and collision energy. To translate this rapidity shift into a
shift in space-time rapidity ηs (as done in Fig. 4) requires a dynamical
initialization model. Different such models yield different initial
density and flow profiles [45–48,51,90].

FIG. 3. Initial longitudinal distributions of κn,0, corresponding to
the initial profiles in Fig. 4 below. κn,0 is calculated using different
methods, including kinetic theory [52] [Eq. (37), blue solid line] and
two holographic models, using Eq. (39) [Ref. [77], green dashed line]
and tabulated values found in Refs. [78,98] (red dotted line).

rely on the theoretical work in Refs. [52,77,78,97] since phe-
nomenological constraints are still lacking. Specifically, we
here use the coefficients obtained from the Boltzmann equa-
tion for an almost massless classical gas in the relaxation
time approximation (RTA) [52], which gives for the baryon
diffusion coefficient

κn,0 = Cn
n

T

(
1

3
coth α − nT

w

)
, (37)

and for the relaxation time

τn,0 = Cn

T
, (38)

where Cn is a free unitless parameter.9 Throughout this pa-
per, we set Cn = 0.4; in Ref. [52] this value was shown to
yield good agreement with selected experimental data. Fol-
lowing the kinetic theory approach [52] we also set δnn,0 =
τn,0 in Eq. (8) as its noncritical value. In the limit of zero
net baryon density, κn,0 remains nonzero at nonzero tem-
perature, limμ→0 κn,0/τn,0 = nT/(3μ) [52], a feature also
seen in holographic models; for example, using the anti–de
Sitter-space/conformal-field-theory (AdS/CFT) correspon-
dence, the (baryon) charge conductivity of r-charged black
holes translates into [77,91]

κn,0 = 2π
T s

μ2

(nT

w

)2

. (39)

Since κn,0 is such an important parameter in our study, we
offer some intuition about its key characteristics in Fig. 3,
where its initial space-time rapidity profile is plotted for three

9In Israel-Stewart theory [87] τn,0 = λT,0T βn, where βn is a
second-order transport coefficient and λT,0 is the noncritical thermal
conductivity associated with κn,0 through Eq. (11).
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of the theoretical approaches referenced above.10 The fig-
ure shows that, in the region |ηs| � 2, where the net baryon
density is nonzero [cf. Fig. 4(d) below], differences exist in
κn,0(ηs) between the weakly and strongly coupled approaches:
In the holographic approaches κn,0 is suppressed by baryon
density while in the kinetic approach it is enhanced. On the
other hand we see that at large rapidity |ηs| � 2.5, where the
baryon density approaches zero [cf. Fig. 4(d)], the different
models for κn,0 yield similar distributions, all of them rapidly
decreasing towards zero as the temperature decreases [cf.
Fig. 4(b)]. This also implies that generically, as the fireball
expands and cools down, all three approaches yield rapidly
decreasing amounts of baryon diffusion, as will be discussed
below in Sec. V D.

Particlization. After completion of the hydrodynamic evo-
lution (results of which will be discussed in Sec. V) we
compute the particle distributions corresponding to the hy-
drodynamic fields on the freeze-out surface �, using the
Cooper-Frye formula [99]:

E
d3Ni

d3 p
= gi

(2π )3

∫
�

pμd3�μ( feq,i + δ fdiff,i ), (40)

where E , p are the energy and momentum of a particle of
species i in the observer frame, gi is the spin-isospin degener-
acy factor, d3�μ(x) is the outward-pointing surface normal
vector at point x on the three-surface �, feq,i is the equi-
librium distribution for particle of species i, and δ fdiff,i the
off-equilibrium correction resulting from net baryon diffusion
(other viscous corrections are neglected in this paper). At first
order in the Chapman-Enskog expansion of the RTA Boltz-
mann equation, the dissipative correction from net baryon
diffusion δ fdiff,i is given by [52,100,101]

δ fdiff,i = feq,i(1 − θi feq,i )

(
n

w
− bi

E

)
p〈μ〉nμ

κ̂
, (41)

where θi = 1 (−1) for fermions (bosons), bi is the baryon
number of particle species i, p〈μ〉 ≡ �μν pν , and κ̂ = κn/τn.
We will discuss how the critical correction is included,
as well as its effects on the final particle distributions, in
Sec. V C 2. We evaluate the continuous momentum distribu-
tion (40) numerically using the IS3D particlization module
[100], ignoring rescattering among the particles and resonance
decays after particlization.

V. RESULTS AND DISCUSSION

In this section we discuss the dynamics of the fireball at
a fixed collision energy of

√
sNN = 19.6 GeV. First we study

in Sec. V A baryon diffusion effects on its T -μ trajectories
through the phase diagram for cells located at different space-
time rapidities ηs, and in Sec. V B on freeze-out surface and
final particle distributions, in the absence of critical dynam-
ics. Then, in Sec. V C, we discuss how the critical behavior
described in Sec. III modifies this dynamics for cells whose

10Reference [91] compared the expressions of κn,0 in Eqs. (37) and
(39) while a comparison of Eq. (37) with a different holographic
approach [78,98] was previously presented in Ref. [48].

trajectories pass close to the critical point. In Sec. V D we
point out some generic features of the time evolution of
baryon diffusion.

A. Longitudinal dynamics of baryon evolution

In Fig. 4, we show snapshots of the longitudinal distribu-
tions of the hydrodynamic quantities at two times, the initial
time 1.5 fm/c (gray solid lines) and later at τ = 5.5 fm/c,
with and without baryon diffusion (red solid and blue dashed
lines, respectively). The gray curves in panels (a) and (d)
show the initial energy and baryon density distributions from
Ref. [52]. The gray lines in panels (b) and (e) show the
corresponding temperature and chemical potential profiles,
extracted with the NEOS equation of state [53,93–96]. The gray
horizontal lines in panels (c) and (f) show the zero initial con-
ditions for the longitudinal flow and baryon diffusion current.
The temperature profile [panel (b)] shares the plateau with
energy density [panel (a)], up to small structures caused by the
double-peak structure of the baryon density [panel (d)] and
baryon chemical potential profiles [panel (e)]. The chemical
potential in panel (e) inherits the double-peak structure from
baryon density in panel (d). These structures are also reflected
in the pressure (not shown).11

We next discuss the blue dashed lines in Fig. 4 showing the
results of ideal hydrodynamic evolution. Work done by the
longitudinal pressure converts thermal energy into collective
flow kinetic energy such that the thermal energy density e
decreases faster than 1/τ [panel (a)]. Small pressure vari-
ations along the plateau of the distribution (caused by the
rapidity dependence of μ/T ) lead to slight distortions of the
rapidity plateau of the energy density as its magnitude de-
creases. Longitudinal pressure gradients at the forward and
backward edges of the initial rapidity plateau accelerate the
fluid longitudinally, generating a nonzero ηs component of
the hydrodynamic flow at large rapidities [panel (c)]. As seen
in panels (a) and (c), the resulting longitudinal rarefaction
wave travels inward slowly, leaving the initial Bjorken flow
profile uη = 0 untouched for |ηs| < 2.5 up to τ = 5.5 fm/c.
For Bjorken flow without transverse dynamics, baryon num-
ber conservation implies that nτ remains constant. Panel (d)
shows this to be the case up to τ = 5.5 fm/c because, up to
that time, the initial Bjorken flow has not yet been affected by
longitudinal acceleration over the entire ηs interval in which
the net baryon density n is nonzero. Panel (e) shows, however,
that, in spite of nτ remaining constant within that ηs range,
the baryon chemical potential μ/T decreases with time, as
required by the NEOS equation of state.

The nontrivial evolution effects of turning on the baryon
diffusion current via Eq. (8) are shown by the red solid lines in
Fig. 4. The baryon diffusion current itself is plotted in panel (f)

11In the very dilute forward and backward rapidity regions one
observes a steep rise of the initial μ/T . This feature is sensitive to
the rates at which e and n approach zero as |ηs| → ∞, and it is easily
affected by numerical inaccuracies. Since both T and μ are close to
zero there, the baryon diffusion coefficient κn,0 also vanishes, and
[as seen in Fig. 4(f)] the apparently large but numerically unstable
gradient of μ/T at large ηs does not generate a measurable baryon
diffusion current.
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FIG. 4. Longitudinal evolution for the cases without (“ideal,” blue dashed line) and with baryon diffusion (“diffusive,” red solid line). The
gray curves show the initial distributions at the initial time τi = 1.5 fm/c; colored curves show the evolved distributions at τ = 5.5 fm/c for
ideal and diffusive evolution, respectively. Note that both energy and baryon densities are scaled by the proper time τ .

and will be discussed shortly. Panels (a)–(c) show that baryon
diffusion has almost no effect at all on the energy density
(and, by implication, on the pressure), the temperature, and
the hydrodynamic flow generated by the pressure gradients.
Given the weak dependence of pressure and temperature on
baryon density through the EoS this is to be expected. Baryon
diffusion does, however, significantly modify the rapidity pro-
files of the net baryon density (d) and chemical potential
μ/T (e). Generated by the negative gradient of μ/T , the
baryon diffusion current moves baryon number from high-
to low-density regions, causing an overall broadening of the
baryon density rapidity profile in (d) while simultaneously
filling in the dip at midrapidity [48,51,52,54,56,91]. Panel (e)
shows how the chemical potential μ/T tracks these changes
in the baryon density profile [panel (d)], and panel (f) shows
the baryon diffusion current responsible for this transport of
baryon density, with its alternating sign and magnitude tracing
the sign and magnitude changes of −∇(μ/T ). As we shall see
in Sec. V D, the smoothing of the gradients of baryon density
and chemical potential contributes to a fast decay of baryon
diffusion effects.

Figure 4 indicates nontrivial thermal, chemical, and me-
chanical evolution at different rapidities. Fluid cells at
different ηs pass through different regions of the QCD phase
diagram and may therefore be affected differently by the
QCD critical point [72,102,103]. This has led to the sug-
gestion [104] of using rapidity-binned cumulants of the final
net proton multiplicity distributions as the possibly sensitive
observables of the critical point.12 To illustrate the point we

12We caution that at BES energies the mapping between space-time
rapidity ηs of the fluid cells and rapidity y of the emitted hadrons is
highly nontrivial and requires dynamical modeling.

show in Fig. 5 the phase diagram trajectories of fluid cells at
several selected |ηs| values,13 both with and without baryon
diffusion. As we move from midrapidity to |ηs| = 2.0, the
starting point of these trajectories first moves from μ � 0.28
GeV at ηs = 0 to the larger value μ � 0.45 GeV at ηs = 1.5,
but then turns back to μ � 0.2 GeV at ηs = 1.75, and finally
to μ � 0 at ηs = 2.0, without much variation of the initial
temperature Ti � 0.25 GeV [see Figs. 4(b) and 4(e)]. The
difference between the dashed (ideal) and solid (diffusive)
trajectories exhibits a remarkable dependence on ηs: Both
the sign and the magnitude of the diffusion-induced shift
in baryon chemical potential depend strongly on space-time
rapidity. In most cases, we note that the solid (diffusive) tra-
jectories move initially rapidly away from the corresponding
ideal ones, but then quickly settle on a roughly parallel ideal
trajectory. A glaring exception is the trajectory of the cell at
ηs = 1.5, which starts at the maximal initial baryon chemical
potential and keeps moving away from its initial ideal T -μ
trajectory for a long period, settling on a new ideal trajectory
only shortly before it reaches the hadronization phase transi-
tion. The reason for this behavior can be found in Fig. 4(e),
which shows that at ηs = 1.5 the gradient of μ/T remains
large throughout the fireball evolution. But almost everywhere
else baryon diffusion effects die out quickly.

Since ideal fluid dynamics conserves both baryon number
and entropy, the dashed trajectories are lines of constant en-
tropy per baryon. This is shown by the dashed lines in Fig. 6.
Baryon diffusion leads to a net baryon current in the local
momentum rest frame and thereby changes the baryon number
per unit entropy. This is illustrated by the solid lines in Fig. 6.

13Cells at opposite but equal space-time rapidities are equivalent
because of ηs → −ηs reflection symmetry in this work.
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FIG. 5. Phase diagram trajectories of fluid cells at different |ηs|
for the Au+Au collision fireball discussed here. Black dashed lines
indicate ideal evolution while colored solid lines include the effects
of baryon diffusion. All fluid cells evolve from high to low temper-
ature. The phase transition line and critical point are included only
to guide the eye; critical effects on the EoS and transport coefficients
are not included in this figure.

Depending on the direction of the μ/T gradients, baryon
diffusion can increase or decrease the entropy per baryon.

We close this discussion by commenting on the turning of
the dashed m ≡ s/n = const trajectories in Fig. 5 from ini-
tially pointing towards the lower left to later pointing towards
the lower right. This is a well known feature of isentropic ex-
pansion trajectories in the QCD phase diagram [53,105,106]
that reflects the change in the underlying degrees of freedom,
from quarks and gluons to a hadron resonance gas, at the point
of hadronization as embedded in the construction of the EoS.

Figure 5 is reminiscent of the QCD phase diagram often
shown to motivate the study of heavy-ion collisions at dif-
ferent collision energies in order to explore QCD matter at
different baryon doping (see, for example, the 2015 DOE-NSF

FIG. 6. Time evolution of entropy per baryon at selected ηs val-
ues in ideal and diffusive fluid dynamics (dashed and solid lines,
respectively).

NSAC Long Range Plan for Nuclear Physics [1]). What had
been shown there are (isentropic) expansion trajectories for
matter created at midrapidity in heavy-ion collisions with dif-
ferent beam energies, whereas Fig. 5 shows similar expansion
trajectories for different parts of the fireball in a collision with
a fixed beam energy. Figure 5 thus makes the point that in
general the matter created in heavy ion collisions can never be
characterized a single fixed value of μ/T . At high collision
energies space-time and momentum rapidities are tightly cor-
related, ηs � y, and different ηs regions with different baryon
doping μ/T can thus be more or less separated in experiment
by binning the data in momentum rapidity y. This motivates
the strategy of scanning the changing baryonic composition in
the T -μ diagram by performing a rapidity scan at fixed colli-
sion energy rather than a beam energy scan at fixed rapidity
[72,102,104]. This strategy fails, however, at lower collision
energies where particles of fixed momentum rapidity can be
emitted from essentially every part of the fireball and thus
receive contributions from regions with wildly different chem-
ical compositions, with nonmonotonic rapidity dependences
that are nontrivially and nonmonotonically affected by baryon
diffusion.

B. Freeze-out surface and final particle distributions

The expansion trajectories shown in the previous subsec-
tion all end at the same constant proper time (see Fig. 6). In
phenomenological applications it is usually assumed that the
hydrodynamic stage ends and the fluid falls apart into particles
when all fluid cells reach a certain “freeze-out energy den-
sity”, here taken as ef = 0.3 GeV/fm3.14 With such a freeze-
out criterion, fluid cells at different ηs freeze out at different
times τf (ηs). In this subsection we discuss this freeze-out
surface and the distributions of particles emitted from it.

Figure 7 shows the freeze-out surface τf (ηs) in panel (a)
as well as the longitudinal flow, baryon chemical potential,
and longitudinal component of the baryon diffusion current in
panels (b)–(d).15 Ideal and diffusive hydrodynamics are dis-
tinguished by blue dashed and red solid lines. Panel (a) shows
that initially the longitudinal pressure gradient causes the fluid
to grow in the ηs direction before it starts to shrink after
τ � 4 fm/c due to cooling and surface evaporation. As seen in
Fig. 4(a), the core of the fireball remains approximately boost
invariant while cooling by performing longitudinal work, until
the longitudinal rarefaction wave reaches it. Once the energy
density in this boost-invariant core drops below ef , it freezes
out simultaneously, as seen in the flat top of the freezeout
surface shown in panel (a). Slight deviations from boost in-
variance are caused by the effects of the boost-noninvariant

14This is lower than the value of 0.4 GeV/fm3 used in Ref. [52], in
order to ensure that the expansion trajectories reach into the hadronic
phase below the crossover line from Ref. [88].

15The freeze-out finder implemented in BESHYDRO is based on
CORNELIUS [107]. We previously tested its efficiency within BESHY-
DRO at nonzero baryon density in the transverse plane [108]. In
Appendix C 1 we also validate it for this work, which features longi-
tudinal dynamics with baryon diffusion current.
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(a)

(c) (d)

(b)

FIG. 7. Distributions on the freeze-out surface, defined by a con-
stant freeze-out energy density ef = 0.3 GeV/fm3. Shown are, as
functions of ηs, (a) the space-time profile of the freeze-out surface,
(b) the longitinal flow, (c) the baryon chemical potential, and (d) the
longitudinal component of the diffusion current. Blue dashed and
solid red lines correspond to ideal and diffusive fluid dynamics,
respectively. Note that in Milne coordinates the longitudinal flow
velocity uη is not unitless; uη

√−g = τuη is. Similar comments apply
to the units of the baryon diffusion current nη.

net baryon density profile and its (small) effect on the pressure
whose gradient drives the hydrodynamic expansion. Baryon
diffusion has practically no effect on the freeze-out surface,
nor on the longitudinal flow along this surface shown in panel
(b), owing to the weak dependence of the EoS on baryon
doping. The distributions of the baryon chemical potential and
baryon diffusion current across this surface, on the other hand,
are significantly affected by baryon diffusion, as seen in pan-
els (c) and (d). It bears pointing out, however, that the magni-
tude of the baryon diffusion current in panel (d) is very small.

Given these quantities on the freeze-out surface, we use
the IS3D module [100] to evaluate the Cooper-Frye integral
(40),(41) for the rapidity distributions of hadrons emitted from
the freeze-out surface. Results are shown in Fig. 8. Panel (b)
indicates that baryon diffusion has negligible effects on meson
distributions. It affects only baryon distributions. Panel (a)
shows that baryon diffusion significantly increases the proton
and net-proton yields at mid-rapidity and also broadens their
rapidity distributions at large rapidity. Both of these effects
on the baryon distributions were also observed in earlier work
that, different from our simulations, additionally included res-
onance decays and full hadronic rescattering [48,51,52,91];
furthermore, they were found to increase with the magnitude
of the baryon diffusion coefficient κn. The approximate boost
invariance of the longitudinal flow over a wide range of ηs

on the freeze-out surface [see Fig. 7(b)] maps the baryon
diffusion effects seen in Figs. 4(d), 4(e), and 7(c) as func-

FIG. 8. Final particle rapidity distributions for (a) baryons (red:
protons; green: antiprotons; blue: net protons) and (b) mesons (red:
pions; green: kaons). Thin dashed and thick solid lines show results
for ideal and diffusive evolution, respectively. For the diffusive case,
the solid lines use the Chapman-Enskog approximation for the dif-
fusive correction, while colored markers show the values obtained
from the 14-moment approximation.

tions of space-time rapidity ηs onto momentum rapidity yp in
Fig. 8(a) [48,51,52,91]. We take advantage of the IS3D option
to include both the Chapman-Enskog and 14-moment approx-
imations for the dissipative corrections (41), comparing the
two in Fig. 8. The difference is seen to be negligibly small, and
even ignoring in Eq. (40) δ fdiff,i entirely does not make much
of a difference (not shown). This reflects the tiny magnitude
of the baryon diffusion current on the freeze-out surface seen
in Fig. 7(d).16

We emphasize that the mapping of baryon diffusion effects
seen as a function of spacetime rapidity ηs in Figs. 4(d),
4(e), and 7(c) onto momentum rapidity yp is expected to be
model dependent, and may not work for initial conditions in
which the initial velocity profile is not boost invariant or the

16Ref. [52], with transverse expansion, shows that baryonic ob-
servables in the transverse plane, such as the pT -differential proton
elliptic flow v

p
2 (pT ), are sensitive to the dissipative correction δ fdiff

from baryon diffusion.
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initial ηs distribution of the net baryon density looks different.
This initial-state modeling uncertainty has so far prohibited
a meaningful extraction of the baryon diffusion coefficient
from experimental data (see, however, Ref. [52] for a valiant
effort). Additional uncertainties from possible critical effects
associated with QCD critical point on the bulk dynamics,
especially through baryon diffusion, may further complicate
the picture, in particular as long as the location of the critical
point is still unknown. In the following subsection we address
some of these effects arising from critical dynamics.

C. Critical effects on baryon diffusion

In this section, we explore whether the QCD critical point
can have significant effects on the bulk dynamics, through
the baryon diffusion current. For this purpose, we include
critical effects as described in Sec. III, and explore effects
from critical slowing down on the hydrodynamic transport
(Sec. V C 1), as well as critical corrections to final particle
distributions through the Cooper-Frye formula (Sec. V C 2).

1. Critical slowing down of baryon transport

As discussed in Sec. III, in the critical region baryon
transport is affected by critical slowing down [23]. Outside
the critical region all thermodynamic and transport properties
approach their noncritical baseline described in Sec. V A, but
as the system approaches the critical point its dynamics is
affected by critical modifications of the transport coefficients
involving various powers of ξ/ξ0 > 1. We study this by in-
corporating the critical scaling of χ , κn, and τn in Eqs. (20)
and (21), with the correlation length ξ (μ, T ) parametrized by
Eq. (13).

Before doing any simulations we briefly discuss qualitative
expectations. Equation (19) indicates that, as the correlation
length grows, ξ/ξ0 > 1, the coefficient DB is suppressed while
DT is enhanced. According to Eqs. (9) a suppression of DB

reduces the contribution from baryon density inhomogeneities
while an enhancement of DT increases the contribution from
temperature inhomogeneities to the Navier-Stokes limit nν

NS =
κn∇ν (μ/T ).17 In addition to thus moving its Navier-Stokes
target value, proximity of the critical point also increases the
time τn [see Eq. (21)] over which the baryon diffusion current
relaxes to its Navier-Stokes limit; its response to the driving
force is critically slowed down.

Repeating the simulations with the same setup as in
Sec. V A, except for the inclusion of critical scaling, yields
the results shown in Fig. 9. For the parametrization of the
correlation length ξ (μ, T ) we assumed a critical point located
at (Tc = 149 MeV, μc = 250 MeV). This is very close to the
rightmost trajectory shown in Fig. 9 which should therefore
be most strongly affected by it.18 Surprisingly, none of the

17We note that in the literature sometimes only the baryon density
gradient term DB∇n is included in the diffusion current (see, e.g.,
Refs. [23,79]), which then leads to its generic suppression close to
the critical point.

18Since we do not have the tools here to handle passage through
a first-order phase transition, we do not consider any expansion

FIG. 9. Phase diagram trajectories at different space-time rapidi-
ties, with (w-CP, dashed lines) and without (wo-CP, solid lines)
inclusion of critical effects. The solid lines are taken from Fig. 5.
The dashed lines account for the critical scaling of all parameters
controlling the evolution. The black dashed line encloses the region
on the crossover side where ξ (μ, T ) > ξ0 = 1 fm.

trajectories, not even the one passing the critical point in close
proximity, are visibly affected by critical scaling of transport
coefficients.

To better understand this we plot in Fig. 10 the history of
the correlation length and baryon diffusion current at different
ηs. In panel (a) we see that ξ does show the expected critical
enhancement, by up to a factor ≈4.5 at ηs = 1. This maximal
enhancement corresponds to τn � 20 τn,0 and DB � 0.22 DB,0,
naively suggesting significant effects on the dynamical evo-
lution. However, the critical enhancement of the correlation
length does not begin in earnest before the fireball has cooled
down to a low temperature T � Tc + �T . Figure 10(b) shows
that at this late time the baryon diffusion current has already
decayed to a tiny value.19 In other words, the largest baryon
diffusion currents are created at early times when the temporal
gradients are highest but the system is far from the critical
point; by the time the system gets close to the critical point,
thermal and chemical gradients have decayed to such an extent
that even a critical enhancement of the correlation length by a
factor 5 can no longer revive the baryon diffusion current to a
noticeable level.

This two-stage feature, with a first stage characterized by
large baryon diffusion effects without critical modifications
and a second stage characterized by large critical fluctua-
tions [21,22] with negligible baryon diffusion effects on the
bulk evolution, is an important observation. For a deeper
understanding we devote Sec. V D to a more systematic in-
vestigation of the time evolution of the diffusion current, but

trajectories cutting the first-order transition line to the right of the
QCD critical point.

19This statement remains true if one multiplies nη with the metric
factor

√−g = τ to obtain the baryon diffusion current in physical
units of fm−3.

064904-14



BARYON TRANSPORT AND THE QCD CRITICAL POINT PHYSICAL REVIEW C 104, 064904 (2021)

FIG. 10. Time evolution of (a) correlation length and (b) longi-
tudinal baryon diffusion at selected space-time rapidities. Note that
nη at ηs = 1.25 is shown intentionally as its sign changes during the
evolution. See text for discussion.

not before a brief exploration in the following subsection of
critical effects on the final single-particle distributions.

2. Critical corrections to final single-particle distributions

How to consistently include critical fluctuation effects
on the finally emitted single-particle distributions, at the
ensemble-averaged level, is still a subject of active research. A
solid framework may require a microscopic picture involving
interactions between the underlying degrees of freedom and
the fluctuating critical modes during hadronization [109]. In
this work we employ a simple ansatz where critical correc-
tions to the final particle distributions are included only via
the diffusive correction δ fdiff from Eq. (41) appearing in the
Cooper-Frye formula (40). In this subsection this dissipative
correction is computed from the simulations described in the
preceding subsection which include critical correlation effects
through critically modified transport coefficients, specifically
a normalized baryon diffusion coefficient κ̂ ≡ κn/τn with crit-
ical scaling

κ̂ = κ̂0

(
ξ

ξ0

)−1

, (42)

FIG. 11. (a) Space-time rapidity distribution of the correlation
length along the freeze-out surface. (b) Upper panel: Net proton
rapidity distributions with and without critical scaling effects (w-CP
and wo-CP), calculated from the Cooper-Frye formula (40) with
diffusive correction (41). For the w-CP case critical scaling effects
are included in both the hydrodynamic evolution and the diffusive
correction at particlization. Lower panel: Deviation from 1 of the
ratio of the rapidity spectra shown in the upper panel.

obtained from Eqs. (20) and (21) using κ̂0 = κn,0/τn,0.20 Since
we saw in the preceding subsection that the hydrodynamic
quantities on the particlization surface are hardly affected by
the inclusion of critical scaling effects during the preceding
dynamical evolution, the main critical scaling effects on the
emitted particle spectra arise from any critical modification
that κ̂ might experience on the particlization surface.

The space-time rapidity distribution of the correlation
length ξ along the freeze-out surface, as well as the net proton
rapidity distributions with and without critical scaling effects,
are shown in Fig. 11. Panel (a) shows that ξ peaks near |ηs| �
1.0 on the freeze-out surface, consistent with Fig. 10(a). Note
that, although fluid cells at different ηs generally freeze out at
different times, the freeze-out surface in Fig. 7(a) shows that
within ηs ∈ [−1.5, 1.5] all fluid cells freeze out at basically
the same time τ f ≈ 17 fm/c. Therefore Fig. 11(a) indeed
corresponds to the ξ values at different ηs at the end of the
evolution in Fig. 10(a).

20We note that this ansatz is more straightforwardly implemented
in the Chapman-Enskog method used here than in the 14-moment
approximation [100,110] whose transport coefficients do not have
such obvious critical scaling.
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Even though Fig. 11(a) shows a critical enhancement of
ξ/ξ0 � 2.7 near ηs � 1.0, corresponding to κ̂/κ̂0 � 0.37, we
see in Fig. 11(b) that the net proton distribution is modified
by at most a few percent. The lower panel in Fig. 11(b)
indicates that the largest critical corrections indeed correspond
to regions of large ξ/ξ0, sign-modulated by the direction of
the baryon diffusion current [cf. Fig. 7(d)]. We also notice a
thermal smearing when mapping the distribution of ξ in ηs to
the modification of net proton distribution in yp. The critical
modification of the net proton spectra arising from the diffu-
sive correction to the distribution function is very small also
because δ fdiff in (41) is roughly proportional to the magnitude
of nμ, which is tiny. Such small modifications are certainly
unresolvable with current or expected future measurement.
Indeed, the magnitudes of these modifications depend on the
correlation length on the freeze-out surface which in turn
depends on the choice of the freeze-out energy density ef .
Independence of the final results from this choice could be
achieved by properly sampling the critical correlations on this
surface and then propagating them to the completion of kinetic
freeze-out with a hadronic transport code that appropriately
accounts for critical dynamics; unfortunately, these options
are presently not yet available.

In conclusion, critical scaling effects on both the hydrody-
namic evolution of the bulk medium and the finally emitted
single-particle momentum distributions are small, mostly be-
cause, by the time the system passes the critical point and
freezes out, the baryon diffusion current has decayed to negli-
gible levels.

D. Time evolution of baryon diffusion

In this subsection we further analyze the baryon diffusion
dynamics and the origins of its rapid decay. We define Knud-
sen and inverse Reynolds numbers for baryon diffusion and
display their space-time dynamics. The resulting insights are
relevant for model building and for the future quantitative
calibration of the bulk fireball dynamics at nonzero chemical
potential.

1. Fast decay of baryon diffusion

As discussed in Sec. II, the diffusion current relaxes to its
Navier-Stokes limit nν

NS = κn∇ν (μ/T ) on a timescale given
by τn. General features of baryon diffusion evolution can thus
be understood by following the time evolution of nμ

NS, κn,
and τn. Here we focus on their evolution without inclusion of
critical scaling since we established that the latter has negligi-
ble effect on the bulk evolution, and therefore the noncritical
values of nμ

NS, κn, and τn evolve almost identically with and
without inclusion of critical effects.

Figure 12 shows a comparison of the longitudinal baryon
diffusion current (solid lines) with its Navier-Stokes limit
(dashed lines) at different space-time rapidities. One sees that
the relaxation equation for nη tries to align the diffusion cur-
rent with its Navier-Stokes value [which is controlled by the
longitudinal gradient ∇η(μ/T )] but the finite relaxation time
delays the response, causing nη to perform damped oscilla-
tions around nη

NS. This is most clearly illustrated in Fig. 12 by
following the cell located at ηs = 1.5 (uppermost): Initialized

FIG. 12. Same as Fig. 10(b), but zoomed in onto the early
evolution stage and including for comparison as dashed lines the
corresponding Navier-Stokes limit nη

NS of the longitudinal diffusion
current.

at zero, nη initially rises steeply, trying to adjust to its positive
and rapidly increasing Navier-Stokes value, but at τ � 1.7
fm/c the longitudinal gradient of μ/T switches sign and nη

NS
starts to decrease again. The hydrodynamically evolving nη

follows suit, turning downward with a delay of about 0.3 fm/c
(which, according to Fig. 13(b) below, is the approximate
value of the relaxation time τn,0 at τ = 2 fm/c), but soon
finds itself overshooting its Navier-Stokes value. For the cell
located at ηs = 1.25, nη crosses its Navier-Stokes value even
twice.

As long as the relaxation time τn is short and not dramat-
ically increased by critical slowing down, the rapid decrease
of the dynamically evolving diffusion current is seen to be a
generic consequence of a corresponding rapid decrease of its
Navier-Stokes value: Fig. 12 shows that after τ ≈ 3.5 fm/c, nη

basically agrees with its Navier-Stokes limit nη

NS. Figure 13(b)
shows that in the absence of critical effects the relaxation time
τn,0 = Cn/T increases by less than a factor of 2 over the entire
fireball lifetime. The rapid decrease of nη

NS is a consequence
of two factors: (i) the gradients of μ/T decrease with time,
owing to both the overall expansion of the system and the dif-
fusive transport of baryon charge from dense to dilute regions
of net baryon density, and (ii) the baryon diffusion coefficient
κn,0 decreases dramatically [by almost an order of magnitude
over the lifetime of the fireball as seen in Fig. 13(a)], as a
result of the fireball’s decreasing temperature.

In summary, three factors contribute to the negligible in-
fluence of the QCD critical point on baryon diffusion: First,
baryon diffusion is largest at very early times when its
relaxation time is shortest and it quickly relaxes to its Navier-
Stokes value; the latter decays quickly, due to decreasing
chemical gradients and a rapidly decreasing baryon diffusion
coefficient. Second, the relaxation time for baryon diffusion
increases at late times, generically as a result of cooling but
possibly further enhanced by critical slowing down if the
system passes close to the critical point. This makes it difficult
for the baryon diffusion current to grow again. Third, critical
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FIG. 13. Time evolution of (a) κn,0 and (b) τn,0 at some space-
time rapidities, corresponding to Figs. 10 and 12.

effects that would modify21 the Navier-Stokes limit for the
baryon diffusion current become effective only at very late
times when nη

NS has already decayed to nondetectable levels.
The baryon diffusion current thus remains small even if its
Navier-Stokes value were significantly enhanced by critical
scaling effects.

2. Knudsen and inverse Reynolds numbers

We close this section by investigating the (critical) Knud-
sen and inverse Reynolds numbers associated with baryon
diffusion. These are typically taken as quantitative measures
to assess the applicability of second-order viscous hydrody-
namics such as the BESHYDRO framework employed in this
work. Copying their standard definitions for shear and bulk
viscous effects [52,54,111], we here set

Kn ≡ τnθ, Re−1 ≡
√|nμnμ|

n
(43)

21According to Eqs. (9) and (19), critical effects can increase or
decrease the Navier-Stokes value of the baryon diffusion, depending
on the relative sign and magnitude of the density and temperature
gradients.

FIG. 14. Space-time evolution of (a) the Knudsen number Kn
and (b) the inverse Reynolds number Re−1 for the baryon diffusion
current. The white dashed line shows the same freeze-out surface as
Fig. 7(a).

for baryon diffusion, where θ is the scalar expansion rate.
Kn is the ratio between time scales for microscopic diffusive
relaxation (τn) and macrosopic expansion (τexp = 1/θ ); the
relaxation time τn includes the effects of critical slowing down
in the neighborhood of the QCD critical point. Re−1 is the
ratio between the magnitude of the off-equilibrium baryon
diffusion current and the equilibrium net baryon density in
ideal fluid dynamics. Their space-time evolutions are shown
in Fig. 14, together with the freeze-out (particlization) surface
at ef = 0.3 GeV/fm3.

Figure 14(a) tells us that Kn � 1 happens only outside the
freeze-out surface, in the fireball’s corona where the fluid has
already broken up into particles even at the earliest stage of the
expansion. The short-lived peak in Kn near τ = τi = 1.5 fm/c
and ηs ≈ 4 is caused by the rapid increase of τn in the dilute
and very cold corona of the fireball (note that τn,0 = Cn/T ).
Critical slowing down near the QCD critical point causes the
Knudsen number to increase somewhat around ηs = 1 close
to the freeze-out surface; this critical enhancement is barely
visible as a light cloud on a blue background, indicating crit-
ical Knudsen numbers in the range Kn ≈ 0.5–0.7. Fig. 14(b),
on the other hand, indicates that Re−1 � 0.3 during the entire
evolution, even close to the places where the Navier-Stokes
value of the baryon diffusion current peaks at early times
(see Fig. 12). After τ ≈ 5 fm/c (including the entire critical
region around the QCD critical point) its maximum value
drops below 0.1, reflecting of the rapid decay of the baryon
diffusion current.

The maximal Re−1 occurs around ηs � 2 shortly after
the hydrodynamic evolution starts at τi = 1.5 fm/c. From it
emerges a region of sizable inverse Reynolds number which
ends at two moving boundaries where Re−1 = 0 (dark blue).
The left boundary, moving towards smaller ηs values, re-
flects a sign change of the baryon diffusion current [see
Fig. 4(f) where at τ = 5.5 fm/c nη flips sign at ηs � 1). The
right boundary, on the other hand, corresponds to where nμ

decays to zero [which, according to Fig. 4(f), happens at
ηs � 2.5 when τ = 5.5 fm/c]. The initial outward move-
ment of the right boundary is a result of baryon transport to
larger space-time rapidity. It stops moving after the diffusion
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current has decayed and no longer transports any baryon
charge longitudinally.

The small values of Kn and Re−1 during the entire fluid
dynamical evolution validate the applicability of second-order
viscous hydrodynamics, BESHYDRO, for describing flow and
diffusive transport of baryon charge in the collision system
studied here.

VI. CONCLUSIONS AND DISCUSSION

Baryon diffusion is an important dissipative effect in the
hydrodynamic evolution of systems carrying a conserved net
baryon charge. It smoothes out chemical inhomogeneities by
transporting baryon charge relative to the momentum flow
from regions of large to smaller net baryon density. It is
driven by gradients of μ/T , but the corresponding trans-
port coefficient characterizing the magnitude of the diffusive
response, the baryon diffusion coefficient κn(μ, T ), is still
poorly constrained theoretically. In this work we studied a
(1+1)-dimensional system without transverse gradients and
flow to explore diffusive baryon transport along the longi-
tudinal (beam) direction in heavy-ion collisions and thereby
gain intuition about possible strategies to extract the baryon
diffusion coefficient from experimental data.

A fundamental difficulty for such an extraction is that
baryon diffusion manifests itself as a transport of net baryon
density in coordinate space while the experimental observa-
tions provide a snapshot of the hydrodynamic medium at the
end of its lifetime in momentum space. In a rapidly expanding
system, collective flow gradients map different space-time
regions into different regions of momentum space, but the
thermal momentum spread in the local rest frame blurs this
map (less so for the heavier baryons than for the more abun-
dant lighter mesons), and makes it difficult to reconstruct the
movement generated by baryon diffusion in coordinate space
from the final net baryon distribution in momentum space. In
longitudinal direction local thermal motion results in a rapid-
ity spread of order

√
T/〈mT 〉 [112,113], where T is the kinetic

freeze-out temperature and 〈mT 〉 is the average transverse
mass of the particle species in question. The flow-induced
separation of different fireball regions in longitudinal momen-
tum rapidity is easier at higher collision energies where the
fluid medium created in the collision covers a wider rapidity
range, i.e., a larger multiple of the thermal smearing width. At
lower beam energies, such as those probed in the RHIC BES
campaign, unfolding the measured final rapidity distribution
into different regions of space-time rapidity, with possibly
different net baryon densities, becomes much harder. And
therefore the reconstruction of baryon-diffusion induced mat-
ter transport across space-time rapidity also becomes much
harder.

In this work we studied central Au-Au collisions at√
sNN ≈ 20 GeV in which the fireball covers about 7 units

of space-time rapidity along the beam direction [Fig. 4(a)].
Assuming that baryon stopping leads to a space-time ra-
pidity shift of about 1.5 units for the incoming projectile
and target baryons, the initial net baryon distribution had a
width of about 4 units. It was modeled by a double-humped
function with two well-separated peaks located at ηs = ±1.5

[Fig. 4(d)]. After accounting for ideal hydrodynamic evolu-
tion and thermal smearing this resulted in a double-humped
net proton rapidity distribution whose peaks were still rel-
atively cleanly separated by about 2 units of rapidity, but
after including baryon diffusion they almost (though not
quite) merged into a single broad hump around midrapidity
[Fig. 8(a)]. In our calculation, the QCD critical point was po-
sitioned at a baryon chemical potential μ = 250 MeV. Recent
lattice QCD results put the likely location of this critical point
at μ > 400 MeV [96,114,115], which requires lower collision
energies for its experimental exploration. At lower collision
energies the width of the initial space-time rapidity interval
of nonzero net baryon density will be narrower, and the final
net-proton distribution will eventually become single peaked
in central collisions [116].

In the work presented here we focused on the questions
how diffusive baryon transport manifests itself along the
beam direction in hydrodynamic simulations, what traces
it leaves in the finally measured rapidity distributions, and
how it is affected by critical scaling of transport coeffi-
cients in the proximity of the QCD critical point. To address
these questions we systematically discussed the static and
dynamic critical behavior of thermodynamic properties (espe-
cially those associated with baryon transport) and introduced
an analytical parametrization of the correlation length that
correctly reproduces the critical exponents of the 3D Ising
universality class. Based on a careful comparison with the
Hydro+/++ framework [34,40,72] we identified the critical
scaling (“critical slowing down”) of the relaxation time for
the baryon diffusion current (τn ∼ ξ 2), and demonstrated that
in the critical regime the Israel-Stewart type equation for
the baryon diffusion current plays the role of a single-mode
Hydro+ equation for a vector slow mode. We did not discuss
the out-of-equilibrium evolution of the slow mode itself. For
a single scalar slow mode, this was studied elsewhere using
the BESHYDRO+ framework [22] where it was found that its
feedback to the hydrodynamic bulk evolution was negligible
[21,22]. A systematic Hydro++ study incorporating the full
coupled evolution of all relevant nonhydrodynamic critical
slow modes is still outstanding.

We are not the first to point out that, because of its extended
nature, different regions within a collision fireball probe dif-
ferent regions of the QCD phase diagram as they cool and
expand. We found that, at early times, strong longitudinal gra-
dients of μ/T lead to significant longitudinal baryon diffusion
currents that shift the expansion trajectories for different parts
of the fireball in different directions within the QCD phase di-
agram. The final net proton rapidity distributions reflect these
shifts, albeit blurred by thermal smearing. Our model assumes
a boost-invariant initial longitudinal momentum flow yflow =
ηs which maximizes the correlation between the space-time
rapidity of a fluid cell on the freeze-out surface and the mo-
mentum rapidity of the final hadrons it emits. The expected
breaking of boost-invariance of the longitudinal flow pattern
by dynamical initialization effects at lower collision energies
even near midrapidity [47,48,117] will inevitably weaken this
correlation, adding to the decorrelating effects of thermal
smearing. This will likely result in significant sensitivities
of baryon diffusion coefficients inferred from experimental
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net baryon rapidity distributions to poorly controlled model
ambiguities in the initial space-time rapidity profile of the net
baryon density assumed in the dynamical model.

The baryon diffusion flows observed in the calculations
presented in this paper are characterized by an important
feature: They show almost no sensitivity to critical effects
even for cells passing close to the critical point. Taken at face
value, this implies that the hydrodynamic evolution of baryon
diffusion leading to the finally emitted ensemble-averaged
single-particle momentum spectra does not carry useful infor-
mation for locating the QCD critical point.

The absence of critical effects on baryon diffusion in this
work contrasts starkly with the strong critical effects on the
evolution of the bulk viscous pressure found in Ref. [72]
which led to significant distortions of the rapidity distribu-
tions for all emitted hadron species. The main reason for that
behavior is that the bulk viscosity and bulk viscous pressure
are generically large around the quark-hadron phase transi-
tion, even without explicitly including critical scaling effects.
Adding the latter thus causes significant modifications of the
dynamics of the bulk viscous pressure.22 Baryon diffusion
effects, on the other hand, here appear to be insensitivity to
critical dynamics, for two main reasons: (i) The baryon diffu-
sion flows are strong at early times but decay very quickly,
before the system enters the critical region, because diffu-
sion reduces the initially strong chemical gradients ∇(μ/T )
that drive the flows, and the baryon diffusion coefficient de-
scribing the response to these gradients decreases quickly as
the fireball cools by expansion. (ii) By the time the system
reaches the phase transition, possibly passing close to the
critical point, the Navier-Stokes value of the baryon diffusion
current is already very small; critical enhancement by the
baryon diffusion coefficient κn by a power of the correlation
length ξ/ξ0 therefore does not help to revive it, and in any
case the relaxation rate controlling the approach of the baryon
diffusion current to its critically affected Navier-Stokes value
is reduced by critical slowing down. The smallness of the
baryon diffusion current on the freeze-out surface also implies
very small dissipative corrections to the Cooper-Frye formula
at particlization.

The observed insignificance of critical effects on baryon
diffusion might be taken as permission to calibrate the fireball
medium’s bulk evolution at BES energies without worrying
about the QCD critical point and its location. This may be
premature, however, for multiple reasons: (1) The inclusion
of shear and bulk viscous effects will modify the expansion
trajectories through the phase diagram. Although the critical
enhancement of the shear viscosity is negligible (η ∼ ξ ε/19

[23] where ε = 4 − d , with d being the number of spatial
dimensions), critical slowing down of the shear stress tensor
may still be significant, possibly causing larger residual shear
stresses in the vicinity of the critical point than predicted in the
absence of critical effects. This has not been studied. The bulk
viscous pressure is already known to be strongly affected by

22We note, however, that the Israel-Stewart equation used in
Ref. [72] overestimates the critical effects on bulk viscosity at small
frequencies, similarly to Eq. (31).

critical phenomena [72]. We see a potential for these effects
to spill over into the baryon diffusion channel through second-
order transport coefficients that couple these channels. Should
this happen, shear and bulk viscous effects could invalidate
some of the findings of the work presented here (in particular
the rapid decay of the baryon diffusion current observed in
Sec. V D 1). To clarify this, a future full simulation should
include all dissipative effects simultaneously. (2) Large un-
certainties still exist about the size of the critical region which
is determined by the parametrization of the correlation length
[65,67]. (3) At lower beam energies, the system may enter the
critical region earlier, before the baryon diffusion significantly
decays. When the evolution is fully (3+1) dimensional the
edge of the fireball may enter the critical region earlier as well,
while the diffusion current is still appreciable.

A fully quantitative evaluation of the significance of critical
effects on bulk medium evolution at BES energies can only be
made on top of an at least tentatively constrained bulk evo-
lution that includes all necessary theoretical ingredients and
complications [57]. Only if this confirms negligible critical
effects on bulk evolution can the final model calibration be
safely made without worrying about critical modifications.
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APPENDIX A: CAUSALITY ANALYSIS NEAR THE
CRITICAL POINT

In this Appendix we analyze how the causality (and stabil-
ity) condition is satisfied near the critical point, focusing on
the baryon diffusion only. A more complete analysis involving
all nonhydrodynamic degrees of freedom (e.g., shear and bulk
stress tensor) is plausible. We evoke small perturbations on
top of a flat, homogeneous and static background (denoted by
“¯ ”),

e = ē + δe(t, x), n = n̄ + δn(t, x),

uμ = ūμ + δuμ(t, x), nμ = δnμ(t, x), (A1)
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where the perturbations are assumed to be dependent on one
spatial coordinate (i.e., x) only for simplicity. For a particular
direction x we linearize Eqs. (1) and (5) up to first order in
gradient as

Dδe + w̄∇xδux = 0, (A2a)

Dδn + n̄∇xδux + ∇xδnx = 0, (A2b)

w̄Dδux − pe∇xδe − pn∇xδn = 0, (A2c)

(1 + τnD)δnx − κn(αe∇xδe + αn∇xδn) = 0, (A2d)

where

pe =
(

∂ p

∂e

)
n

, pn =
(

∂ p

∂n

)
e

,

αe =
(

∂α

∂e

)
n

, αn =
(

∂α

∂n

)
e

. (A3)

Introducing the Fourier component of the linearized variables
collectively denoted by δφ = (δe, δn, δuμ, δnμ)T , i.e.,

δφ̃(ω, k) = eiωt−ikxδφ(t, x), (A4)

where k = kx = −kx, Eq. (A2) can be transformed to

Mδφ̃ = 0, (A5)

where

M =

⎛
⎜⎝

iω 0 ikw̄ 0
0 iω ikn̄ ik

ikpe ikpn iωw̄ 0
ikκnαe ikκnαn 0 iωτn + 1

⎞
⎟⎠. (A6)

The dispersion relations can be obtained by solving the de-
terminant of the characteristic matrix M. For simplicity we
assume at this moment p = p(e), thus pn = 0 and c2

s = pe;
we then find four eigenmodes:

ω±
1 = ±csk, ω±

2 = i
1 ± √

1 − 4τnDpk2

2τn
. (A7)

ω±
1 are the modes propagating with the speed of sound; ω±

2
are the nonhydrodynamic modes that do not vanish at k → 0
(i.e., with finite decay time τn), and turn to propagate at the
large-k limit, with the maximum group velocity

vmax
g = lim

k→∞
d Reω

dk
= ±

√
Dp

τn
. (A8)

In order to satisfy the causality condition |vmax
g | � 1, near the

critical point, one must demand that τn grows at least as fast
as Dp, which is obviously manifested, since τn ∼ ξ 2 � Dp ∼
ξ−1.

APPENDIX B: ESTIMATING THE SIZE
OF THE CRITICAL REGION

In this Appendix we estimate the size of critical region
characterize by �μ and �T (cf. Fig. 1), as an input to
Eq. (13). Following the analysis and notation convention
of [65,119,120], the linear mapping from three-dimensional
Ising variables (i.e., reduced Ising temperature r and magnetic

field h) to the coordinate variables of QCD phase diagram
(i.e., temperature T and baryon chemical potential μ) reads

T − Tc

Tc
= w(rρs1 + hs2),

μ − μc

μc
= w(−rρc1 − hc2), (B1)

where (w, ρ) are scale factors for the Ising variables r and h.
For notation simplicity we let si = sin αi, ci = cos αi, i = 1, 2,
where α1 and α2 are the angles relative to the negative μ axis
for the mapped r and h axis respectively, defined in Fig. 1.
From Eq. (B1) one can also find the inverse mapping relations

r = (T − Tc)c2 + (μ − μc)s2

ρwTcs12
,

h = − (T − Tc)c1 + (μ − μc)s1

wTcs12
, (B2)

where s12 = sin(α1 − α2) = sin �α. With the map given by
Eq. (B2), one can relate the leading singular QCD pressure
pcrit (μ, T ) and the Gibbs free energy in Ising theory G(r, h)
up to a proportional coefficient A, i.e.,

pcrit (μ, T ) = −AG(r(μ, T ), h(μ, T )). (B3)

The coefficient A cannot be determined by universality and
thus we parametrize it as

A = aT 4
c , (B4)

where a is an unknown parameter to be chosen.
From Eq. (B3) one can calculate the singular part of sus-

ceptibility, χ , which, as our choice of measure for criticality,
diverges near the critical point. Along the crossover (h = 0)
line,

χ
sing
h=0 ∼ AGμμ(r, 0) ∼ AGhh(r, 0)h2

μ

∼ Arβ(1−δ)
( s1

wTcs12

)2

∼ A

(
�μ

wρTcc1

)β(1−δ)( s1

wTcs12

)2
, (B5)

while, along the h axis (r = 0),

χ
sing
r=0 ∼ AGμμ(0, h) ∼ AGhh(0, h)h2

μ

∼ Ah(1−δ)/δ
( s1

wTcs12

)2

∼ A

(
c1�T

wTcs12

)(1−δ)/δ( s1

wTcs12

)2
, (B6)

where the subscript μ or h should be understood as the deriva-
tive with respect to which with the other variable fixed, for
instance, hμ = (∂h/∂μ)T . The criterion for the critical phe-
nomena being important is given by the singular part of the
susceptibility being comparable to its regular part, i.e.,

χ
sing
h=0 ∼ χ reg, (B7a)

χ
sing
r=0 ∼ χ reg. (B7b)
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Provided χ reg ∼ T 2
c , we find correspondingly that

�μ ∼ Tcρwc1

( √
As1

wT 2
c s12

)2/γ

, (B8a)

�T ∼ (wTcs12)−β(δ+1)/γ

c1

(√
As1

Tc

)2βδ/γ

, (B8b)

where γ = β(δ − 1) = 4/3.
In order to determine the values of �μ and �T , we adopt

the following setup choices:

�α = α1 − α2 = 3◦, ρ = 1
2 , w = 1

2 , a = 1, (B9)

which is consistent with the findings from Ref. [119] in the
small quark mass limit and the causality requirement from
Ref. [65]. Nonuniversal parameters given by Eq. (B9) and (17)
together determine the size of the critical region.

APPENDIX C: VALIDATION OF THE NUMERICS

1. Longitudinal evolution of baryon diffusion

BESHYDRO has been validated in different scenarios and
found to work at very good precision [54]. In this section, we
test its performance in longitudinal dynamics, especially for
the baryon diffusion current. For this purpose, in this section
we use flow velocity with vanishing transverse components,
i.e., uμ = (uτ , 0, 0, uη ), for a transversely homogeneous sys-
tem.

Using the decomposition [Eqs. (3a) and (3b)] the con-
servation laws [Eqs. (1a) and (1b)] can be brought into the
physically intuitive form [73]

Dn = −nθ − ∇μnμ, (C1)

De = −wθ, (C2)

w Duμ = ∇μ p, (C3)

where w = e + p, and the equation of motion for the baryon
diffusion is given by

dnμ = κn

τn
∇μα − nμ

τn
− nνuμDuν − uα

μ
αβnβ (C4)

in this test. The symbols in the above equations have been
introduced in Sec. II.

Applying the flow with zero transverse components, these
equations can be written into coupled partial differential
equations, which can be solved using other softwares (e.g.,
MATHEMATICA) for testing BESHYDRO’s performance. While
these equations clearly exhibit the physics in the LRF (which
varies from point to point), BESHYDRO solves the conserva-
tion laws [Eqs. (1a) and (1b)] in a fixed global computational
frame; thus this would be a nontrivial test of our hydrody-
namic code.

To solve the equations, we start the system at initial
time τi = 1 fm, using the following initial conditions: uμ =
(1, 0, 0, 0) and the initial diffusion current is zero; the longi-

(a)

(c) (d)

(b)

FIG. 15. Validation of BESHYDRO for solving the hydrodynamic
equations (C1)–(C7), by comparing its numerical results (dashed
lines) to semianalytical solutions (solid lines) at four different times.
Here we focus on the baryon sector: (a) baryon density, (b) baryon
chemical potential, (c) longitudinal baryon diffusion current, and
(d) τ component of baryon diffusion current. The plots demonstrate
excellent consistency.

tudinal distribution of baryon density is given as

n(τi, ηs) = gs

π2
T 3

0 + nmax

×
[
exp

(
− (ηs + η+)2

σ 2
η

)
+ exp

(
− (ηs + η−)2

σ 2
η

)]
,

(C5)

where the initial temperature T (τi, ηs) = T0 = 0.5 GeV, and
nmax = 10 fm−3, ση = 0.5, and η± = ±1. Here gs = 16 is
the degeneracy factor in the EoS below. The initial chemical
potential is set to be zero everywhere. One also needs the two
transport coefficients in Eq. (C4), and we use [76]

κn = 3

16σtot
, τn = 9

4

1

nσtot
, (C6)

with σtot = 10 mb = 1 fm2. To close the equations, we use the
EoS

e = 3p = 3nT, n = gs

π2
T 3 exp

(μ

T

)
. (C7)

We note that the EoS can be analytically inverted to get
T (e, n) and μ(e, n), directly usable for hydrodynamic codes,
which is convenient for testing such codes.

The setup above which is from Ref. [56] can be solved
semi-analytically using e.g. MATHEMATICA and used for val-
idating BESHYDRO, the comparison of which is shown in
Fig. 15, for the baryonic sector. One can see from the fig-
ure that BESHYDRO works perfectly well in the longitudinal
evolution.

With the solutions, we can also get the space-time distribu-
tion of the freeze-out surface, and correspondingly the other
hydrodynamic quantities on the surface; thus we can take the
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(a) (b)

FIG. 16. Validation of the CORNELIUS-based [107] freeze-out
finder implemented in BESHYDRO, by comparing the results from
BESHYDRO (dashed lines) to semianalytical results (solid lines), at
freeze-out surfaces defined by two different energy densities, ef = 35
fm−4 (blue lines) and 45 fm−4 (red lines). (a) Space-time profile of
the freeze-out surface; (b) corresponding temperature distribution on
the surface.

chance to test the freeze-out finder implemented in BESHY-
DRO, which is based on CORNELIUS [107]. We have tested
its efficiency within BESHYDRO at nonzero baryon density in
the transverse plane [108]. Here, we validate it for this work,
where longitudinal dynamics with baryon diffusion current is
evolved. In Fig. 16, we define the freeze-out surface at two
different freeze-out energies, and we see that the space-time
profile and distribution of the freeze-out temperature perfectly
agree with the semianalytical results.

2. Calculation of various gradients

As mentioned in Sec. II, to include critical contributions to
the EoS without using such an EoS, we rewrite the Navier-
Stokes limit term of baryon diffusion into two terms,

nμ
NS = κn∇μα (C8)

= κn

T χ
∇μn + κn

T n

[(
∂ p

∂T

)
n

− w

T

]
∇μT, (C9)

through which critical behavior (18) is introduced to the
thermal properties of the system. In the original BESHYDRO,
Eq. (C8) is calculated and tested, but apparently Eq. (C9) is
much more complicated to calculate numerically.

Here we validate the code by verifying that exactly the
same results can be achieved using the two expressions for

FIG. 17. Validation of the equivalence of Eqs. (C8) and (C9), and
comparisons among contributions from different gradient terms in
Eqs. (C8) and (C9) to baryon diffusion current. Note that consistence
between results from κn∇α (red solid line) and DT ∇T + DB∇n
(green dashed line) is a highly nontrivial test of numeric methods,
since the later involves calculating (∂ p/∂T )n and interpolating tab-
ulated χ etc. Though the overall agreement is very good, small
wiggles can be seen near the edge for the latter case, a reflection
of the complexities in numerics.

the Navier-Stokes term in Eqs. (C8) and (C9). A quick and
easy test can be done using the setup from Sec. C 1, where

χ =
(

∂2 p

∂μ2

)
T

= n

T
,

(
∂ p

∂T

)
n

= n (C10)

are analytically available and easily used in BESHYDRO. We
have checked that both methods in Eqs. (C8) and (C9) give
precisely the same results in Fig. 15. However, in the sim-
ulations of this work, NEOS is used, and the two terms in
Eq. (C10) are not analytically calculable. Thus we repeat the
comparison to MUSIC as in Ref. [54] for the two gradients,
and show the validation in Fig. 17, which shows excellent
agreement. From the figure, we also see that the baryon
transport driven by DB∇μn is very close to that driven by
DB∇μn + DT ∇μT , indicating that density gradients dominate
over temperature gradients in the Navier-Stokes limit of the
baryon diffusion current.
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