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Super-short fission mode in fermium isotopes
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The so-called super-short fission mode, in which a nucleus divides nearly symmetrically into two unusually
energetic fragments, competes favorably with the standard asymmetric fission mode for spontaneous fission
of a limited number of nuclei near 264Fm but it quickly fades away at finite excitations. We investigate the
energy-dependent competition between those two fission modes for even fermium isotopes from 254Fm to 268Fm,
using the Metropolis method to simulate the strongly damped fission dynamics being driven by shape- and
energy-dependent level densities. The origin of the super-short mode is discussed and its effects on the fragment
mass distribution, the total fragment kinetic energy, and the neutron multiplicity are calculated. Generally good
agreement with the available data is obtained.
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I. INTRODUCTION

Nuclear fission presents a rich variety of challenging
theoretical problems in which structure and dynamics are
interwoven [1]. A particularly intricate problem has long been
posed by the appearance of the so-called super-short fission
mode in certain fermium isotopes. In this paper, we map out
the domain of this fragile mode with respect to the mass
number and the excitation energy of the fissioning nucleus.

The lighter fermium isotopes fission by a “standard mode”
in which the mass distribution of the fragments is asymmetric
and the total fragment kinetic energy (TKE) is fairly low;
the associated scission configurations are rather elongated.
However, in the neighborhood of 264Fm the nucleus may also
divide nearly symmetrically into fragments that lie close to
the doubly magic nucleus 132Sn. The corresponding scission
configurations then consist of two approximately spherical
protofragments and they are thus unusually compact (hence
the name “super-short” for this mode [2], sometimes called
“compact” mode; see, e.g., Ref. [3]); as a result, the fragments
experience a stronger Coulomb repulsion and hence acquire
higher kinetic energies.

The occurrence of bimodal fission in the fermium region
was first noted experimentally 50 years ago [4,5] and the phe-
nomenon has since been explored more thoroughly [6–11].
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The super-short mode grows more prominent as 264Fm is
approached and it is expected that it again subsides for still
heavier isotopes. Furthermore, for the nuclei in which the
mode appears, it quickly loses importance with increasing
excitation energy. Thus, the super-short mode is rather deli-
cate and the present work seeks to determine its quantitative
importance in fermium isotopes as a function of mass number
and excitation energy.

The bimodal fission phenomenon has been studied with
a variety of theoretical approaches, most notably static
mean-field models [3,12–18], models based on density
functional theory [19,20], the time-dependent generator-
coordinate method [21], and Langevin transport treatments
[22–25]. Generally, these calculations reproduce the presence
of the two fission modes (standard and super-short), but the
dependence on excitation energy has not been fully explored.
For example, the generator coordinate calculations are carried
out at zero temperature, while the Langevin treatments have
been restricted to above-barrier fission.

In this study, we employ methods developed earlier to
study the presence (and cause) of the super-short fission mode
in even fermium isotopes and how it evolves with excitation
energy and neutron number. In addition to calculating the
fragment mass distributions, we extract the associated TKE
distributions and calculate the number of neutrons evaporated
from the excited fragments, observables that exhibit charac-
teristic mutual correlations.

The model is briefly described in Sec. II, the results are
presented in Sec. III, and in Sec. IV we summarize our study.

II. MODEL

The fission process is described as a dissipative evolution
of the nuclear shape [26], represented by the 5 degrees of
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freedom of the three-quadratic-surface parametrization [27]:
the overall elongation as measured by the dimensionless
quadrupole moment, q2; the degree of reflection asymmetry,
α; the radius of the neck between the two nascent fragments,
c; and the deformations of the two spheroidal endcaps of
those, εL and εH . The dimensionless elongation parameter
q2 is defined from the quadrupole moment of a homoge-
neous, sharp-surfaced volume, Q2, as q2 = (4πQ2)/(3ZR2

A)
with RA = 1.2A1/3 fm. The grid was set up as described in
Ref. [28] with an extension to larger quadrupole shapes in-
cluding more than 6 million grid points, as compared to the
about 5 million points used in Ref. [28]. The q2 coordinate
thus extends from q2 = 0 to 20 divided into 52 intervals (as
was also used in Refs. [29,30]). For each combination of q2,
α, εL, and εH 15 neck radii, c, are considered.

The shape evolution is simulated by the Metropolis method
[31] in which the system executes a random walk on an
effective five-dimensional (5D) potential-energy surface con-
sisting of a macroscopic energy plus microscopic pairing- and
shell-correction energies that are gradually suppressed with
increasing total energy [32].

The macroscopic-microscopic approach using the finite-
range liquid drop model (FRLDM) is used to generate the
energies and spectra for the shapes in the 5D energy sur-
face. The pairing gap in this model is surface-area dependent,
which gives a smooth transition of the pairing-correction en-
ergy as the nucleus divides into two fragments [33].

For each case considered, 105 fission events are generated
by following the Metropolis walks from the initial shape until
a scission configuration is reached. As scission is approached,
the fragment mass numbers AL and AH as determined by the
asymmetry parameter α, are frozen in when the neck radius
has shrunk to c0 = 2.5 fm [31,32]; only fragments with even
numbers of protons and neutrons are considered here, with the
nucleon numbers being determined by approximately match-
ing the Z/N ratio of the fissioning nucleus. Scission is reached
at csc = 1.5 fm [29,30] and the system is then replaced by
two protofragments whose spheroidal shapes are given by
the values of εL and εH at scission. The available energy is
partitioned microcanonically between the fragments based on
shape-dependent microscopic level densities [29].

As the protofragments separate and accelerate, their ini-
tially distorted shapes relax to their equilibrium forms and
the intrinsic fragment energies are increased correspondingly.
For a given mass partition, A0 → AL + AH , at the excitation
energy E∗

0 the Q value, Q∗
LH = M0 + E∗

0 − ML − MH , rep-
resents the energy available for the total fragment kinetic
energy, TKE, and the combined excitations of the two pri-
mary fragments, TXE = E intr

L + E intr
H , Q∗

LH = TKE + TXE.
The fragment excitation energies are eventually disposed of
by neutron evaporation and γ de-excitation [29].

The Metropolis random walk method provides a simulation
of overdamped motion. Once an initial shape has been chosen,
each walk proceeds on its own, governed by the local level
densities and by the Metropolis algorithm, until scission is
reached. The distributions of physical observables are subse-
quently calculated by sampling many walks. Most notably, the
mass distribution of fissioning nuclei has been calculated over
wide intervals of neutron and proton number [32,34,35]. In

FIG. 1. The potential energy along the paths for the standard
(solid) and the super-short (dashed) fission modes, as function of
the overall quadrupole moment q2 for 256Fm (a), 258Fm (b), 260Fm
(c), and 262Fm (d); the two paths are separated by a ridge (red line).
The ground-state energy is shown by the horizontal line. The shape
evolutions start at the isomeric minima (down-pointing arrows). For
spontaneous fission, the extra energy �E is reset typically at the
up-pointing arrows.

order to interpret the results obtained, it is valuable to identify
the most probable fission paths, running along valley bottoms
and diffusing over intermediate ridges or saddle points. This
was illustrated in Ref. [36] for the fission of 236U. The fission
paths are found by identifying the local minima for each q2

value in the energy surface and smoothly following these min-
ima as q2 increases. The ridges separating the local minima
are found using the immersion method [28].

For the fermium isotopes under study here, two qualita-
tively different paths are apparent: “standard” paths leading to
very elongated mass-asymmetric scission configurations and
paths leading to nearly mass-symmetric scission configura-
tions that are very compact. For 256–262Fm, Fig. 1 depicts the
potential energy along those two fission paths, together with
the ridge separating them, as functions of the elongation q2.
The corresponding curves for 254Fm (not shown) are similar
to those of 256Fm. Those for 264,266,268Fm (not shown) are all
similar to those for 262Fm. For each isotope, its ground-state
energy is marked by the horizontal line and its first barrier
peaks at q2 ≈ 1.4. (Similar results have been obtained on the
basis of the constrained Hartree-Fock model [15,19,20].)

For the curves shown in Fig. 1, the angular momentum is
set equal to I = 0, as is appropriate for spontaneous fission
of even-even nuclei. For neutron-induced fission at the low
energies considered here, angular momenta values from 0 up
to about 6 h̄ will be carried by the nucleus prior to fission.
Considering the large moments of inertia of these very heavy
nuclei, the energy associated with the angular momentum will
be typically less than 100 keV, which is much smaller than
the typical shell- and pairing-correcion energies. A careful
inclusion of the angular momentum of the nucleus prior to
fission would then have practically no effect on the present
result, as also shown for the fission of 236U in Ref. [36].
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As is characteristic for the actinides, the fermium isotopes
have isomeric minima (at q2 ≈ 2.5); these lie only slightly
above of the respective ground-state minima. Generally, the
nuclear shapes will evolve through the neighborhood of the
isomeric minimum so, as we are not concerned with the
fission half-lives, the evolutions may be started from there.
Only the standard fission path seamlessly connects scission
configurations to the isomeric minimum in 254,256Fm, while
for 258–268Fm both paths are connected to the isomeric mini-
mum. (A more asymmetric path competes in energy with the
standard path but is ignored because it plays only a minor role
in the dynamics.) Scission occurs at q2 ≈ 13 for the standard
path but already at q2 ≈ 8 for the super-short path. The ran-
dom walks fully utilize all five shape degrees of freedom and
may switch from one fission path to another if energetically
allowed.

A special challenge is presented by the presence of classi-
cally forbidden regions through which the shape must tunnel
at the lowest energies considered. For this problem, we em-
ploy a modified Metropolis walk (�E method) in which the
total energy is initially increased by an amount �E sufficient
to overcome the lowest barrier and we then reduce it back
to its physical value once it becomes possible. In this way,
the diffusive paths divide into two different shape ensembles,
one for each fission mode, whose further evolution can then
be continued until scission by use of the standard Metropolis
method.

As a check, we alternatively estimate the relative prob-
ability for entering each of the two valleys by means of a
simple WKB treatment of spontaneous fission for each of the
isotopes considered. After the tunneling has been completed,
the evolution is continued by the standard Metropolis method
starting from the shape ensemble obtained by the �E method
at the respective exit values of q2.

A detailed investigation of tunneling under a five-
dimensional barrier would be too involved for the present
study, so we estimate the branching ratio by evaluating the
WKB action integrals along the minimum paths through the
potential landscape (see Fig. 1), taking the corresponding
mass parameters from Ref. [14].

The two different methods for estimating the branching
ratio for spontaneous fission (sf) yield very similar results,
except for 258Fm. For that nucleus, WKB favors the super-
short mode because the inertial mass is relatively small along
the path to the super-short valley, resulting in a branching of
≈75% to the super-short valley and ≈25% to the asymmetric
standard valley. However, the �E method cannot reproduce
this feature because it is sensitive only to the potential and so
it favors the standard mode by ≈93%.

For the two lightest isotopes considered, 254,256Fm, both
the WKB calculation and the �E method lead exclusively
to the standard asymmetric valley for sf [a typical starting
position in this valley is marked by the blue arrow in Fig. 1(a)].

For 258,260Fm the paths to the two valleys can be identified
already from the isomeric minimum. As discussed above,
we expect the super-short mode to be favored for 258Fm(sf).
For 260Fm the super-short is even more favored because the
barrier between the isomeric minimum and the super-short

FIG. 2. Contour plots (on a logarithmic scale) of the number
of fission events for 260Fm in the A-TKE plane based on 105

spontaneous or thermal fission events. Also shown are Q∗
LH (filled

diamonds) and TKE(A) (filled circles). Typical scission shapes are
shown for the compact, symmetric super-short and the elongated,
asymmetric standard modes.

valley is very low, less than 1 MeV, and the branching ratio
is practically 100%.

III. RESULTS

We have performed Metropolis random-walk calculations
for the even fermium isotopes 254–268Fm at various excitation
energies with the above described starting conditions and
studied a variety of fission observables. In particular, we have
extracted the fragment mass distribution, the TKE distribu-
tion, and ν̄, the average total number of neutrons evaporated
from the fragments.

Figure 2 shows the joint distribution of fragment mass
number A and total kinetic energy TKE for both sponta-
neous [Fig. 2(a)] and thermal [Fig. 2(b)] fission of 260Fm,
[259Fm(nth, f ]). At the lower energy [Fig. 2(a)], most events
are approximately mass symmetric and have large TKE.
These arise primarily from the super-short fission mode, in
which the scission configurations are compact, consisting
of two nearly spherical tinlike fragments that acquire high
kinetic energies. The increase of the energy by 6.13 MeV
[Fig. 2(b)] enables the system to access also the standard
fission mode, resulting in a very different joint A-TKE distri-
bution, with many asymmetric events that have significantly
lower TKE.

Consequently, the overall TKE distribution for
259Fm(nth, f ) [which can be obtained by projecting the
joint distribution shown in Fig. 2(b)] has two distinct
components, one centered at TKE ≈ 190 MeV and another
centered at TKE ≈ 228 MeV. Furthermore, the distribution
of the q2 values of the scission configurations is also bimodal,
being well described by two separated Gaussians having
their peaks at q2 ≈ 13 and at q2 ≈ 8. The events in the first
component (q2 ≈ 13) belong to the standard fission mode,
whose elongated scission configurations (which typically
consist of a prolate light fragment and a slightly oblate heavy
fragment) lead to rather low TKE values, while the other
component (q2 ≈ 8) represents the super-short events which
have very compact scission configurations (consisting of two
nearly equal and approximately spherical protofragments)
that lead to high TKE. Typical scission shapes for the two
modes are shown in Fig. 2.
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FIG. 3. Contour plot f ss, the calculated fraction of fissions via
the super-short mode, in fermium isotopes in the N0-E∗

0 plane. The
solid line marks the 50% contour where the super-short mode and
the standard mode contribute equally. Typical scission shapes for the
two modes are shown.

In the dynamical calculations, the two different fission
modes can be separated on the basis of the elongation of
the scission configuration, qsc

2 , and the fraction of super-short
events, f ss, can thus be obtained. For the cases shown in Fig. 2,
f ss
sf ≈ 95% and f ss

th ≈ 20%.
In order to ascertain the role played by the super-short

mode in fermium, we have extracted f ss for a number of
isotopes with an even neutron number N0 and a range of
initial excitation energies E∗

0 . The result is summarized in
Fig. 3 in the form of a contour plot of the super-short fraction
f ss(N0, E∗

0 ).
Figure 3 shows that the super-short mode dominates for

spontaneous fission of 258–268Fm, but the mode is fragile and
for 258Fm it quickly subsides with increasing energy. As N0

approaches 164, the mode grows increasingly more resilient,
up to 264Fm, for which it remains dominant until E∗

0 ≈ 8
MeV. That the super-short mode should be most significant
for that isotope is to be expected because symmetric fission
leads to two doubly magic 132Sn fragments. For still heavier
isotopes, the mode gradually loses prominence and appears to
be insignificant beyond 272Fm.

The calculated variation in the resilience of the super-short
fission mode with increasing energy can be understood from
Fig. 1. At low energies, the walks are confined within the
super-short valley but with increasing energy it becomes ever
easier to cross over the ridge into the asymmetric standard
valley, as we discuss in more detail below. Such leakage
from the super-short to the standard valley on the way toward
scission reduces f ss relative to its value just above the barrier.

The potential energy along the super-short fission path
slopes downward relatively gently beyond q2 ≈ 5, causing the
shape evolution to have a predominantly diffusive character.
This offers favorable opportunities for the shape to cross over
into the valley associated with the standard mode and once
such a transition has been made, the likelihood of returning

to the super-short valley is very small, because the slope
along the standard fission path is significantly steeper, thus
providing a strong driving force toward scission.

Because the energy difference between the super-short val-
ley and the ridge line is small throughout much of the diffusive
region, even a small amount of excitation energy may induce
transitions to the standard valley. For example, for 260Fm
(Fig. 3) the super-short fraction f ss is shrinking rapidly as the
energy is increased, dropping from 95% at E∗

0 = 0 to 20% at
6 MeV.

The potential energy along the super-short fission path
(in the interval q2 = 4–6) decreases with increasing neutron
number N0 from 158 to 162 [see Figs. 1(b)–1(d)] and reaches
its lowest values for 164. The ridge energy is independent of
N0, so transitions from the super-short to the standard path
require higher energies with increasing neutron number, with
a maximum at 164, thus making the super-short mode in those
isotopes correspondingly more prominent.

If the excitation energy is increased substantially, the mi-
croscopic effects erode and fission proceeds in a symmetric
liquid-drop-like fashion. Shell structure in the fragment nu-
clei is expected to disappear at temperatures above 1.5 MeV
[37], suggesting this change may appear above E∗

0 ≈ 40
MeV. This estimate was confirmed in the full Metropolis
calculation.

The presence of the super-short fission mode has a corre-
lated effect on several observables, particularly the fragment
mass distribution, the TKE, and the neutron multiplicity. As
noted above, the two fission modes lead to very different
mass distributions, the standard mode yielding asymmetric
mass distributions (peaked at AL = 108 and AH = 146 for
254Fm), while the super-short mode yields narrow symmetric
distributions. Figure 4 shows the primary fragment mass dis-
tribution resulting from 254–260Fm(sf) and 254–260Fm(nth). The
yields for spontaneous fission (left panels) exhibit a sudden
change as N0 is increased from 156 to 158. For 254,256Fm, the
standard mode completely dominates, resulting in asymmetric
yield distributions, while the super-short dominates for 258Fm
and 260Fm (with 55% and 95%, respectively), yielding narrow
symmetric fragment mass distributions.

At E∗
0 ≈ 6 MeV, corresponding to thermal fission, the tran-

sition from the standard to the super-short fission mode occurs
at a larger N0, as is shown in Fig. 3. Compared to the results
for spontaneous fission of 258,260Fm, the mass distribution is
drastically wider at this energy, at which also the standard
mode contributes to the symmetric mass yield.

While the experimental data appear to support the gen-
eral characteristic features of the calculated results, a few
differences may be noted: (1) the peaks of the asymmetric
mass splits for 254–256Fm are wider in the calculation than
in the data [Figs. 4(a), 4(d), and 4(e)]; and (2) the measured
yields for 257Fm(nth, f ) have more events at symmetry than
calculated.

The sharp transition from the standard to the super-short
mode with increasing N0 also causes a correspondingly rapid
change in the TKE distribution. This is illlustrated for spon-
taneous fission in the left panels of Fig. 5: a single low-TKE
peak for 254,256Fm(sf) changes via a bimodal distribution for
258Fm(sf) to a single high-TKE peak for 260Fm(sf).
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FIG. 4. Primary fragment mass yields for spontaneous and ther-
mal fission for 254Fm [(a), (b)], 256Fm [(c), (d)], 258Fm [(e), (f)], and
260Fm [(g), (f)]. The calculated results are shown by solid red curves;
for 258Fm the sf result from the �E method is shown in panel (e)
as a blue dashed line. The experimental data for sf are shown in
panel (a) for 254Fm [38], in panel (c) for 256Fm [39], and in panel
(e) for 258Fm [40] as black squares; data from Ref. [11] are shown
in panel (e) as green diamonds. Thermal fission data are shown as
black squares in panel (d) for 256Fm [255Fm(nth, f )] [41] and in panel
(f) for 258Fm [257Fm(nth, f )] [5]. The mass yields are for the product
nuclei.

For 258Fm(sf), the super-short fraction is f ss = 55% and
the two TKE peaks are located at 188 and 236 MeV when
the WKB method is employed. The �E method also yields a
bimodal distribution but favors the standard mode somewhat
and leads to a wider fragment mass distribution and lower
TKE values [see Figs. 4(e) and 5(e)].

At E∗
0 ≈ 6 MeV (thermal fission) the standard mode

completely dominates for 254,256,258Fm and yields a single
low-TKE peak at 188 MeV [Figs. 5(b), 5(d), and 5(f)].
For 260Fm, the super-short fraction is f ss = 20% creating a
smaller TKE peak at 230 MeV in addition to the larger peak
at 188 MeV.

For the studied eight fermium isotopes, the overall average
TKE values, TKE, are shown in Fig. 6(a) for three excitation
energies, E∗

0 = 0 (sf), E∗
0 ≈ 6 MeV (thermal), and E∗

0 =
15 MeV (with second-chance fission ignored). The transition
from the standard mode to the super-short mode appears as a
rapid increase in TKE. This trend also appears in the data on
259,260Md (sf).
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FIG. 5. TKE distributions for the same cases shown in Fig. 4.
Calculated results are shown by solid red curves; for 258Fm the sf
result from the �E method is shown in panel (e) by a blue dashed
line. Data for sf are shown by solid black curves for 254Fm (a) [38],
256Fm (b) [42], and 258Fm (e) [11].

The result is readily understood from Fig. 3, from which
the super-short fraction f ss dependence on N0 can be inferred
at the three energies. A sudden increase of f ss causes a cor-
responding increase in TKE. This occurs at N0 = 158 for
spontaneous fission and at N0 = 162 for thermal fission. At
the latter energy, the drop in f ss at N0 = 166 appears as a drop
in the TKE. For the highest energy, all isotopes are found to
fission in the standard mode and TKE remains low.

Decay from the excited fully accelerated fragments carries
information about the excitation energy of the fragments. In
the present calculations, the microcanonical excitation of each
fragment at scission is accounted for by the state density, ob-
tained by summing the level density over all angular momenta
I , multiplied by the factor (2I + 1). The typical magnitude
of the angular momentum in each fragment is about 6–8 h̄,
generated by the thermal excitation at scission. Such values
are qualitatively in agreement with γ -ray multiplicity data
[53,54]. In principle, the angular momenta of the two frag-
ments and their relative orbital angular momenta should be
coupled as three quantal angular momentum vectors to yield
the small total angular momentum vector of length I = 0 to
about 6h̄ carried by the fissioning nucleus. This is not done in
the present calculations. Instead, the average rotational energy
of the order of 1–2 MeV in each fragment is subtracted from
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the energy available for neutron decay [29]. A detailed ac-
count of the angular momentum coupling is outside the scope
of the present paper.

The average total neutron multiplicity ν̄ [shown in
Fig. 6(b)] mirrors the behavior displayed by TKE [Fig. 6(a)]
because, in each fission event, a higher TKE reduces the
expected number of neutrons and vice versa. The signature
of the super-short fission mode, a low ν̄, is readily understood

from Fig. 2(a) where events with a high TKE appear close
to the total available energy Q∗

LH; this implies low available
excitation energies, TXE = Q∗

LH−TKE, and thus little energy
for the neutrons.

The very low ν̄ of 2.0 for 260Fm (sf) more than doubles to
5.0 for 260Fm (nth) because f ss is 0.95 for spontaneous fission
but only 0.20 for thermal fission. At E∗

0 = 15 MeV, fission
occurs in the standard mode for all fermium isotopes and ν̄

increases smoothly from 5.8 for 254Fm to 7.8 for 268Fm, in
large part due to the decrease of Sn with neutron number.

It has not yet been possible to experimentally test the pre-
dicted drop in ν̄ for sf of fermium isotopes as N0 is increased
from 156 to 158, but ν̄ has been measured for 259,260Md (sf)
[see Fig. 6(b)] and it decreases from 4.1 to 2.6 as N0 goes from
158 to 159.

For fission above the barrier, a more direct comparison can
be made between the present results and the results of dynami-
cal calculations solving the Langevin equation [24,25]. For the
isotopes of fermium, the general trend is the same as reported
here, except that the super-short mode is more pronounced in
the Langevin results. Thus, for E∗

0 ≈ 7 MeV fission of 258Fm
is predicted to be dominated by the super-short symmetric
mode, with less than 5% asymmetric fission.

IV. SUMMARY

In summary, we have studied the fission properties of fer-
mium isotopes by simulating the diffusive shape evolution
and analyzing the resulting scission configurations. We have
focused on the appearance and resilience of the super-short
fission mode in which the scission configurations are very
compact, consisting of two nearly spherical protofragments
near 132Sn, thus leading to high fragment kinetic energies and
low neutron multiplicities. We have shown in detail how this
mode dominates in spontaneous fission of 258–268Fm, while
it gradually subsides with increasing excitation energy. At
energies corresponding to thermal fission only 262,264Fm are
still dominated by the super-short mode and for still higher
excitation energies it is absent for all isotopes. The calculated
results are generally in good agreement with the currently
available, limited experimental data.

ACKNOWLEDGMENTS

Discussions with Karl-Heinz Schmidt are acknowledged. This
work was supported by the Knut and Alice Wallenberg Foun-
dation (M.A., B.G.C., and S.Å.). J.R. was supported in part by
the NNSA DNN R&D of the U.S. Department of Energy and
its Office of Science under Contract DE-AC02-05CH11231.

[1] M. Bender, R. Bernard, G. Bertsch, S. Chiba, J. Dobaczewski,
N. Dubray, S. A. Giuliani, K. Hagino, D. Lacroix, Z. Li et al.,
J. Phys. G. 47, 113002 (2020).

[2] U. Brosa, S. Grossmann, and A. Müller, Phys. Rep. 197, 167
(1990).

[3] P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 469, 1
(1987).

[4] J. P. Balagna, G. P. Ford, D. C. Hoffman, and J. D. Knight, Phys.
Rev. Lett. 26, 145 (1971).

[5] W. John, E. K. Hulet, R. W. Lougheed, and
J. J. Wesolowski, Phys. Rev. Lett. 27, 45
(1971).

[6] R. C. Ragaini, E. K. Hulet, R. W. Lougheed, and J. Wild, Phys.
Rev. C 9, 399 (1974).

064616-6

https://doi.org/10.1088/1361-6471/abab4f
https://doi.org/10.1016/0370-1573(90)90114-H
https://doi.org/10.1016/0375-9474(87)90083-2
https://doi.org/10.1103/PhysRevLett.26.145
https://doi.org/10.1103/PhysRevLett.27.45
https://doi.org/10.1103/PhysRevC.9.399


SUPER-SHORT FISSION MODE IN FERMIUM ISOTOPES PHYSICAL REVIEW C 104, 064616 (2021)

[7] E. K. Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, D. C.
Hoffman, J. Weber, and J. B. Wilhelmy, Phys. Rev. C 21, 966
(1980).

[8] J. F. Wild, E. K. Hulet, R. W. Lougheed, P. A. Baisden, J. H.
Landrum, R. J. Dougan, and M. G. Mustafa, Phys. Rev. C 26,
1531 (1982).

[9] H. C. Britt, D. C. Hoffman, J. van der Plicht, J. B. Wilhelmy, E.
Cheifetz, R. J. Dupzyk, and R. W. Lougheed, Phys. Rev. C 30,
559 (1984).

[10] E. K. Hulet, J. F. Wild, R. J. Dougan, R. W. Lougheed, J. H.
Landrum, A. D. Dougan, M. Schädel, R. L. Hahn, P. A. Baisden,
C. M. Henderson, R. J. Dupzyk, K. Sümmerer, and G. R.
Bethune, Phys. Rev. Lett. 56, 313 (1986).

[11] E. K. Hulet, J. F. Wild, R. J. Dougan, R. W. Lougheed, J. H.
Landrum, A. D. Dougan, P. A. Baisden, C. M. Henderson, R. J.
Dupzyk, R. L. Hahn, M. Schädel, K. Sümmerer, and G. R.
Bethune, Phys. Rev. C 40, 770 (1989).

[12] S. Cwiok, P. Rozmej, A. Sobiczewski, and Z. Patyk, Nucl. Phys.
A 491, 281 (1989).

[13] P. Möller, J. R. Nix, and W. J. Swiatecki, Nucl. Phys. A 492,
349 (1989).

[14] P. Möller and J. R. Nix, J. Phys. G 20, 1681 (1994).
[15] L. Bonneau, Phys. Rev. C 74, 014301 (2006).
[16] N. Dubray, H. Goutte, and J.-P. Delaroche, Phys. Rev. C 77,

014310 (2008).
[17] T. Ichikawa, A. Iwamoto, and P. Möller, Phys. Rev. C 79,

014305 (2009).
[18] J. Zhao, B.-N. Lu, T. Niksic, D. Vretenar, and S. G. Zhou, Phys.

Rev. C 93, 044315 (2016).
[19] M. Warda, J. L. Egido, L. M. Robledo, and K. Pomorski, Phys.

Rev. C 66, 014310 (2002).
[20] A. Staszczak, A. Baran, J. Dobaczewski, and W. Nazarewicz,

Phys. Rev. C 80, 014309 (2009).
[21] D. Regnier, N. Dubray, and N. Schunck, Phys. Rev. C 99,

024611 (2019).
[22] T. Asano, T. Wada, M. Ohta, T. Ichikawa, S. Yamaji, and H.

Nakahara, J. Nucl. Radiochem. Sci. 5, 1 (2004).
[23] M. D. Usang, F. A. Ivanyuk, C. Ishizuka, and S. Chiba, Phys.

Rev. C 96, 064617 (2017).
[24] Y. Miyamoto, Y. Aritomo, S. Tanaka, K. Hirose, and K. Nishio,

Phys. Rev. C 99, 051601(R) (2019).
[25] M. D. Usang, F. A. Ivanyuk, C. Ishizuka, and S. Chiba, Sci.

Rep. 9, 1525 (2019).
[26] J. Błocki, Y. Boneh, J. R. Nix, J. Randrup, M. Robel, A. J. Sierk,

and W. J. Swiatecki, Ann. Phys. 113, 330 (1978).
[27] J. R. Nix, Nucl. Phys. A 130, 241 (1969).
[28] P. Möller, A. J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson,

H. Uhrenholt, and S. Åberg, Phys. Rev. C 79, 064304
(2009).

[29] M. Albertsson, B. G. Carlsson, T. Døssing, P. Möller, J.
Randrup, and S. Åberg, Phys. Lett. B 803, 135276 (2020).

[30] M. Albertsson, B. G. Carlsson, T. Døssing, P. Möller, J.
Randrup, and S. Åberg, Phys. Rev. C 103, 014609 (2021).

[31] J. Randrup and P. Möller, Phys. Rev. Lett. 106, 132503 (2011).
[32] J. Randrup and P. Möller, Phys. Rev. C 88, 064606 (2013).

[33] J. R. Nix and P. Möller, Nucl. Phys. A 536, 20 (1992)
[34] M. Albertsson, B. G. Carlsson, T. Døssing, P. Möller, J.

Randrup, and S. Åberg, Eur. Phys. J. A 56, 46 (2021).
[35] P. Möller and J. Randrup, Phys. Rev. C 91, 044316 (2015).
[36] D. E. Ward, B. G. Carlsson, T. Døssing, P. Möller, J. Randrup,

and S. Åberg, Phys. Rev. C 95, 024618 (2017).
[37] A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin,

Reading, MA, 1975), Vol. 2.
[38] J. E. Gindler, K. F. Flynn, L. E. Glendenin, and R. K. Sjoblom,

Phys. Rev. C 16, 1483 (1977).
[39] K. F. Flynn, E. P. Horwitz, C. A. A. Bloomquist, R. F. Barnes,

R. K. Sjoblom, P. R. Fields, and L. E. Glendenin, Phys. Rev. C
5, 1725 (1972).

[40] D. C. Hoffman, G. P. Ford, J. P. Balagna, and L. R. Veeser, Phys.
Rev. C 21, 637 (1980).

[41] K. F. Flynn, J. E. Gindler, R. K. Sjoblom, and L. E. Glendenin,
Phys. Rev. C 11, 1676 (1975).

[42] D. C. Hoffman, J. B. Wilhelmy, J. Weber, W. R. Daniels, E. K.
Hulet, R. W. Lougheed, J. H. Landrum, J. F. Wild, and R. J.
Dupzyk, Phys. Rev. C 21, 972 (1980).

[43] D. C. Hoffman, D. Lee, A. Ghiorso, M. Nurmia, and K.
Aleklett, Phys. Rev. C 22, 1581 (1980).

[44] J. P. Unik, J. E. Gindler, L. E. Glendenin, in Proceedings of the
Third International Atomic Energy Agency Symposium on the
Physics and Chemistry of Fission, Rochester, 2978 (International
Atomic Energy Agency, Vienna, 1974), Vol. II, p. 19.

[45] J. Khuyagbaatar, S. Hofmann, F. P. Heßberger, D. Ackermann,
H. G. Burkhard, S. Heinz, B. Kindler, I. Kojouharov, B.
Lommel, R. Mann, J. Maurer, K. Nishio, and Y. Novikov, Eur.
Phys. J. A 37, 177 (2008).

[46] Y. Y. A. Lazarev, At. Energy Rev. 15, 75 (1977).
[47] A. I. Svirikhin, V. N. Dushin, M. L. Chelnokov, V. I. Chepigin,

I. N. Izosimov, D. E. Katrasev, O. N. Malyshev, A. Minkova,
A. G. Popeko, E. A. Sokol, and A. V. Yeremin, Eur. Phys. J. A
44, 393 (2010).

[48] A. I. Svirikhin, A. V. Andreev, V. N. Dushin, M. L. Chelnokov,
V. I. Chepigin, M. Gupta, A. V. Isaev, I. N. Izosimov, D. E.
Katrasev, A. N. Kuznetsov, O. N. Malyshev, S. Mullins, A. G.
Popeko, E. A. Sokol, and A. V. Yeremin, Eur. Phys. J. A 48, 121
(2012).

[49] A. I. Svirikhin, M. Gupta, A. V. Yeremin, I. N. Izosimov, A.
V. Isaev, A. N. Kuznetsov, O. N. Malyshev, S. Mullins, A. G.
Popeko, E. A. Sokol, M. L. Chelnokov, and V. I. Chepigin, Bull.
Russ. Acad. Sci. Phys. 79, 442 (2015).

[50] J. F. Wild, J. van Aarle, W. Westmeier, R. W. Lougheed, E. K.
Hulet, K. J. Moody, R. J. Dougan, E. A. Koop, R. E. Glaser, R.
Brandt, and P. Patzelt, Phys. Rev. C 41, 640 (1990).

[51] E. A. Sokol, Cand. Sci. Dissertation, Dubna: JINRI (1992).
[52] V. E. Viola, K. Kwiatkowski, and M. Walker, Phys. Rev. C 31,

1550 (1985).
[53] A. Oberstedt, A. Gatera, A. Göök, and S. Oberstedt, EPJ Web

Conf. 211, 04001 (2019).
[54] J. N. Wilson, D. Thisse1, M. Lebois, N. Jovančević, D.
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