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R-matrix theory with level-dependent boundary condition parameters
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I present a new formalism of the R-matrix theory where the formal parameters for the resonance energies and
widths are identical to the observed values. By allowing the boundary condition parameters to vary from level
to level, the freedom required to adjust the formal parameters for the pole positions to the observed values is
obtained. The basis of the resulting theory becomes nonorthogonal, and I describe the procedure to construct
a consistent R-matrix theory with such a nonorthogonal basis. And by adjusting the normalization of the states
that form the basis, the formal parameters for the reduced decay widths also become the same as those observed,
leaving no formal parameters that are different from the observed ones. A demonstration of the developed theory
to the elastic 12C +p scattering data is presented.
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I. INTRODUCTION

The R-matrix theory [1,2] introduced by Wigner and
Eisenbud [1] and by Kapur and Peierls [2] is an ex-
tremely powerful and indispensable tool for describing
nuclear reactions [3,4], in which collision matrices are
described in terms of the positions and widths of the reso-
nances. The values of the resonance parameters used in the
R-matrix theory (which are referred to as the formal pa-
rameters) are, however, different from the observed values,
and the conversion between the two sets of parameters is
nonlinear.

Having two different sets of parameters complicates both
theoretical and computational studies of the theory quite sub-
stantially, see Ref. [4] for a detailed discussion. A potential
improvement is to derive an R-matrix theory where the formal
parameters coincide with the observed values by a reformu-
lation of the theory, such that unnecessary confusion and
complications can be removed.

In this paper, I address this issue by presenting a new
R-matrix theory where there is no distinction between the two
sets of parameters. The key steps of the developed formula-
tion can be summarized as follows. When constructing the
conventional R-matrix theory, the basis for the Hilbert space
defined in the internal region of the theory is required to be
orthogonal. Since the domain of the basis is not the whole
configuration space but limited only to the internal region, the
seemingly innocent orthogonality condition imposes quite a
strict constraint on the states that form the basis: The bound-
ary condition parameters that define the basis states should
be level-independent in order to satisfy the orthogonality
condition (see the text for more detailed explanation). This
constraint is in fact responsible for the discrepancies between
the formal parameters and the observed ones. However, it
is possible to construct a consistent R-matrix theory with a
nonorthogonal basis. It turns out that releasing the orthogo-
nality condition provides the freedom to have level-dependent

boundary conditions with which the formal parameters can
be equivalent to the observed values. To be more specific,
if one adjusts the boundary condition parameters Bλc to the
shift factor Sc at Eλ (the pole-position of level λ), the formal
parameters for the pole positions coincide with the observed
ones. Furthermore, there is additional freedom associated
with the normalization of the basis states. By selecting the
normalization given in Eq. (28), the formal parameters for
reduced widths also become the same as observed. As a result,
there are no formal parameters that are different from the
observed values in the present theory, achieving the desired
goal.

The new formalism shares many features in common with
previous studies. For example, the very original work by
Kapur and Peierls [2] has an energy-dependent boundary
condition. Schemes with level-dependent boundary condi-
tion parameters were introduced by Barker [5] and by
Azuma et al. [6]. Angulo and Descouvemont developed
a formalism [7] where there are no level shifts, which is
however applicable only to single-channel cases. In par-
ticular, this work is rather similar to the work of Brune
[8], where an alternative parametrization was introduced
to use the observed pole locations as inputs of the R-
matrix theory, developing a transformation scheme between
the formal and the observed parameters. In this work,
the theory is formulated in such a way that all the for-
mal parameters are directly equivalent to the observed
values.

In Sec. II, I briefly review the R-matrix theory, explaining
how the orthogonality condition can be released in a consis-
tent manner to allow the boundary condition parameters to be
level-dependent. In Sec. III, I then describe the procedure to
align the formal parameters to the observed values. In Sec.
VI, a demonstration of the developed theory is made for the
12C +p elastic scattering reaction. Section V is devoted to
discussions.
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II. FORMALISM FOR THE EXTENDED
BOUNDARY CONDITION

I begin with a brief review of the R-matrix theory described
in Lane and Thomas (LT) [3]. In the R-matrix theory, a nuclear
system is described in terms of channels that consist of two
subsystems, α1 = {Z1, A1, I1} and α2 = {Z2, A2, I2}, where
Zi, Ai, and Ii are the proton number, mass number, and spin
of the ith subsystem, respectively. The quantum state of a
channel c might be denoted as c = {α, (I1, I2)s, �; JJz}, where
α = α1 ⊗ α2 is the partition index, s is the channel spin (�s =
�I1 + �I2), � is the relative orbital angular momentum, J is the
total angular momentum ( �J = �s + ��), and Jz is its projection
[4]. The Hamiltonian of the system in the center-of-mass
frame then reads

H = − h̄2

2Mc
∇2

�rc
+ Vc(�rc) + Hα1 + Hα2 , (1)

where �rc and Mc are the relative position vector and the
reduced mass of channel c, respectively, and Hαi is the Hamil-
tonian for the internal energy of the ith subsystem. The wave
function of the system that satisfies the Schrödinger equation
at energy E , H� = E� can be written as

� =
∑

c

ϕc uc(rc), (2)

where uc(rc) is the radial function of channel c. The spinors
and the angular dependence of the subsystems are embodied
in ϕc = 1

rc
[[ϕα1 ⊗ ϕα2 ] ⊗ i�Y�(r̂c)]JJz [4]. The radial space of

each channel is divided into two parts: the internal region
(rc � ac) and the external region (rc > ac), where ac is the
channel radius that defines the surface between the two re-
gions. ϕc is assumed to be orthonormal when integrated on
the channel surface, ∫

ϕ∗
c ϕc′ dS = δcc′, (3)

where S is the surface defined by rc = ac. Here and hereafter,
unless stated otherwise, I follow the notation given in LT.

The wave function in the internal region is expanded as a
linear combination of the basis states Xλ,

� =
∑

λ

CλXλ, (4)

where Cλ are E -dependent coefficients. The basis states

Xλ =
∑

c

ϕc uλc(rc) (5)

are defined by the eigenvalue equation

HXλ = EλXλ (6)

with a boundary condition imposed at the channel surface,
which will be discussed soon.

Since the basis states are relevant only in the internal re-
gion, I define their inner products as1

Jλλ′ ≡
∫

τ

X ∗
λ Xλ′ dτ, (7)

where
∫
τ

dτ denotes the volume integral limited only to the
internal region. The orthogonality condition of the basis then
corresponds to have Jλλ′ = 0 for λ �= λ′. Jλλ′ can be evaluated
by the following steps: If one multiplies Eq. (6) by X ∗

λ′ from
the left and integrate it in the internal region, and then subtract
it with interchanging λ′ and λ, one obtains

(Eλ − Eλ′ )
∫

τ

X ∗
λ Xλ′ dτ

=
∫

τ

[(HXλ)∗Xλ′ − X ∗
λ (HXλ′ )] dτ

= −
∑

c

h̄2

2Mc

(
uλ′c

duλc

dr
− uλc

duλ′c

dr

)
r=ac

, (8)

where I have inserted the Hamilton given in Eq. (1) at the last
step. Here and hereafter, I limit myself to the cases where the
nuclear potential is hermitian and the radial functions are real,
uλc(r)∗ = uλc(r). Diving the above equation by Eλ − Eλ′ , one
is then led to2

Jλλ′ = − 1

Eλ − Eλ′

∑
c

γλc(Bλc − Bλ′c)γλ′c, for λ �= λ′, (9)

where

γλc ≡
√

h̄2

2Mcac
uλ(ac), (10)

Bλc ≡ ac

uλc(ac)

duλc(r)

dr

∣∣∣∣
r=ac

. (11)

From Eq. (9), it is clear that the orthogonality condition for
a general multilevel and multichannel case can be guaran-
teed only when the boundary condition is level-independent,
Bλc = Bc, as is demanded in the conventional R-matrix theory.
However, the orthogonality is not a necessary condition for the
basis of a consistent R-matrix theory. If one does not adhere
to it, as I explain below, one is granted additional freedom to
have level-dependent boundary condition parameters that can
be used to remove the gap between the formal parameter set
and the observed parameter set.

I now describe how a new R-matrix theory can be built with
a nonorthogonal basis. From Eqs. (9) and (4), the coefficients

1By making use of Eqs. (5) and (3), Jλλ′ can also be represented as

Jλλ′ =
∑

c

∫ ac

0
drc u∗

λc(rc )uλ′c(rc ),

2Here, I assume that for a given spin and parity, Xλ is nondegen-
erate, and thus λ �= λ′ implies Eλ �= Eλ′ . The degenerate levels with
the same level-energy, if any, can be merged into a single level, as
discussed in Ref. [8].
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Cλ read

Cλ′ =
∑

λ

(
J−1

)
λ′λ

∫
τ

Xλ� dτ, (12)

and the integral in the above equation can be evaluated by
inserting � in place of Xλ′ in Eq. (8),∫

τ

Xλ� dτ

= 1

Eλ − E

∑
c

γλc

√
h̄2

2Mcac

(
ac

duc(r)

dr
− Bλcuc(ac)

)
r=ac

.

(13)

Insertion of the resulting coefficients into Eq. (4) gives the
following equation:

uc′ (ac′ ) =
∑
λ′

Cλ′uλ′c′ (ac′ )

=
∑

c

√
Mc′ac′

Mcac

(
Rc′c ac

duc(r)

dr
− RB

c′cuc(ac)

)
r=ac

(14)

with

Rc′c ≡
∑
λ′,λ

γλ′c′
(
J−1

)
λ′λ

1

Eλ − E
γλc, (15)

RB
c′c ≡

∑
λ′,λ

γλ′c′
(
J−1

)
λ′λ

1

Eλ − E
γλc Bλc. (16)

On the other hand, the radial wave functions in the external
region can be written analytically, because the channel radius
ac is assumed to be large enough so that all the nuclear forces
between the two subsystems vanish and only the Coulomb
interaction remains,

uc′ (r) = 1√
vc′

∑
c

[Ic′ (r)δc′c − Oc′ (r)Uc′c]yc, rc � ac,

(17)

where yc are coefficients, Ic(r) and Oc(r) are the incoming and
outgoing radial wave functions, respectively, U is the collision
matrix, and vc = √

2|Ec|/Mc are the relative velocities. The
collision matrix can be obtained by requiring that the logarith-
mic derivatives of the radial functions on the channel surface
resulting from Eq. (17) should be equal to the derivatives
derived from Eq. (14),

Uc′c = 
c′ (δc′c + 2i
√

Pc′ ([1 − R(Sc + iPc)

+RB]−1R)c′c
√

Pc)
c, (18)

where 
c = √
Ic/Oc, and the shift (Sc) and penetration (Pc)

factors are the real and imaginary parts of the logarithmic
derivative of the outgoing wave function on the channel sur-
face, respectively,

r(∂Oc/∂r)/Oc|r=ac
= Sc + iPc. (19)

In this context, it is convenient to represent the collision
matrix in terms of the so-called A matrix, which is defined by

([1 − R(S + iP) + RB]−1R)c′c =
∑
λ′,λ

γλ′c′Aλ′λγλc (20)

or, equivalently,

(A−1)λλ′ = Ē (E )λλ′ − i
∑

c

γλcγλ′cPc(E ), (21)

where Ē (E ) is the real part of A(E )−1,

Ē (E )λλ′ = (Eλ − E )Jλλ′ −
∑

c

γλc[Sc(E ) − Bλc]γλ′c. (22)

The collision matrix with this A matrix reads

Uc′c = 
c′

(
δc′c + 2i

√
Pc′

∑
λ′,λ

γλ′c′Aλ′λγλc
√

Pc

)

c. (23)

Using the above Eqs. (21), (22), (23), one can thus construct
the collision matrix with the general inner products of the
basis states given in Eq. (9), and the basis no longer needs
to be orthogonal. The values of the level-dependent bound-
ary condition parameters Bλc and the diagonal elements Jλλ

should then be determined, which will be discussed in the next
section.

III. DETERMINATION OF THE BOUNDARY
CONDITION PARAMETERS

So far, I have shown that releasing the orthogonality
condition of the basis states allows the boundary condition
parameters Bλc to depend on the level. This section describes
how to utilize this additional freedom associated with the
level-dependence to make the formal parameters coincide
with the observed ones.

Consider first the observed pole-positions of resonances,
Eobs

λ . The precise definition of the pole-position may be am-
biguous, and I adopt the convention of Ref. [8], where Eobs

λ

are defined as the zeros of the determinant of the real part of
the inverse of the A matrix, or, equivalently, the solutions of
the secular equation

det Ē (E ) = 0. (24)

The aim of equalizing the observed pole positions with the
formal parameters

Eobs
λ = Eλ (25)

can be achieved if one sets the boundary condition parameters
Bλc to be the shift factor at E = Eλ,

Bλc = Sc(Eλ). (26)

This can be seen by simply noting that Ē (Eλ)λλ′ vanishes if
one inserts Eq. (26) into Eq. (22). That is, for any λ, the entire
λth row of the matrix Ē (Eλ) vanishes, which in turn makes Eλ

the solution of Eq. (24). This proves that the formal parameter
Eλ is equal to the observed Eobs

λ .
From Eqs. (21), (22), (23), it is not difficult to see

that the collision matrix U is invariant under the following
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transformation:

Jλλ → Jnew
λλ ,

γλc → γ new
λc =

√
Jnew
λλ

Jλλ

γλc. (27)

The normalization of γλc is thus determined by the values of
Jλλ, which are not yet determined. The off-diagonal elements

of J are given in Eq. (9). A natural extrapolation to the diago-
nal cases would be to take the limit Eλ′ → Eλ of the equation,
which results in, with Eq. (26),

Jλλ = 1 −
∑

c

γ 2
λc

dSc(E )

dE

∣∣∣∣
E=Eλ

. (28)

Insertion of the above equation into Eq. (22) yields

Ē (E )λλ′ =
{

Eλ − E − ∑
c γ 2

λc[Sc(E ) − Sλc + (Eλ − E )S′
λc], for λ′ = λ,

−∑
c γλcγλ′c

[
Sc(E ) + (Eλ′−E )Sλc−(Eλ−E )Sλ′c )

Eλ−Eλ′

]
, for λ′ �= λ,

(29)

where Sλc ≡ Sc(Eλ).
I now consider the consequence of Eq. (28) on the observed

widths of the resonances, which are usually defined with the
“one-level approximation”. With this approximation, the col-
lision matrix reads (LT)

Uc′c � 
c′

(
δc′c + i

√
�λc′

√
�λc

Eλ − E − i
2

∑
c′′ �λc′′

)

c. (30)

And the observed reduced widths γ obs
λc are defined by [4]

�λc(Eλ) = 2Pc(Eλ)γ obs
λc

2
. (31)

On the other hand, if one inserts Eq. (29) into Eq. (23) and
then takes the one-level approximation, the widths are given
as

�λc(E ) = 2Pc(E )γ 2
λc. (32)

Thus, the formal parameters for the reduced widths of the
present formalism are the same as the observed ones,

γ obs
λc = γλc. (33)

This simple relation should be compared with

γ obs
λc = γ̌λc/

√
1 +

∑
c′

γ̌ 2
λc′S′

λc′ , (34)

where γ̌λc are the formal reduced width parameters in the
conventional R-matrix theory.

I note that the alternate parametrization obtained by Brune
[8] has the same off-diagonal terms of A−1 with Eq. (29).
But the diagonal elements are different, and the values corre-
sponding to Jλλ used in Ref. [8] are 1 instead of those from
Eq. (28). Consequently, Brune’s reduced width parameters
are the same as those of the conventional R-matrix theory,
γ̌λc, which are subject to the nonlinear relation described in
Eq. (34).

IV. 12C +p ELASTIC SCATTERING

To demonstrate the performance of the new R-matrix the-
ory developed here, I developed a simple Mathematica code
[9] which calculates the collision matrices and the differential
cross-sections of nuclear reactions based on Eqs. (26), (28),
(29). Since there is no need for conversions between the

formal and the observed parameters, a substantial simplifica-
tion could be achieved. The code is then applied to describe
12C +p elastic scattering, for which accurate experimental
data are available [10]. For a detailed discussion of the process
in connection with the (conventional) R-matrix theory, see
Ref. [4].

At low energy, this process is dominated by the three low-
lying resonances of 13N: Jπ = 1/2+ at 0.421 MeV, 3/2− at
1.559 MeV, and 5/2+ at 1.604 MeV, where the resonance
energies are the center-of-mass energies of the 12C +p system.
I use the values of the observed parameters given in Ref. [4]
for my formal parameters, which are listed in Table I. There is
little dependence on the channel radius, which was chosen as
ac = 5 fm for calculations.

For two particular center-of-mass angles, θ = 89.1◦ and
146.9◦, the resulting differential cross sections with respect
to the proton energy in the laboratory frame are drawn in
Fig. 1. The figure shows that the code with the newly de-
veloped R-matrix theory reproduces nicely the experimental
data [10].

In Table II, the parameters of the conventional R-matrix
theory are compared with those of the present theory for the
first Jπ = 1/2+ resonance in 12C +p, varying the channel
radius from 4 fm to 7 fm. The observed position and the width
of the resonance are set to ER = 0.42 MeV and �R = 32 keV
[4]. While the E1 of the present theory is the same as the input
value for the observed pole position ER by construction, the
formal parameter E1,formal in the conventional theory has a
strong dependence on the channel radius. The table also shows
that γ 2

1 of the present theory agrees well with γ 2
1,observed in

Ref. [4], which is the intended outcome of this work. The table
also shows that these observed parameters are less dependent
on ac than the formal parameters.

TABLE I. R-matrix parameters for 12C +p elastic scattering with
ac = 5 fm. Eλ are the center-of-mass energies of the 12C +p system.
Eλ and �λc are from Ref. [4], and γλc are the corresponding reduced
width parameters.

Jπ Eλ [MeV] �λc [keV] γ 2
λc [MeV]

1/2+ 0.427 32.5 0.569
3/2− 1.559 51.4 0.0835
5/2+ 1.604 48.1 0.414
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FIG. 1. 12C +p elastic scattering cross-sections (in mb/sr) with respect to the incident proton energy in the laboratory frame for the
center-of-mass angle θ = 89.1◦ (left) and 146.9◦ (right). The experimental data are from Ref. [10] (closed circles).

V. DISCUSSIONS

The conventional R-matrix theory has the problem of hav-
ing formal parameters that are different from the observed
ones, and thus requiring nontrivial conversions between the
two sets of parameters. As discussed in the text, this drawback
is a consequence of requiring orthogonality of the basis states
for the Hilbert space in the internal region of the R-matrix
theory. However, the orthogonality is not a necessary condi-
tion for the basis. By exploiting the additional freedom that
can be achieved when the orthogonality condition is released,
I have developed a new R-matrix theory that has no distinction
between the two sets of parameters.

In this theory, the boundary condition parameters are al-
lowed to be level-dependent and adjusted to make the formal
parameters Eλ identical to the observed pole positions. That
is, I assigned Bλc to the shift factor of channel c at Eλ, see
Eq. (26), which makes the secular equation Eq. (24) vanish
at that energy. Recalling that the observed pole-positions Eobs

λ

are defined to be the zeros of the secular equation, one sees
that the imposed boundary condition leads to Eλ = Eobs

λ .
In addition, there is another freedom in the normalization

of the diagonal elements Jλλ, which correspond to the square
of the norm of the basis states. By selecting the normalization
factor of the basis states as given in Eq. (28), which can be
viewed as a natural extrapolation of the off-diagonal elements,
I could derive the formal reduced width parameters to be the
same as the observed ones as well, γ obs

λc = γλc. As a result,

there are no formal parameters which are different from the
observed ones in the present formalism.

TABLE II. R-matrix parameters for the first 1/2+ resonance
(ER = 0.42 MeV and �R = 32 keV) in 12C +p elastic scattering (in
MeV). The parameters of the conventional R-matrix theory are from
Table 10 of Ref. [4].

ac [fm] 4 5 6 7

γ 2
1,observed (Ref. [4]) 1.089 0.592 0.353 0.227

γ 2
1,formal (Ref. [4]) 3.083 1.157 0.569 0.323

γ 2
1 (this work) 1.087 0.591 0.353 0.226

E1,formal(Ref. [4]) −2.152 −0.614 −0.110 0.113
E1 (this work) 0.42 0.42 0.42 0.42

As a demonstration, I tested a computation code based on
the developed R-matrix theory, where the trial case was the
elastic scattering of protons on 12C. The code required only
the resonance data as input and did not invoke any transfor-
mations of parameters. The code was able to reproduce the
experimental differential cross sections quite well.
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