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Statistical tools for a better optical model
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Background: Modern statistical tools provide the ability to compare the information content of observables and
provide a path to explore which experiments would be most useful to give insight into and constrain theoretical
models.
Purpose: In this work we study three such tools in the context of nuclear reactions with the goal of constraining
the optical potential.
Method: The three statistical tools examined are (i) the principal component analysis, (ii) the sensitivity analysis
based on derivatives, and (iii) the Bayesian evidence. We first apply these tools to a toy-model case, comparing
the form of the imaginary part of the optical potential. Then we consider two different reaction observables,
elastic angular distributions and polarization data for reactions on 48Ca and 208Pb at two different beam energies.
Results: For the toy-model case, we find significant discrimination power in the sensitivities and the Bayesian
evidence, showing clearly that the volume imaginary term is more useful to describe scattering at higher
energies. When comparing between elastic cross sections and polarization data using realistic optical models,
sensitivity studies indicate that both observables are roughly equally sensitive but the variability of the optical
model parameters is strongly angle dependent. The Bayesian evidence shows some variability between the two
observables, but the Bayes factor obtained is not sufficient to discriminate between angular distributions and
polarization.
Conclusions: From the cases considered, we conclude that, in general, elastic scattering angular distributions
have similar impact in constraining the optical potential parameters compared with the polarization data. The
angular ranges for the optimum experimental constraints can vary significantly with the observable considered.
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I. INTRODUCTION

Nuclear reactions offer an incredibly versatile probe into
nuclear structure, nuclear astrophysics, and nuclear applica-
tions beneficial to society and are particularly important in
the context of rare isotopes [1]. One of the most important
ingredients in predicting observables for nuclear reactions
is the optical potential. The optical potential is an effective
interaction between two composite nuclei that incorporates
the complexity of the many-body problem into a multicompo-
nent multiparameter complex form. The imaginary part of the
optical potential accounts for all the processes that can take
flux away from the incident elastic channel into other channels
not included in the simplified model. In this work, we focus
on nucleon optical potentials, between either a proton or a
neutron and a target nucleus (UNA). Because of its effective
nature, the nucleon optical potential depends on the mass and
charge of the target (A, Z), and the energy of the beam (Eb).

While there are many efforts to derive the optical poten-
tial starting from the NN interaction (see, e.g., Refs. [2–5]),
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for practical purposes, when computing reactions observables
for A > 20, phenomenological optical potentials are typically
used [6–8]. These are obtained from fitting primarily elastic-
scattering data, although other observables such as analyzing
powers and total cross sections are sometimes also included
in the fitting protocol.

Over the last few years, there has been substantial progress
on quantifying uncertainties in nuclear reactions [9–11]. We
have implemented and applied the Bayesian Markov chain
Monte Carlo method (MCMC) to a variety of reactions [9].
In Ref. [10], we compared the results obtained using the
Bayesian approach to the standard χ2-minimization tech-
niques widely used in the field. Note that χ2 minimization
does not in itself provide any uncertainty, but it is common
to assume a normal distribution and extract confidence bands
from the χ2 function around the minimum. What we showed
in Ref. [10] is that the uncertainties extracted in this manner
were much smaller than those obtained using the Bayesian
approach. When we confronted these uncertainties with the
data, the empirical coverage demonstrated that, for high confi-
dence, the χ2-minimization technique largely underestimates
the uncertainties, while the Bayesian approach provides an
accurate account. These differences could be tracked back to
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the wrong assumption in the χ2-minimization technique of
a Gaussian distribution for the parameters. In addition, when
inspecting the correlation between parameters, the χ2 mini-
mization introduces many types of correlations, while in the
Bayesian approach, only a couple of parameters were found
to correlate strongly. As we argue in Ref. [10], due to the grid
searches in the standard χ2 minimization, correlations were
enhanced as compared with those obtained in the Bayesian
MCMC framework. With these conclusions in mind, we have
continued the work on uncertainty quantification using exclu-
sively Bayesian statistics.

In a recent work [11], we looked into ways to reduce the
uncertainty from the optical potential by diversifying the data
sets or by choosing data with optimum information content.
Namely, we investigated which parts of the angular distribu-
tion matter for constraining the cross sections, and whether
data at nearby energies adds further restrictions on the param-
eters. We have also investigated the possibility of including
polarization data through iT11. To diagnose whether includ-
ing different sets of data mattered, we compared directly the
widths of the 95% confidence intervals. However, comparing
directly two confidence intervals obtained from constraints
using two different sets of data has serious ambiguities: what
is the appropriate confidence level to make this comparison?
and at what angle should the conclusion be drawn? Ultimately
we would like to be able to establish without ambiguity which
data set (or sets) contain maximum information, resulting in
minimum uncertainty. For that, we turn to a wider set of
diagnostic tools.

Borrowing from statistical methods applied in many other
fields, in this work we inspect three different approaches:
(i) the principal component analysis that can help to iden-
tify whether there is a combination of observables that can
simplify the problem, (ii) a sensitivity analysis based on
derivatives of the optical potential parameters with respect to
observables, and (iii) the Bayesian evidence that integrates the
likelihood over the model space to quantify the information
content of a given observable.

These statistical methods are not new; they have been
widely applied to other fields and in the last few years have
been ported into the nuclear domain. Sensitivity studies con-
tinue to provide insight into which parameters have the largest
impact on the observables considered (see Refs. [12–14] for
recent applications to nuclear structure). The principal com-
ponent analysis, coming from the diagonalization of the sen-
sitivity matrix, identifies the best combinations of parameters
or observables that should be considered to reduce the dimen-
sionality of the model space. It is often used to construct em-
ulators (see, e.g., Refs. [15–17]). Finally, the Bayesian factor,
the ratio of the evidence associated with two models, provides
an implementation of Occam’s razor: the simplest theory
compatible with data should be used [18]. It is also used
to discriminate between the information content of different
data. Although calculating the Bayesian evidence is numeri-
cally challenging, there are already examples of applications
to effective field theory [19] and to nuclear structure [14].

This paper is organized in the following manner: In Sec. II
we introduce the three statistical tools. Section III focuses
on a simple toy model to illustrate these same tools. This

is followed by the application of these tools to compare the
information contained in elastic angular distributions and po-
larization data (Sec. IV). Finally, conclusions are drawn in
Sec. V.

II. STATISTICAL METHODS

In this section, we briefly describe three diagnostic tools to
quantify the information content of a given set of scattering
data.

A. Principal component analysis

The optical potential imprints itself on many reaction ob-
servables. As such we can consider a principal component
analysis (PCA) on observable space. Parameter space is ran-
domly sampled N times, generating a parameter set xi for each
run used to calculate a set of observables yi. The parameters
and observable data are standardized (i.e., mean-centered with
a standard deviation of 1). We denote the standardized param-
eters and observables as x̄ and ȳ, respectively. The observable
covariance matrix C is then calculated as

Cab = 1

N − 1
ȳT

a ȳb. (1)

The principal components of observable space (eb) are the
eigenvectors of C. The eigenvalues λb corresponding to the
eigenvectors eb can be used to organize the principal compo-
nents. A larger value of λb means that a larger percentage of
the variance in the data is captured by the corresponding eb. To
visualize the composition of the eigenvectors eb, we construct
the weight matrix

Wab = |ŷa · eb|, (2)

where ŷa is the ath unit vector in the observable space basis.
Each column in W is normalized to unity:√∑

i

W2
i j = 1. (3)

We can then assign a weight wa to an observable ya:

wa =
∑

b

λb|Wab|. (4)

This weight serves as a measure of the importance of the
observable across the various principal components and it is
often used to identify the most impactful observables.

B. Sensitivity study with derivatives

Looking at the impact of variations of the observables
on the parameters can help determine which optical model
parameters are most sensitive to changes in specific observ-
ables, and therefore which observables are most important
for constraining the optical model. A simple approach is to
consider directly the covariance C̃ia of an observable ȳa and a
parameter x̄i:

Cia = 1

N − 1
x̄T

i ȳa. (5)
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We note that Cia relates to the observable covariance matrix
through [16]

C̃ia =
∑

b

〈
∂ x̄i

∂ ȳb

〉
Cba. (6)

This relation can be inverted to provide the sensitivity:〈
∂ x̄i

∂ ȳa

〉
= C̃ibC

−1
ba , (7)

which quantifies the variation in parameter xi caused by a
variation in the observable ya.

C. Bayesian evidence

As opposed to the frequentist tools based on covariance
matrices, Bayesian statistics is based on probability distribu-
tions. For some hypothesis H , data d , and model,M, Bayes’
theorem is expressed as

p(H |d,M) = p(d|H,M)p(H |M)

p(d|M)
, (8)

which states that the posterior probability for the hypothe-
sis p(H |d,M), taking the data and some assumptions about
the model into account, is equal to the likelihood function,
p(d|H,M) (the sampling distribution of the data assuming
the hypothesis is correct), times the prior probability, p(H |M)
(the physical knowledge of the model without any external
information) divided by the Bayesian evidence p(d|M).

While in previous works we have focused on evaluating
the posterior distributions of parameters and subsequent con-
fidence intervals of observables, in this work, we focus on
the Bayesian evidence. This normalization factor provides a
quantification of the information content of a given set of data.
For a given model M with a certain number of parameters α,
the Bayesian evidence is the integral of the likelihood function
times the prior distribution over the entire parameter space:

p(d|M) =
∫

�M
p(d|α,M)p(α|M)dαM. (9)

The explicit calculation of this integral is difficult and com-
putationally demanding because it involves multidimensional
integration over all parameters. While the likelihood function
might be sharply peaked within the prior range, long tails in
the distributions can provide significant contributions to the
evidence integral.

In some applications, the Bayesian evidence integral is
approximated analytically (e.g., [19]). This approximation is
valid when the likelihood function is unimodal and the cor-
responding parameters are Gaussian. However, in our case,
these conditions are not met (see, for example, Figs. 1 and
2 in Sec. III). Therefore, to obtain the Bayesian evidence for
the optical model, we use the Monte Carlo approximation to
sample full space [20]. Then the integral in Eq. (9) becomes

p
(
d̂|M) = 1

N

N∑
αi=1

p(d|αi,M), (10)

where N parameter sets αi are drawn randomly from the prior
distribution. In practice, when sampling from a prior distribu-

FIG. 1. 48Ca(p, p) at 9 MeV parameter posterior distributions:
surface model (orange) and volume model (blue).

tion, it is also important to ensure that the sampled parameters
are within the physical region of parameter space. In our ap-
plication, this means that the optical model parameters should
be positive.

FIG. 2. 48Ca(p, p) at 65 MeV parameter posterior distributions:
surface model (orange) and volume model (blue).
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(a) (b)

FIG. 3. Angular distribution 95% confidence intervals for dσ

d�
for 48Ca(p, p) at (a) 9 MeV and (b) 65 MeV: surface model (orange) and

volume model (blue). Mock data generated with Ref. [8] (black circles).

III. TOY MODEL

We have conceived a simple case study to illustrate the
capabilities of the statistical tools discussed in Sec. II. From
decades of phenomenology, it is standard to parametrize the
imaginary component of the optical potential with a volume
term (Woods-Saxon shape parametrized with Wv, rw, aw for
the depth, radius, and diffuseness) and a surface term (deriva-
tive of a Woods-Saxon shape parametrized with Ws, rs, as).
When using these two components in fits, studies have found
that the relative importance of these two components depends
strongly on the incident energy of the projectile: at higher
energies it is typically the volume term that dominates. We
use this known feature to set up our toy models. We consider
proton elastic scattering on 48Ca at Elab = 9 MeV and 65
MeV within two extreme optical-models: the surface model
that includes only the surface term Ws (while setting Wv = 0)
and the volume model that includes only the volume term
Wv (while setting Ws = 0). We use mock data generated from
the global optical potential [8] at the appropriate energy and
include a 10% error, similarly to what was done in Ref. [11].
For calibration, we perform the MCMC simulation with 1600
pulls, allowing in each case six parameters to vary. The pa-
rameters for the surface model are V, r, a for the real part
and Ws, rs, as for the imaginary, and the parameters for the
volume model are V, r, a for the real part and Wv, rw, aw for
the imaginary term. The parameters for the spin-orbit term
and the Coulomb force were kept fixed and set to the values
in Ref. [8]. In addition, wide Gaussian priors, centered at
the values of Ref. [6], are used as in previous work [11],
which ensures that the process is data driven. Calculations are
performed with the suite of codes QUILTR [21] (more details
on the MCMC calculations can be found in Ref. [9]).

Figures 1 and 2 display the parameter posterior distribu-
tions for the surface model (orange) and the volume model
(blue) for 48Ca at Elab = 9 MeV and 65 MeV, respectively. It is
immediately obvious that changing the shape of the imaginary
term affects the real part of the interaction: while the mean of
the priors for V, r, a are the same in both calculations, there
are large shifts in the peaks of the posterior distributions for
these parameters. This is nothing new to the field: the system
finds a different minimum depending on the shape of the
imaginary term. The posteriors of the imaginary parameters
can also have significantly different widths. For example, for

65 MeV, both Ws and rs have very broad distributions com-
pared with their counterparts Wv and rw, while the distribution
for as is narrower than that for aw. From these distributions
alone it is not possible to decide which model would be more
appropriate to describe each reaction.

One might next consider the observable itself. Figure 3(a)
and 3(b) contain the 95% confidence intervals for the angular
distributions of 48Ca(p, p) at 9 MeV and 65 MeV, respec-
tively, using either the surface model (orange) or the volume
model (blue). For the 9 MeV reaction, the confidence intervals
for the surface and the volume model are roughly the same
throughout the angular range. A close inspection of the widths
of the confidence intervals at 65 MeV show that at forward
angles (within the first couple of diffraction peaks) the volume
model provides a narrower uncertainty compared with the
surface one, while at backward angles the confidence intervals
for the volume model are slightly wider than those generated
with the surface model. Still, we are left not knowing which
model is best to describe the data.

We next consider the weights wa generated from the prin-
cipal component analysis as described in Sec. II. Pulling from
the posterior distributions, we construct the observable dσ

d�

covariance matrix for specific angles, which is subsequently
diagonalized to obtain the principal components of observ-
able space and the respective weights as described in Sec. II.
Plotted in Fig. 4 are the weights corresponding to the surface
model (orange) and the volume model (blue), for 48Ca(p, p) at
65 MeV, at three different angles corresponding to the forward
direction, the first peak of the angular distribution, and the
backward direction. In both models, all components are of
roughly equal weight and no principal component pops out in

FIG. 4. Principal component analysis for 48Ca(p, p) at 65 MeV
using dσ

d�
data. Shown are the weights wa obtained for three different

scattering angles (a) for the surface model and (b) for the volume
model.
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FIG. 5. Parameter sensitivities for 48Ca(p, p): (a) surface model
at 9 MeV, (b) surface model at 65 MeV, (c) volume model at 9 MeV,
and (d) volume model at 65 MeV.

the analysis. The same result is obtained if a fine discretization
is included over the whole angular range. For all our applica-
tions for the elastic angular distributions and other reaction
observables, the weights resulting from the observable PCA
are approximate equal. This makes PCA less useful in re-
ducing the dimensionality of the observable space. For this
reason we do not include PCA in the applications discussion
in Sec. IV.

More interesting are the sensitivities 〈 ∂ x̄i
∂ ȳa

〉 introduced in
Sec. II. As for the PCAs, the sets of parameters are drawn
from the posterior distributions (Figs. 1 and 2) and the respec-
tive covariance matrices are then computed as described in
Sec. II. The average, 〈 dx̄i

dȳa
〉, is obtained for the elastic angular

distributions for angles in the range θ = 20◦–165◦ in intervals
of 5◦.

Figures 5(a) and 5(b) contain the results for these sensi-
tivities using the surface model and using the volume model
in Figs. 5(c) and 5(d). Along the x axis are the various
angular bins and along the y axis are the optical potential
parameters considered in the Bayesian MCMC. The darker
reds and darker blues correspond to large positive and large
negative sensitivities, respectively. Results for the reaction at
9 MeV show that in the surface model, it is mostly Ws that
is constrained by the data, although there is still significant
sensitivity to as. At higher energies, the imaginary term is no
longer constrained in the surface model, only the real depth
becomes sensitive. On the contrary, for the volume model at 9
MeV, the angular distribution using the volume model is not
able to constrain the imaginary depth and is mostly sensitive
to the imaginary diffuseness. Depending on the model, one
might also make different choices for which angles to measure
in the angular distribution.

Our final tool in the tool set is the Bayesian evidence and
Bayes factor for model selection [22]. As defined in Sec. II,
the Bayesian evidence provides a direct measure of the infor-

TABLE I. Bayesian evidence (multiplied by 10−3) for the surface
model (second row) and the volume model (third row) for both
beam energies considered (first row). The ratio between the Bayesian
evidence of the volume model over that with the surface model is in
the fourth row (the Bayes’ factor).

Energy 9 MeV 65 MeV

Evidence (surface) 1.06 0.02
Evidence (volume) 0.65 0.13
Bayes’ factor 0.6 6.9

mation content of a given model in light of a set of data. It
serves as a tool to compare different models. As mentioned
earlier, our problem is not amenable to an analytic treatment
of the evidence integral thus it is very important to collect
enough statistics to ensure convergence of the integral. We
have studied the convergence of the evidence with the number
of pulls and find that very large statistics need to be collected.
The numbers presented in Table I correspond to 1 500 000
pulls from a Gaussian distribution 20% wide, that still ensures
that the parameters do not become negative, so they can be
restricted to the physical region. The Bayesian evidence for
the surface model is larger than that for the volume model for
the reaction at 9 MeV, as one might expect. In contrast, the
Bayesian evidence for the volume model is larger than that
for the surface model at 65 MeV and clearly indicates that the
volume model will contain more information than the surface
model at this energy.

Overall, we find varying success between the statistical
methods investigated in this toy problem. The differences in
the Bayesian parameter posterior distributions and observable
confidence intervals along with the principal component anal-
ysis do little to discriminate between the surface and volume
models considered. On the other hand, we see that the param-
eter sensitivities and the Bayesian evidence have significant
power in discriminating between the two models. These tools
will now be applied to realistic cases.

IV. COMPARING ELASTIC ANGULAR DISTRIBUTIONS
WITH POLARIZATION DATA

We now use the tools introduced above to explore the
information content of two types of reaction observables. In
this field it is generally easier to measure the elastic angular
distributions than polarization data. However, one might ask
whether polarization data are best to constrain the optical
model. In this context, we have studied 48Ca(n, n) at 12 MeV
and 48Ca(p, p) at 12 MeV and 21 MeV and illustrate in this
section the usefulness of using sensitivities and evidence in
the analysis of these reactions.

As before, in this section we use mock data generated
from the global optical potential [8] including a 10% error,
following Ref. [11] (see Sec. IV D for a comparison with real
data). For the polarization data, we introduced a lower limit
for the error, determined by 5% of the maximum iT11 value.
We initialized the optical potential parameters using the global
optical model [6] and use wide Gaussian priors as before.
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TABLE II. Characteristics of the posteriors for the two 48Ca(p, p) elastic observables considered; the second column is the beam energy;
the next three columns provide the means (standard deviations) for the depth, radius, and diffuseness of the real part of the optical potential; the
last three columns provide the means (standard deviations) for the depth, radius, and diffuseness of the imaginary surface terms of the optical
potential.

Observable E (MeV) V (MeV) r (fm) a (fm) Ws (MeV) rs (fm) as (fm)

dσ
d�

12.0 59.48 (4.12) 1.173 (0.052) 0.699 (0.051) 9.476 (0.960) 1.294 (0.084) 0.571 (0.049)
iT11 12.0 60.65 (5.22) 1.159 (0.057) 0.699 (0.067) 9.704 (0.954) 1.273 (0.079) 0.595 (0.080)
dσ
d�

21.0 55.57 (4.11) 1.178 (0.052) 0.661 (0.057) 7.857 (0.767) 1.297 (0.083) 0.572 (0.051)
iT11 21.0 57.16 (4.44) 1.165 (0.047) 0.691 (0.046) 8.011 (1.007) 1.260 (0.073) 0.579 (0.076)

Next, we inspect the parameter posterior distributions.
Instead of showing the full posterior distributions, we sum-
marize in Table I the means and standard deviations for the
six parameters when considering 48Ca(p, p) at 12 MeV and
21 MeV. We show the results when using either dσ

d�
data or

iT11 data in the optimization procedure. We find that the dis-
tributions are mostly overlapping, indicating that the angular
distributions and the polarization data lead to very similar
minima in parameter space. Some posteriors present a semibi-
modal structure or extended tails. This is reflected in slight
differences in the means and standard deviations shown in
Table II. Ultimately, both sets of data lead to an identical
likelihood function and therefore a similar goodness of fit.

A. Confidence intervals resulting from the fit

In Fig. 6, we show the 95% confidence intervals for elastic
angular distributions (top) and the polarization distributions
(bottom) obtained when either the elastic angular distribu-
tion data are used (orange interval) or the polarization data
are used (blue interval). Figures 6(a) and 6(c) correspond to
48Ca(p, p) at 12 MeV while Figs. 6(b) and 6(d) correspond
to 48Ca(p, p) at 21 MeV. Expectedly, confidence intervals
are narrower for the elastic angular distribution when elas-
tic angular distribution data are used. The same principal is
true when polarization data are used: confidence intervals are
narrower for iT11. However, these results alone do not provide

(a) (b)

(c) (d)

FIG. 6. 95% confidence intervals calculated using dσ

d�
data (orange intervals) or iT11 data (blue intervals) in the optimization procedure: (a)

dσ/d� for 48Ca(p, p) at 12 MeV; (b) dσ/d� for 48Ca(p, p) at 21 MeV; (c) iT11 for 48Ca(p, p) at 12 MeV; (d) iT11 for 48Ca(p, p) at 21 MeV.
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FIG. 7. Sensitivity matrix for dσ

d�
data and iT11 data: (a)

48Ca(n, n) at 12 MeV; (b) 48Ca(p, p) at 12 MeV, and (c) 48Ca(p, p)
at 21 MeV. More details can be found in the text.

sufficient basis to establish which data set contains more in-
formation and provide a better constraint on the optical model.
These conclusions are also true for 48Ca(n, n) at 12 MeV (not
shown).

B. Sensitivity study with derivatives

We next consider the sensitivities to understand which ob-
servables lead to the largest variation in the parameters. These
sensitivities are drawn from the posteriors obtained using both
the angular distribution and polarization data as constraints in
the MCMC. Figure 7 displays the sensitivities for 48Ca(n, n)
at 12 MeV [Fig. 7(a)]; 48Ca(p, p) at 12 MeV [Fig. 7(b)], and
48Ca(p, p) at 21 MeV [Fig. 7(c)]. Comparing the sensitivity
of the angular distributions (Fig. 7, left) with the sensitivity of
the polarization data (Fig. 7, right), it is only for 48Ca(p, p) at
12 MeV that there is an indication that the polarization data
offers a better constraint.

For the other cases the most notable feature is that the most
sensitivity occurs at different angles. We can also compare
the sensitivities for 48Ca(n, n) and 48Ca(p, p) at 12 MeV: our
results suggest that neutrons offer a better constraint on the
optical potential parameters at these energies, specifically for
the imaginary term. At 12 MeV, the sensitivity of either ob-
servable to the real part is weak. At 21 MeV, the sensitivity of
the parameters to 48Ca(p, p) increases significantly, particu-
larly at forward angles for dσ

d�
and θ ≈ 100 degrees for iT11. At

this higher energy, we find that both observables are capable
of constraining the parameters of the real part of the optical
potential, in addition to the imaginary term. These quantitative
results are consistent with the common understanding in the
field.

Although we do not include details, we did perform a
similar analysis for 208Pb(n, n) at 30 MeV, 208Pb(p, p) at
30 MeV, and 208Pb(p, p) at 61 MeV. The results obtained
for the sensitivities for these reactions also show variability
with beam energy: there are larger sensitivities to the elastic
angular distributions for 208Pb(p, p) at 30 MeV (mostly on Ws

and as) compared with the polarization data. For 208Pb(p, p)
at 61 MeV, the opposite is true.

TABLE III. Bayesian evidence (multiplied by 10−3) for the dif-
ferent reactions considered: using only cross section data (second
column), using only polarization data (third column), and the ratio
between the Bayesian evidence using polarization data over that with
cross section data (the Bayes’ factor).

Reaction p̄(dσ/d�|M) p̄(iT11|M) R

48Ca(n, n) at 12 MeV 0.833 0.905 1.09
48Ca(p, p) at 12 MeV 1.039 1.208 1.16
48Ca(p, p) at 21 MeV 1.207 0.602 0.50
208Pb(n, n) at 30 MeV 0.132 0.052 0.39
208Pb(p, p) at 30 MeV 1.437 0.403 0.28
208Pb(p, p) at 61 MeV 0.051 0.073 1.44

C. Bayesian evidence and Bayes factor

Finally, we consider directly the Bayesian evidence to
contrast the information content of cross section angular dis-
tribution data and polarization data within our model. N =
1 500 000 is used to compute the evidence p̄(d|M), including
the whole angular range shown in Fig. 6, for all cases. The
results are provided in Table III: the evidence obtained for
cross section data (column 2) can be easily compared with
that obtained for the polarization data (column 3). The Bayes’
factor, defined as the ratio R = p̄(iT11|M)/p̄(dσ/d�|M) of
the two evidences, is shown in the last column. Although we
did not show the details of the calibrations for the reactions
on 208Pb, we include in the table the results for the evidence
obtained for 208Pb(n, n) at 30 MeV, 208Pb(p, p) at 30 MeV,
and 208Pb(p, p) at 61 MeV using the same setup at was used
for the 48Ca reactions.

For each reaction considered, the evidence for dσ/d� data
and for iT11 data are of the same order of magnitude. We
can also compare evidences for the same reaction at different
energies. Clearly, in the context of this optical model, the
cross section distribution for 48Ca(p, p) at 12 MeV has less
information than 48Ca(p, p) at 21 MeV and the cross section
distribution for 208Pb(p, p) at 30 MeV has more information
than 208Pb(p, p) at 61 MeV. Although beyond the scope of
this work, a study including a wider range of target nuclei and
beam energies is necessary to understand systematic trends.

We should highlight that the evidence is essentially a very
different measure than the ∂ x̄i

∂ ȳa
. The sensitivities in this work

were obtained from averages over the posterior distributions
and therefore show the rate of change in the region of param-
eter space defined by the posterior distributions. The evidence
is an integral over the full parameter space, weighted by the
likelihood. Longer tails in the likelihood result in larger evi-
dence. Larger information content as measured in the model
evidence does not necessarily translate to tighter constraints
on the parameters themselves. Both tools should be used in
concert.

D. Comparing real data with mock data

All results presented so far involve mock data. The choice
for mock data in this work is based on the control it pro-
vides: we can produce data at any energy, simultaneously
have elastic angular distributions and polarization data across
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(b)

(a)

FIG. 8. 48Ca(p,p) at 14 MeV 95% confidence intervals calculated
using dσ

d�
data (orange bands) or iT11 data (blue bands) in the opti-

mization procedure: (a) dσ/d� and (b) iT11. Data from Ref. [23].

the whole angular range. However, one might be concerned
that results with mock data do not represent the real world.
It is understood that the parametrization in [8] cannot exactly
reproduce elastic scattering data for a given case. Our point
here is that [8] is close enough to reality to provide a good
illustration for these new statistical tools.

We therefore pick an example to demonstrate that real
data and mock data can lead to qualitatively similar results.
For more detail in the comparison of mock and real data see
Ref. [24]. We found data close to 48Ca(p,p) at 12 MeV, corre-
sponding to a reaction with protons at 14 MeV [23]. In Fig. 8
we show the angular distribution of the cross section and the
polarization for protons on 48Ca at 14 MeV and verify these
are very similar to those shown in Fig. 6 for the corresponding
reaction at 12 MeV. As before, the orange bands (blue bands)
correspond to the 95% confidence intervals when the elastic
cross section data (polarization data) are used in the fit. As in
the case for mock data, here we also find that the uncertainty
in the elastic angular distribution is smaller when dσ/d� data
are used. Conversely, the uncertainty in the iT11 distribution is
smaller when polarization data are used.

It should not be understood from this comparison that
mock data can replace real data. Although qualitatively

similar, there are significant quantitative differences in the
posterior distributions obtained with mock data compared
with real data. Thus, in a practical application of these tools,
one should always use real data in the statistical analysis.

V. CONCLUSIONS

In this work we have explored three statistical tools in
the context of nuclear scattering that allow us to go beyond
uncertainty quantification toward understanding sensitivities
of the parameters and information content of reaction ob-
servables. We consider the principal component analysis in
observable space, the parameter to observable sensitivities and
the Bayesian evidence. To introduce these tools, we construct
two limiting toy models, an optical model just with surface
absorption and an optical model just with volume absorption.
We perform standard MCMC calculations varying six optical
model parameters and constrain each model with the angular
distributions for elastic scattering. We obtain the Bayesian
parameter posteriors distributions and the associated confi-
dence intervals for the angular distributions. We then apply the
statistical tools and find that both sensitivities and Bayesian
evidence provide important insights in discriminating between
models.

Next we repeat this process for realistic cases and using
either dσ

d�
or iT11 to constrain the optical parameters. We study

48Ca(n, n) at 12 MeV, 48Ca(p, p) at 12 MeV, and 48Ca(p, p)
at 21 MeV. Neither the confidence intervals nor the parameter
posterior distributions help in determining which observable
is best to constrain the optical model parameters. We also did
not find the principal component analysis defined in terms of
angles to be useful since it produced roughly equal weights
for all components.

In contrast, sensitivities provided important insights. For
most examples studied, dσ

d�
and iT11 are sensitive to the same

parameters, and to the same degree. However, they provide
constraints in different angular regions. The exception being
the reaction 48Ca(p, p) at 12 MeV, for which the differen-
tial cross sections offer less sensitivity than the polarization
data.

Finally, we also computed the Bayesian evidence for each
reaction. The integral over the parameter space had to be
performed fully numerically, as the assumptions of Gaus-
sian distributions for the analytic approximations were not
valid. We found that, in order to get converged values for
the evidence, a much larger number of draws was necessary
as compared with the statistics collected for the parameter
posteriors and confidence intervals. We compared the values
of the evidence, averaged over angle, obtained when the cross-
section angular distribution was used as a constraint with
those when using the polarization data. While Bayes’ factor
(the ratio of the evidence using iT11 over that using dσ

d�
) shows

some variability, for most reactions studied it is of order one
and therefore not significant. From our results, we conclude
that, within our optical model, the information content of the
differential cross sections and the polarization data is roughly
the same.

The data we included (dσ/d� and iT11) are both associated
with the same elastic scattering channel. Future plans include
the application of these tools to situations where we scruti-
nize between data that are more dissimilar, such as elastic
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scattering and charge exchange, knockout or breakup. One
essential ingredient for these advances is the speed-up in
computations. In this regard, recent work on emulators (see,
e.g., Refs. [25,26]) holds much promise.
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