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Optimizing multilayer Bayesian neural networks for evaluation of fission yields
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Bayesian machine learning is a promising tool for the evaluation of nuclear fission data but its potential
capability has not been fully realized. We attempt to optimize the performances of the multilayer Bayesian
neural networks for evaluations of fission yields. The influences of adjustments of learning data, activation
functions, and network structures have been studied. In particular, negative values of net functions have been
penalized to avoid nonphysical inferences of fission yields. Presently the network with double hidden layers has
optimal performances compared to the single-layer or deeper networks. These studies are essential for further
developments of precise evaluation methods.
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I. INTRODUCTION

Nuclear data evaluation is a crucial process that connects
nuclear data, nuclear modelings, and nuclear applications. In
particular, nuclear fission data is the key ingredient in many
nuclear applications [1]. For example, high-precision and
reliable neutron-induced fission product yield (FPY) distribu-
tions of actinides are very valuable. However, experimental
measurements of FPY with continuous incident neutron ener-
gies are extremely difficult and insufficient. In major nuclear
data libraries (ENDF [2], JENDL [3], JEFF [4], CENDL
[5], etc.), complete evaluations of FPY are only available for
neutron incident energies around thermal energies, 0.5 MeV
and 14 MeV. There are some incomplete experimental FPY at
other energies with large uncertainties. On the other hand, a
predictive theoretical description of fission observables is still
very challenging [6]. There are various fission models that
have different advantages and applicabilities [7–13]. Micro-
scopic fission models are promising but are not ready yet for
accurate quantitative applications. Therefore, the prediction
and evaluation of energy-dependent FPY for fast reactors are
very anticipated.

Machine learning is a very powerful tool for learning and
inference from complex big data. In recent years, machine
learning has attracted great interest in various physics disci-
plines. Recently, it was shown that Bayesian neural network
(BNN) can be used for evaluations of incomplete fission
yields with uncertainty quantifications [14]. Machine learning
has been used in nuclear physics with increasing interests
[15], such as the extrapolation of nuclear masses [16–18],
fission yields [14,19], various nuclear structures [20–25],
and reaction observables [26–28]. Machine learning has also
been widely applied in other physics subjects, such as the
constraints of equation of state of neutron stars from gravita-
tional wave signals [29] and for facilitating the lattice QCD
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calculations [30]. Conventionally, the evaluation of fission
yields is based on the least-squares adjustments of parameters
of various phenomenological models [31], such as the Brosa
model and the GEF model [32,33]. These evaluations could
not be applicable when very few experimental data points are
available. Machine learning is promising for developing new
evaluation methods of nuclear data, regarding the handling of
various correlated fission observables with large discrepancies
and uncertainties.

Previously we have demonstrated that BNN can be used
for evaluation of incomplete fission mass yields [14] and
fission charge yields [34]. In this work, we aim to improve
the performances of multilayer Bayesian neural networks for
precise evaluations of fission yields. The potential capability
of BNN evaluation has not been fully realized. In principle,
the BNN approach can be optimized for specific applications.
For example, the learning performance and overfitting are
two competing issues in machine learning. With more layers
and neurons in the network, its learning performance in-
creases while overfitting issues also appear, which undermines
its predictive capability. Therefore, more studies about the
sensitivity of configurations of neural networks are needed.
Recently, the physics-informed machine learning is a hot topic
[35–38], which could be very useful for nuclear physics when
available observational data are not sufficient. The physics-
informed machine learning can be implemented through the
physics-informed prior [35], or physics-constrained cost func-
tion [36], or physics-augmented input variables [18,34], or
physics-inspired network architectures [38]. Previously we
reported that BNN can result in unphysical negative values
of fission yields [14]. It is interesting to build physics con-
straints into BNN to avoid negative yields. In this work, we
plan to study the influences of adjustments of learning data,
the choice of activation functions, the structure of multilayer
networks, and the penalty of negative values to constrain the
fission yields. Finally, as an example, we demonstrate that
BNN is used for precise evaluations of fission mass yields
of 239U .
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FIG. 1. The BNN learning performances are shown for neutron-
induced fission yields of 235U at 0.5 and 14 MeV, respectively. The
results obtained by learning the original fission data or the adjusted
data are compared. The adjustment of data denotes a linear transfor-
mation so that the ranges of data values are within (−0.9, 0.90). The
learning target is taken from the evaluated data of JENDL [3].

II. THEORETICAL FRAMEWORK

The BNN approach [39] to statistical regression inference
is based on Bayes’ theorem, which provides a connection
between a given hypothesis(in terms of problem-specific be-
liefs for a set of parameters) and a set of data to a posterior
probability that is used to make predictions on new inputs. The
BNN approach adopts probability distributions as connection
weights and is naturally suitable for uncertainty quantifica-
tions, in contrast to standard neural networks, which optimize
definite values for connection weights. The basic BNN is
written as,

p(ω|x, t ) = p(x, t |ω)p(ω)

p(x, t )
, (1)

where ω denotes the network parameters, including network
weights and bias; p(x, t | ω) is the likelihood that a given
model describes the data, and p(ω) is the prior distribution of
the parameters ω; x and t are input and output data; p(ω | x, t )
is the posterior distribution, i.e., the probability distribution
of parameters ω after considering the data (x, t ); p(x, t ) is a
normalization factor, which ensures the integral of posterior
distribution is one.

We adopt a Gaussian distribution for the likelihood based
on a cost function, which is written as

p(x, t | ω) = exp(−χ2/2), (2)

where the cost function χ2(ω) reads:

χ2(ω) =
N∑

i=1

(
ti − f (xi, ω)

�ti

)2

, (3)

Here N is the number of data points, and �ti is the associated
noise scale, which is related to specific observables. The net
function f (xi, ω) depends on the input data xi and the model
parameters ω. In this work, the inputs of the network are
given by xi = {A f i, Zi, Ai, Ei}, which include the mass number
A f i of the fission fragments, the charge number Zi and mass
number Ai of the fission nuclei, and the excitation energy of
the compound nucleus Ei = ei + Si (ei and Si are incident
neutron energy and neutron separation energy, respectively); ti
are the fission mass yields. For the evaluation of fission yields,
it is crucial to learn the yields individually and it is difficult
to learn complete distributions as a target. Fortunately, the
normalization of fission yields is kept within an uncertainty
of 2%.

The posterior distributions are obtained by learning the
given data. With new data xn, we make predictions by integrat-
ing the neural network over the posterior probability density
of the network parameters ω,

〈 fn〉 =
∫

f (xn, ω)p(ω | x, t )dω. (4)

The high-dimensional integral in Eq. (4) is approximated by
Monte Carlo integration in which the posterior probability
p(ω | x, t) is sampled using the Markov chain Monte Carlo
method [39].

In BNN we need to specify the form of the functions
f (x, ω) and p(ω). In this work, we use a feed-forward neural
network model defined the function f (x, ω). That is

f (x, ω) = a +
H∑

j=1

b j tanh

(
c j +

I∑
i=1

d jixi

)
, (5)

where H is the number of neurons in the hidden layer, I
denotes the number of input variables, and ω = {a, bj, c j, d ji}
is the model parameters, a is the bias of output layers, bj are
the weights of output layers, c j is the bias of hidden layers,
and d ji are weights of hidden layers. In total, the number
of parameters in this neural network is 1 + (2 + I) × H. We
adopt the commonly used tanh as the activation function and
other nonlinear activation functions have also been tested in
this work. The confidence interval (CI) at 95% level is given
for uncertainty quantifications in this work. More details about
BNN can be found in Ref. [39].

III. RESULTS AND DISCUSSIONS

First we study the influences of adjustments of the input
data. In principle, the network can take any data without
range limits. However, we speculate that the network is more
sensitive to a specific range of data. For example, the tanh
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FIG. 2. The learning performances with different activation
functions (sine, tanh, sigmoid, ReLU) are shown for fission yields
of n + 235U at 0.5 and 14 MeV, respectively.

activation function is not sensitive to large values and the
response is within the saturation range. Actually, the tanh
function is more sensitive from −0.9 to 0.9. To this end, we
performed linear transformations of the original data so that
both input and output data are within the range of (−0.9,
0.9). Present calculations employed 5350 evaluated fission
yield data of 30 nuclei from JENDL, which is similar to our
previous work [14]. Figure 1 displays the learning results of
n + 235U at 0.5 MeV and 14 MeV, respectively. Note that
calculations in Figs. 1–3 employed one hidden layer with 40
neurons. It can be seen that the learning performance with the
original data is not satisfactory at 0.5 MeV. On the other hand,
the learning results with adjusted data are rather good with-
out unphysical oscillations. At 14 MeV, the two results are
comparable. Previous studies also show that machine learning
is difficult to describe the fission yields at low excitation
energies with more quantum effects [34]. This points out that
the adjustment of ranges of input data indeed has advantages
for BNN performances. The adjusted normalization of input
data is adopted in following studies in this work.

In neural networks, it is crucial to use nonlinear activation
functions to compute nontrivial problems. There are various
activation functions been adopted in neural networks [40] and
it is interesting to choose a particular activation function for
specific problems. In this work, we did testing calculations
with tanh function, sigmoid function, ReLU (rectified linear

FIG. 3. The BNN evaluation of incomplete neutron-induced fis-
sion yields of (a) 235U at 3.6 MeV, and (b) 238U at 4.49 MeV. The
normal BNN evaluation used one hidden layer with 40 neurons. The
BNN results with learning penalty on negative values are shown
for comparison, denoted as 40n. The experimental data is taken
from [41].

unit) function, and sine function, as shown in Fig. 2. We
see that all activation functions can largely reproduce the
fission yields. However, sine and ReLU functions result in
some unphysical oscillations. The results of tanh are slightly
better than that of sigmoid. With 5350 points, the total χ2

N =∑
i[ti − f (xi )]2/N for tanh, sigmoid, ReLU, and sine acti-

vation functions are 5.78 × 10−6, 6.37 × 10−6, 8.79 × 10−6,
and 7.56 × 10−6, respectively. Note that the total learning
steps are 105 for all activation functions. We also see that
sine and tanh functions can have unphysical negative fission
yields, which are suppressed in sigmoid and ReLU functions.
Generally, we see that tanh activation function has the best
learning performance, regarding that not only it has the small-
est χ2

N but also its descriptions of overall shapes of fission
yields.

In evaluation of fission yields, the physical output values
should always be positive. However, the output ranges of
tanh function could be negative. This is a serious problem for
inferences when data is sparse [14]. To solve this problem,
we add penalty to constrain the fission yields. Actually, the
weights of the likelihood function are increased [e.g., reduce
the noise scale in Eq. (3)] when negative values appear in the
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FIG. 4. BNN learning performances are shown with different networks: one layer with 40 neutrons, one layer with 66 neurons, two layers
with 16-16 neutrons.

learning process. Figure 3 shows that evaluation of incom-
plete fission yields from neutron included fission of 235U at
3.6 MeV and 238U at 4.49 MeV. We see that BNN evaluation
without penalty leads to serious unphysical negative values.
The results obtained with penalized learning have much bet-
ter performance when fission yields are close to zero. As a
compromise, we also see that the data points can be better
reproduced by BNN without penalty. Nevertheless, the penal-
ized learning is necessary to avoid the unphysical negative
values. This is also a successful attempt to build physical
constraints into machine learning, towards a physics-informed
machine learning.

Next we explored the optimal structure of neural networks
for evaluation of fission yields. Figure 4 shows the learning
results of one hidden layer with 40 neurons and 66 neurons,
and two hidden layers with 16-16 neurons. We can see that re-
sults of one layer with 40 neurons are largely satisfactory. The
double layers with 16-16 neurons has the best performance.
The learning performances of one layer with 66 neurons
are not so good with some oscillations. The total χ2

N of 40,
66, and 16-16 networks are 5.78 × 10−6, 4.35 × 10−6, and
3.43 × 10−6, respectively. The average performance of one
layer of 66 neurons is better than that of 40 neurons. But the
performances of 66 neurons are not always better than that
of 40 neurons. Note that the number of connection weights
of the 16-16 structure is close to that of the one layer of 66
neurons, but the performance of the double-layer structure is
much better. This shows the limitation of the one hidden layer
structure for complex data.

Generally, with similar number of connection weights, the
shallow network would be more dependent on the prior input.
In contrast, the deep network would be more dependent on its
deduction capability. Therefore, for specific problems, there
should be a balanced choice of network structure. We also
tested network structures of 11-12-12, 9-10-10-10, 9-9-8-8-9,
8-8-8-8-7-7, 7-7-7-7-7-7-8 neurons for 3, 4, 5, 6, 7 hidden
layers, respectively. Note that all these structures have similar
number of connection weights to that of the 16-16 struc-
ture. Correspondingly, the total χ2

N are 4.07 × 10−6 (three
layers), 4.99 × 10−6 (four layers), 4.64 × 10−6 (five layers),
5.05 × 10−6 (six layers), 4.94 × 10−6 (seven layers). We see
that deep networks have no advantages in this work. The best
network is the double-layer structure of 16-16 neurons. In
addition, the deep networks take much longer computing time
to get convergence.

Finally, we performed BNN evaluations of fission mass
yields of 239U with the double-layer network, as shown
in Fig. 5. The incomplete experimental data is taken from
Ref. [42], in which the compound nucleus 239U is produced
through one neutron transfer reaction of 238U + 9Be. The ex-
citation energy of 239U is about 8.3 MeV [42]. The recent
experiments can obtain precise isotopic identification of some
fragment isotopes. For comparison, BNN evaluations with
and without negative penalty are given. We see that both
evaluations are satisfactory with some slight discrepancies.
It has to be pointed out that in the first peak, both evalu-
ations underestimate the fission yields. In this respect, our
evaluations are consistent with the GEF evaluation. For the
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FIG. 5. The evaluations of fission yields of compound nucleus
239U are shown. The experimental data is taken from [42]. GEF and
ENDF evaluations are shown in (a), which are taken from [42]. The
double-layer BNN evaluations without (denoted as std) and with
penalty on negative values (denoted as neg) are shown in (b). The
shadows in (b) denote the BNN confidence interval at 95%.

second peak, the largest value is at A = 134 in BNN with
negative penalty, which is consistent with GEF and ENDF
evaluations, in contrast to the experiment. The fission yields
at A = 140 with negative penalty is slightly larger than that of
the standard BNN evaluation, which is consistent with GEF
and ENDF evaluations. Generally, the shape of the second
peak obtained with negative penalty is more consistent with

GEF and ENDF evaluations, compared to the standard BNN
evaluation. We demonstrated that the BNN evaluation with
negative penalty is essential to describe detailed peak struc-
tures and obtain high-precision evaluations. The confidence
interval from BNN with negative penalty is slightly larger
than that from standard BNN due to additional constraints.
Within confidence intervals, it is difficult to distinguish these
two evaluations. Note that the uncertainty propagation and
quantification are very important in evaluations [43], which
will be studied in detail in a forthcoming work.

IV. SUMMARY

In summary, we studied the multilayer Bayesian neural
networks to improve their performance for evaluations of
fission yields. We investigated the influences of adjustments
of ranges of input and output data for neural networks. It is
useful to use a linear transformation to prepare the learning
data set within a proper range so that the response saturation
range of the active function can be avoided. We also studied
various active functions and found that tanh function has
the best learning performance. In the evaluation of fission
yields, there is a serious problem that unphysical negative
values can appear in outputs of neural networks. We deployed
the penalized function in likelihood function to constrain the
outputs. Thus negative values can be much suppressed. This
is a successful attempt to implement physics constraints in
neural networks. We also studied various network structures
from a single hidden layer to seven hidden layers. We found
that the double-layer network is optimal for the present work.
Finally we performed the BNN evaluation of fission yields
of 239U. The results show that BNN with negative penalty is
essential to obtain detailed peak structures and high-precision
evaluations. This work demonstrated that BNN is a promising
tool for high-precision evaluations of fission data and work in
this direction is in progress.
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