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Generating function for nucleus-nucleus scattering amplitudes in Glauber theory
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A new approach to deal with the scattering amplitudes in Glauber theory is proposed. It relies on the use of a
generating function, which has been explicitly found. The method is applied to the analytical calculation of the
nucleus-nucleus elastic scattering amplitudes in the all interaction orders of the Glauber theory.
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I. INTRODUCTION

The theory of nucleus-nucleus interaction is an important
aspect of a long-standing multiple-scattering problem. It has
acquired a modern impetus from the large number of the
currently available experimental data (see, e.g., Refs. [1–4]).
The theoretical calculations provide, in particular, a way to get
information on scattering of both stable and unstable nuclei at
the comparatively high energies of more than several hundreds
of MeV per nucleon. The calculations are standardly carried
out in the Glauber approach [5,6]. It has proven to be highly
efficient for the hadron-nucleus collision, supplying rather
simple analytical expressions for the scattering amplitudes.
The case of the nucleus-nucleus scattering is much more in-
volved. Additional simplifying approximations are commonly
used to obtain an analytical expression such as the optical
model or the rigid target model (see, e.g., Refs. [7–9]). Apart
from these models there are only numerical calculations based
on the Monte Carlo method or on its modifications [10–13].

In the present paper we propose a novel approach. As-
suming the range of nucleon-nucleon interaction to be small
compared to the typical nucleus size we have derived the
analytical expression for the generating function giving the
Glauber amplitudes for nucleus-nucleus scattering. Its rela-
tively simple form allows one to reach the same accuracy
as that provided with the numerical Monte Carlo calculations
without being as time-consuming as they are.

II. SCATTERING AMPLITUDES IN THE GLAUBER
THEORY

To begin, we briefly outline the basics of the Glauber
theory. The amplitude of the elastic scattering of the incident
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nucleus A on the fixed target nucleus B reads [14,15]

F el
AB(q) = ik

2π

∫
d2beiqb[1 − SAB(b)], (1)

where q is the transferred momentum and k is the mean
momentum carried by a nucleon in nucleus A. The two-
dimensional impact momentum b lies in the transverse plain
to the vector k. The main assumption underlying the Glauber
theory is that the radius of the nucleon-nucleon interaction is
much smaller than the typical nucleus size. Then assuming the
phase shifts of the nuclear scattering to be the sum of those for
each nucleon-nucleon scattering, χNN (b), the function SAB(b)
takes the form

SAB(b) = 〈A, B|
{∏

i j

[
1 − �NN (b + xi − y j )

]}|A, B〉, (2)

with

�NN (b) = 1 − eiχNN (b) = 1

2π ik

∫
d2qe−iqb f el

NN (q), (3)

where f el
NN (q) is the nucleon-nucleon scattering amplitude.

The product in Eq. (2) comprises all pairwise interactions
between the nucleons from the projectile and target nuclei A
and B, with symbol 〈A, B| · · · |A, B〉 standing for an average
over the nucleons’ positions xi and y j in the transverse plain.
Each pair {i, j} enters the product only once, meaning that
each nucleon from the projectile nucleus can scatter on each
nucleon on the target once but no more than once.

The total interaction cross section is

σ tot
AB = 4π

k
ImF el

AB(q = 0) =
∫

d2b[1 − SAB(b)], (4)

while the integrated elastic cross section is

σ el
AB =

∫
d2b[1 − SAB(b)]2. (5)

The difference between these two values determines the total
inelastic, or reaction, cross section,

σ r
AB = σ tot

AB − σ el
AB =

∫
d2b[1 − |SAB(b)|2]. (6)
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III. GENERATING FUNCTION

A main obstacle to dealing with the Glauber amplitude
(2) is its complicated combinatorial structure. To treat it an-
alytically we first rewrite it more explicitly through nucleon
distributions in the colliding nuclei,

SAB(b) =
∫ A∏

i=1

d2xi

∫ B∏
j=1

d2y jρ
⊥
A (x1 − b, . . . , xA − b)

×ρ⊥
B (y1, . . . , yB)

×
{∏

i j

[1 + g�NN (xi − y j )]

}
. (7)

Here the nucleon densities in the transverse plain, ρ⊥
A,B, are

determined through three-dimensional ones integrated over
longitudinal coordinates,

ρ⊥
N (x1, . . . , xN ) =

∫ N∏
i=1

dzi ρN (z1, x1, . . . , zN , xN ),

×
∫ N∏

i=1

d3ri ρN (r1, . . . , rN ) = 1.

For later convenience an extra parameter g counting the num-
ber of interactions is introduced in Eq. (7), really g = −1.
We also assume in what follows that the three-dimensional
nuclear densities are reduced to the product of one-nucleon
densities,

ρN (r1, . . . , rN ) =
N∏

i=1

ρN (ri ),
∫

d3rρN (r) = 1,

and consequently

ρ⊥
N (x1, . . . , xN ) =

N∏
i=1

ρ⊥
N (xi ),

∫
d2xρ⊥

N (x) = 1. (8)

This assumption means the nucleon-nucleon correlations are
neglected.

The next step is to represent Eq. (7) as a functional integral.
To this end let us consider the identity

C0

∫
D�D�∗ exp

{
−

∫
d2xd2y �(x)�−1(x − y)�∗(y)

+
∑

i

�(xi ) +
∑

j

�∗(y j )

}

= exp

{∑
i, j

�(xi − y j )

}
=

∏
i, j

e�(xi−y j ), (9)

where C0 is the normalization constant and the functional
integral can be thought of as an infinite product of two-
dimensional integrals over the auxiliary fields �(x) at each
space point x. The inverse of the propagator, �−1(x − y),
is understood in a functional sense,

∫
d 2z�−1(x − z)�(z −

y) = δ(2)(x − y). If this function is chosen to obey the

equation

e�(x−y) − 1 = g�NN (x − y), (10)

the right-hand side of Eq. (9) recovers the product in Eq. (7).
The function �(x − y) plays a role similar to that of the Mayer
propagator (function) in statistical mechanics; the analogy
between Glauber theory and statistical mechanics has been
remarked on earlier (see, e.g., Ref. [16]). Then we get

SAB(b)

= C0

∫
D�D�∗ exp

{
−

∫
d2xd2y�(x)�−1(x − y)�∗(y)

}

×
[∫

d2xρ⊥
A (x − b)e�(x)

]A[∫
d2yρ⊥

B (y)e�∗(y)

]B

. (11)

This form suggests that it is natural to introduce the generating
function

Z (u, v) =
∫

D�D�∗ exp

{
−

∫
d2xd2y�(x)�−1(x − y)�∗(y)

+u
∫

d2xρ⊥(x − b)e�(x) + v

∫
d2xρ⊥(x)e�∗(x)

}
,

(12)

so that

SAB(b) = 1

Z (0, 0)

∂A

∂uA

∂B

∂vB
Z (u, v)

∣∣∣∣
u=v=0

. (13)

The generating function (12) is the focus of the present
paper. Being analytically evaluated it comprises all interaction
orders of the Glauber theory for nucleus-nucleus collision.

IV. EXPLICIT EVALUATION OF THE GENERATING
FUNCTION

As it has been mentioned above the Glauber theory
essentially relies on the short-distance nature of the nucleon-
nucleon interaction. The same property, the small interaction
range, makes the complex functional integral (12) feasible.
The standard parametrization of the elastic nucleon-nucleon
scattering amplitude is

f el
NN (q) = ik

σ tot
NN

4π
e− 1

2 βq2
, (14)

where σ tot
NN is the total nucleon-nucleon cross section. It gives

according to Eq. (3)

�NN (x) = σ tot
NN

4πβ
e− x2

2β , (15)

the value a = √
2πβ being of the order of the interac-

tion radius. Assuming a to be small at the nuclear scale
the nucleon-nucleon amplitude can be treated as a pointlike
function,

�NN (x) � 1
2σ tot

NNδ(2)(x). (16)

If �(x − y) is pointlike the integrals over the �(x) fields
in Eq. (12) are independent for different coordinate values.
This turns the functional integral into the infinite product of
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finite-dimension integrals, which can be separately evaluated
for each x.

To do this accurately we replace the continuous integrals in
the exponent by discretized sums. The discrete version of the
identity (9) reads

C0

∏
xn

∫
d�(xn)d�∗(xn)

2π
exp

{
−

∑
n

1

y
�(xn)�∗(xn)

+
∑

i

�(xi ) +
∑

j

�∗(y j )

}

= exp

{
y

∑
i, j

δxi,y j

}
, (17)

where δxi,y j is the Kronecker symbol for the discrete nucleons’
coordinates, δxi,y j /a2 → δ(2)(xi − y j ) for a → 0. Since

e yδxi ,y j = 1 + (e y − 1)δxi,y j

the right-hand side of the identity (17) yields∏
i, j

[
1 + g

1

2

σ tot
NN

a2
δxi,y j

]
→

∏
i, j

[1 + g�NN (xi − y j )],

whereas Eq. (10) translates into

e y − 1 = g
1

2

σ tot
NN

a2
. (18)

The generating function becomes the product of independent
integrals at the points xi,

Z (u, v) =
∏

xi

∫
d�(xi )d�∗(xi )

2π
exp

{
− 1

y
�(xi )�

∗(xi ) + ua2ρ⊥
A (xi − b)e�(xi ) + va2 ρ⊥

B (xi )e
�∗(xi )

}
,

or, after evaluating �(x) integrals in Eq. (19),

Z (u, v) = exp

{∑
xi

ln

(
y

∑
M,N�0

eyMN

M!N!

[
a2uρ⊥

A (xi − b)
]M[

a2vρ⊥
B (xi )

]N

)}
. (19)

The densities are slowly varying at the size a, which allows one to replace the sum over xi with the integral,

Z (u, v) = CeWy (u,v), (20)

Wy(u, v) = 1

a2

∫
d2x ln

( ∑
M�A,N�B

zMN
y

M!N!
[a2uρA(x − b)]M[a2vρB(x)]N

)
, (21)

with u- and v-independent constant C being irrelevant in
Eq. (13) and

zy = 1 + g
1

2

σ tot
NN

a2
.

The sums over M and N can always be truncated up to A
and B because the higher terms obviously do not contribute
to the derivatives in Eq. (13). Put differently, the number of
contributions to the generating function does not exceed the
number of various brackets in the initial product (2).

V. RELATION TO THE KNOWN APPROXIMATIONS

The formulas (20) and (21) are the net result for the gener-
ating function. To elaborate it further we expand Wy(u, v) into
the series built of the densities overlaps,

tm,n(b) = 1

a2

∫
d 2x

[
a2ρ⊥

A (x − b)
]m[

a2ρ⊥
B (x)

]n
. (22)

Since t0,1(b) = t1,0(b) = 1, we have Wy(u, v) = u + v +
F (u, v) and the amplitude reads

SAB(b) =
∑

k, j�A,B

A!B!

(A−k)!(B− j)!

1

k!

∂ k

∂uk

1

j!

∂ j

∂ v j
eF (u,v)

∣∣
u=v=0.

(23)

For A, B 	 1 one may assume that k, j 
 A, B and A!/(A −
k)! · B!/(B − j)! ≈ Ak · B j , which gives

SAB(b) ≈ eF (A,B). (24)

Really the functions tm,n(b) decrease as the indices m and
n grow. Keeping only the lowest, m = n = 1, we arrive at the
well-known optical approximation [7]

F (A, B) = − 1
2 σ tot

NN TAB(b), TAB(b) = ABt1,1(b). (25)

The optical approximation is equivalent to the requirement
that each nucleon from one nucleus interacts with another
nucleus no more than once.

Another known approximation easily reproduced here is
the rigid target (or projectile) approximation [8,9]. It allows
any nucleon from the projectile to interact with several nucle-
ons from the target, whereas any target nucleon can interact
no more than once. Though it seems to be rather natural when
the atomic weight of the projectile is significantly smaller
than that of the target nucleus, this approximation works fairly
good even for the equal atomic weights [15]. It requires one
density, say, ρ⊥

A (x), to be kept in the formula (20) only in the
linear order, permitting at the same time any powers of ρ⊥

B (x).
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It gives

Wy(u, v) = 1

a2

∫
d2x ln

(∑
N

1

N!

[
a2vρ⊥

B (x)
]N + [

a2ρ⊥
A (x − b)

] ∑
N

zN
y

N!

[
a2vρ⊥

B (x)
]N

)

= v + u
∫

d2xρ⊥
A (x − b)ea2 v(zy−1)ρ⊥

B (x),

yielding the generating function

Z (u, v) = ev+uTrg (v,b), Trg(v, b) =
∞∑

n=0

1

n!
t1,n(b)vn,

which produce for B 	 1

SAB(b) = [Trg(b)]A, Trg(b) =
∫

d2xρ⊥
A (x − b)e− 1

2 σ tot
NN ρ⊥

B (x). (26)

VI. RESULTS FOR 12C-12C SCATTERING

Below we present the results obtained with the full gener-
ating function (20) for the 12C-12C scattering in the energy
interval 800–1000 MeV per projectile nucleon, where the
experimental data exist [17]. The total cross section σ tot

NN =
43 mb has been taken from averaging over pp and pn values,
and the slope value has been chosen to be β = 0.2 fm2.
The nucleon density is parametrized by harmonic oscillator
distribution well suited for light nuclei with the atomic weight
A � 20,

ρA(r) = ρ0

[
1 + 1

6
(A − 4)

r2

λ2

]
e− r2

λ2 , (27)

with ρ0 being the normalization, and the factor λ being ad-
justed to match the nuclear mean square radius, Rrms =

√
r2

A ,
where r2

A = ∫
d3r r2ρA(r).

Upon evaluating Wy(u, v) through all tmn(b) functions (22)
for m, n � A = 12 in the parametrization (27) with Rrms =
2.49 fm fitted for this parametrization in Ref. [13] from Monte
Carlo simulation of a 12C-12C collision, we have calculated the
reaction cross section (6) and the total cross section (4). Table
I compares their values obtained in the optical approximation
(25), in the rigid target approximation (26), and with the
full generating function for two cases, first assuming A 	 1
and using the approximate formula (24) and second by exact

TABLE I. The reaction and the total cross sections of the 12C-12C
collision at the energy 950 MeV per nucleon and Rrms = 2.49 fm. The
first two columns present the results of the optical and rigid target
approximations, and the second two columns present the results
obtained with the full generating function, assuming A 	 1 (third
column) and exactly differentiating it (fourth column).

Optical Rigid target Assuming Exact
approximation approximation A 	 1 differentiating

σ r (mb) 952 911 857 867
σ tot (mb) 1572 1470 1371 1363

differentiating the generating function. The last two numbers
in the upper row of the table are in reasonable agreement
with the experimental value 853 ± 6 mb [17]. One should
bear in mind that the experimentally measured value actually
refers to the so-called interaction cross section rather than
to the reaction one. The difference between them can be at
the several percent level [18]. At the same time the obtained
values are close to those of the Monte Carlo calculations with
the same parameters and the density parametrization [13].

A word of caution with respect to the formula (24) is
needed here. When the generating function is exactly dif-
ferentiated in Eq. (23), the terms with m > A and n > B
in the function F (u, v) = ∑

m,n Fm,numvn do not evidently
contribute. The reliability of the approximation (24) implies
the series for the function F (A, B) to be truncated at m = A
and n = B. Leaving more terms does not improve, but may
worsen, the accuracy. Of course, it does not apply to the
optical (25) or rigid target (26) approximations, where all the
extra terms are already dropped out.

Representing the amplitude (7) as a power series in the
parameter g enables one to pick up the individual contribution
of n-fold interaction as a coefficient in front of the gn term.
They are large when taken separately, but due to the opposite
signs they almost cancel each other, returning a final sum
much smaller than any of them. Thus, the treatment of the
amplitude in terms of the number of interactions seems to be
quite unreasonable.

VII. HALO NUCLEI SCATTERING

An interesting topic to apply our method to is the scattering
of halo nuclei. The distinguishing feature of these nuclei is
their large size exceeding that of the stable nuclei. They are
assumed to be a composite system of a core and a halo [19,20],
the density distribution being the sum of the two components
[21–24],

ρ(r) = Ncρc(r) + Nvρv (r). (28)

The first and the second terms stand here for the core and for
the halo densities, Nc is the number of the nucleons in the core,
and Nv is the number of the valence neutrons in the halo [25].

064607-4



GENERATING FUNCTION FOR NUCLEUS-NUCLEUS … PHYSICAL REVIEW C 104, 064607 (2021)

TABLE II. The reaction cross sections in mb for 11Li-12C, 11Be-
12C, and 14Be-12C collisions at the energy 790 MeV per nucleon.
The first three columns are for the three density parametrizations
(29), and the fourth column is for the “nonhalo” distributions. The
experimental points in the fifth column are taken from Ref. [17].

G O 2S “Nonhalo” Expt.

11Li 1024 1031 1033 1021 1040 ± 60
11Be 911 918 916 914 942 ± 8
14Be 1120 1128 1131 1103 1139 ± 90

Both the densities are taken in the Gaussian form, and the core
density reads

ρc(r) = 1

π
3
2 a3

c

e
− r2

a2
c , ac =

√
2/3 Rc,

where Rc is the core mean square radius, while the second
part, ρv , usually admits three different parametrizations de-
pending on the shell state the halo neutrons are supposed to
occupy [25]:

ρG
v (r) = 1

π
3
2 a3

G

e
− r2

a2
G , ρO

v (r) = 2

3π
3
2 a5

O

r2e
− r2

a2
O ,

ρ2S
v (r) = 2

3π
3
2 a3

2S

(
r2

a2
2S

− 3

2

)2

e
− r2

a2
2S ,

aG =
√

2/3Rv, aO =
√

2/5Rv, a2S =
√

2/7Rv,

(29)

where Rv is the halo mean square radius. There exists also
a “nonhalo” distribution that neglects the halo and uses the
density (27) fitted to the experimental matter radius [23].

In Table II we present the reaction cross sections for 11Li-
12C, 11Be-12C, and 14Be-12C scattering at the energy 790 MeV
per nucleon obtained through the exactly differentiated full
generating function. The calculations have been carried out
with the density (28) (normalized to unity) for all three
parametrizations with [25]

Rc = 2.50 fm, Rv = 5.04 fm, Nc = 9, Nv = 2 for 11Li,
Rc = 2.30 fm, Rv = 5.39 fm, Nc = 10, Nv = 1 for 11Be,
Rc = 2.59 fm, Rv = 5.45 fm, Nc = 12, Nv = 2 for 14Be.

Besides we add the results for the “nonhalo” distributions
with Rrms = 3.12 fm for 11Li, Rrms = 2.73 fm for 11Be, and
Rrms = 3.16 fm for 14Be [17]. The parametrization of 12C is
the same as in Table I.

The results for 11Li and 14Be are in a quite good agreement
with the experimental data especially regarding the relatively
large error bars. The evaluated cross sections for the 11Be
beam are systematically smaller although the deviation is not
large. One might doubt whether the parameters are determined
for this case with the proper accuracy. On the other hand the
reason for the discrepancy could be in the nucleons’ correla-
tions.

It is worth pointing out that it is the reaction cross sections
that have been calculated here, whereas the experimentally
measured value is the interaction cross section. It is smaller
than the reaction one, but their difference does not exceed
1–2% [18].

VIII. CONCLUSION

In this article we set up a novel approach to deal with
Glauber amplitudes for nucleus-nucleus scattering at energies
higher than several hundreds of MeV per nucleon. It is based
on the closed expression obtained for the generating function.
The main advantage it has is in a relatively simple analytical
form that allows one to carry out calculations avoiding the
complexities encountered in the Monte Carlo technique. As
an example we apply our method to 12C-12C scattering at
the energy 950 MeV per nucleon for which there exist the
experimental data [17]. We have calculated the reaction and
the total cross sections for the mean square nuclear radius
Rrms = 2.49 fm, the value taken from the Monte Carlo anal-
ysis in the harmonic oscillator parametrization in Ref. [13].
Our results are in good agreement with those obtained in
that paper. As another example we have calculated the cross
section of several halo nuclei scattering on a 12C target at the
energy 790 Mev per nucleon.

The proposed generating function (20) is appropriate for
any pairs of colliding nuclei regardless their atomic weight.
Apart from the above-considered integrated cross sections, it
can provide a consistent evaluation of the differential elastic
cross section (1) as well. In this case, however, one has to
account for the Coulomb corrections at small scattering angles
for heavy nuclei.

Taking the nucleon density as the product of single-particle
ones (8), we thereby neglect the nucleon-nucleon correlations.
The particular correlations can be, in principle, accounted for
in our approach, provided an appropriate wave function is
known.
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