
PHYSICAL REVIEW C 104, 064324 (2021)

Exact expressions for the number of levels in single- j orbits for three, four, and five fermions
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We propose closed-form expressions of the distributions of magnetic quantum number M and total angular
momentum J for three and four fermions in single- j orbits. The latter formulas consist of polynomials with
coefficients satisfying congruence properties. Such results, derived using doubly recursive relations over j and
the number of fermions, enable us to deduce explicit expressions for the total number of levels in the case of
three-, four-, and five-fermion systems. We present applications of these formulas, such as sum rules for six- j and
nine- j symbols, obtained from the connection with fractional-parentage coefficients, an alternative proof of the
Ginocchio-Haxton relation, or cancellation properties of the number of levels with a given angular momentum.
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I. INTRODUCTION

Determining the allowed total angular momenta J to which
the individual half-integer spins j of N identical particles may
couple is of primary importance in nuclear physics. Some
values of J are forbidden by the Pauli exclusion principle;
others occur more than once. Although that problem was
investigated by many authors over the years, and despite the
variety of approaches (number theory, recurrence relations,
generating functions, etc.), exact analytical expressions for
the number of states P(M ) with a given projection M on the
quantization axis, the number of levels Q(J ) with spin J , or the
total number of levels Qtot in a configuration are not known,
except in very simple cases.

Zhao and Arima have shown that there are simple struc-
tures in Q(J ) for j3 or j4, and found empirical formulas
[1]. In 2005, the same authors [2] showed that Q(J ) could
be enumerated by the reduction from SU(N + 1) to SO(3)
and obtained analytical expressions of Q(J ) for four particles.
The same year, Talmi derived a recursion formula for Q(J )
[3]. The latter quantity for jN is expressed in terms of Q(J )
for ( j − 1)N , ( j − 1)N−1, and ( j − 1)N−2. In the same work,
Talmi also proved some interesting results found empirically
by Zhao and Arima [1]. Zhang et al. extended Talmi’s recur-
sion relation to boson systems and proved empirical formulas
for five bosons. They also obtained the number of states with
given spin for three and four bosons by using sum rules of
six- j and nine- j symbols [4,5]. Five years later, Jiang et al.
derived the analytical formulas for Q(J ) for three fermions
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in a single- j shell and three bosons with spin �, by using
a reduction rule from the U(4) to the O(3) group chain,
U(4) ⊃ Sp(4) ⊃ O(3) [6], for Ñ virtual bosons which follow
the U(4) symmetry (i.e., spin 3/2) [7]. One has Ñ = 2 j − 2
for fermions and Ñ = 2� for bosons. The authors were able to
obtain analytical formulas of three bosons and fermions in a
unified form and on a unified footing. Let us consider a system
of N identical fermions in a single j (which is half-integer)
shell of degeneracy g = 2 j + 1, mi being the angular mo-
mentum projection of electron state i (m1 = − j, m2 = − j +
1, m3 = − j + 2, . . . , mg−1 = j − 1, mg = j). The maximum
total angular momentum is

Jmax = (2 j + 1 − N )N/2 (1.1)

and the minimum angular momentum Jmin is 0 if N is even
and 1/2 if N is odd. The distribution P(M ) represents the
number of N-fermion states having the total projection (or
magnetic quantum number) M. The number Q(J ) of levels
with angular momentum J in a configuration can be obtained
from the distribution P(M ) of the M values by means of the
relations [8]

Q(J ) = P(J ) − P(J + 1) if J � Jmax − 1, (1.2a)
Q(Jmax) = P(Jmax). (1.2b)

In the following we use the notation P(M; j, N ) in-
stead of P(M ) every time it is necessary to specify
the angular momentum of the shell and the number of
fermions.

The fundamental relation used in the present paper to get
the number of states P(M; j, N ) of N fermions with spin j and
total magnetic quantum number M has been derived by Talmi
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(Eq. (1) in Ref. [3]):
P(M; j, N ) = P(M; j − 1, N ) + P(M − j; j − 1, N − 1)

+ P(M+ j; j−1, N − 1)+P(M; j − 1, N − 2).
(1.3)

A short alternative derivation is presented in Appendix A.
From the above relation (1.2a), one also gets easily the total
number of levels:

Jmax∑
J=Jmin

Q(J; j, N ) = P(Jmin; j, N ), (1.4)

where Jmin = 0 (resp. 1/2) for N even (resp. odd). A simple
expression for the total number of levels for j3 was found
using coefficients of fractional parentage [9]. In the case of
four fermions, no explicit formula could be obtained with
the latter technique, only a triple summation involving nine- j
coefficients, or equivalently products of two six- j symbols
multiplied by Dunlap-Judd coefficients [10].

In the present work, using the recurrence relation (1.3), we
derive explicit expressions for P(M; j, 3), Q(J; j, 3) (Sec. II),
P(M; j, 4), and Q(J; j, 4) (Sec. III), as well as for the total
number of J levels in the case of five fermions (Sec. IV).
This leads us to deduce exact formulas for Qtot( j3) (i.e., an
alternative derivation much simpler than the one previously
published and relying on the use of fractional parentage coef-
ficients [9]), for Qtot( j4) and for Qtot( j5). To our knowledge,
no expressions of the two latter formulas were published else-
where. The algebraic forms of Q(J; j, 3) and Q(J; j, 4) are
also likely to yield to sum rules for six- j symbols (Sec. V).
We also provide some additional results, such as an alternative
derivation of the Ginocchio-Haxton relation (Sec. V), cancel-
lation properties, and particular values of the number of levels
with a given angular momentum (Sec. VI).

II. THREE-FERMION SYSTEMS

A. Total number of levels

The total number of levels will be derived from Eq. (1.4).
For three particles, the relation (1.3) is written as

P

(
1

2
; j, 3

)
= P

(
1

2
; j − 1; 3

)
+ P

(
1

2
− j; j − 1, 2

)

+ P

(
1

2
+ j; j − 1, 2

)
+ P

(
1

2
; j − 1, 1

)
.

(2.1)

This provides us with a recurrence relation on j for
P(1/2; j, 3), which is initialized by the value P(1/2; 3/2, 3).
Using the relation easily obtained by considering the coupling
of two momenta,

P(M; j, 2) =
⌊

2 j + 1 − |M|
2

⌋
, (2.2)

where �x� is the integer part of x, we get immediately, for j
half-integer,

P

(
1

2
− j; j − 1, 2

)
=
⌊

j

2
− 1

4

⌋
, (2.3a)

P

(
1

2
+ j; j − 1, 2

)
=
⌊

j

2
− 3

4

⌋
, (2.3b)

and a rapid inspection of the cases j = 2n + 1/2, j = 2n +
3/2 shows that, since P(1/2; j − 1, 1) = 1 for j � 3/2, one
has

P

(
1

2
; j, 3

)
= P

(
1

2
; j − 1, 3

)
+ j − 1

2
(2.4)

for j � 3/2. Since the coupling of three angular momenta
j = 1/2 is not possible (Pauli exclusion principle), we have
P(1/2; 1/2, 3) = 0 and therefore

Qtot ( j3) = P

(
1

2
; j, 3

)
=

j∑
i=1/2

(i − 1/2)

=
j−1/2∑
t=0

t = 1

2

(
j2 − 1

4

)
(2.5)

in agreement with the formula (36) of Ref. [9].

B. Determination of the M distribution for three fermions

1. Case M greater than j

We first determine P( j + q; j, 3) with q positive integer
(q = 1, 2, . . . , Jmax − j). Using Talmi’s formula and the ex-
plicit value (2.2) one gets, after p iterations,

P( j + q; j, 3) = P( j + q; j − 1, 3) + P(q; j − 1, 2) (2.6a)

= P( j + q; j − 1, 3) +
⌊

j − q + 1

2

⌋
(2.6b)

= P( j + q; j − 2, 3) +
⌊

j − q + 1

2
− 3

2

⌋

+
⌊

j − q + 1

2

⌋
(2.6c)

...

= P( j + q; j − p, 3)+
p−1∑
t=0

⌊
j − q + 1

2
− 3t

2

⌋
,

(2.6d)

where we have used the property P(2 j + q − t ; j − t, 2) = 0
and P( j + q − t ; j − t, 1) = 0, valid for q > 0 and 0 � t �
p − 1. We choose p such that P( j + q; j − p, 3) vanishes
while P( j + q; j − p + 1, 3) does not. This yields the condi-
tions

1 � j − q

2
− 3p

2
+ 1, j − q

2
− 3p

2
− 1

2
< 1, (2.7)

which amount to

p =
⌊

2 j − q

3

⌋
. (2.8)

Since q can be even or odd, for j half-integer, j − q/2 is
either integer or half-integer. When evaluating �(2 j − q)/3�
six cases must be considered. One obtains for the value of the
maximum index p

p =
{

2n if j − q
2 = 3n, 3n + 1/2, or 3n + 1

2n + 1 if j − q
2 = 3n + 3/2, 3n+2, or 3n + 5/2.

(2.9)
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TABLE I. Various cases for the computation of P( j + q; j, 3).

j − q/2 3n 3n + 1/2 3n + 1 3n + 3/2 3n + 2 3n + 5/2

First term �1� �3/2� �2� �1� �3/2� �2�
Last term �3n − 1/2� �3n� �3n + 1/2� �3n + 1� �3n + 3/2� �3n + 2�
Sum 3n2 n(3n + 1) n(3n + 2) 3n(n + 1) + 1 (n + 1)(3n + 1) (n + 1)(3n + 2)

In the computation of the sum (2.6d) with that value of p, we note that P( j + q; j − p, 3) vanishes because of the conditions
(2.7). We distinguish six cases, according to the maximum index (2.9). For instance if j − q/2 = 3n the sum is, after reordering
odd and even t values,

P( j + q; j, 3) = �1� + �5/2� + �4� + · · · + �3n − 2� + �3n − 1/2� (2.10a)

= 1 + 4 + · · · + (3n − 2) + 2 + 5 + · · · + (3n − 1) (2.10b)

=
n∑

t=1

(3t − 2) +
n∑

t=1

(3t − 1) = 3n2 = 1

3

(
j − q

2

)2
. (2.10c)

The six cases are summed up in Table I. Expressing n versus j − q/2, we obtain the desired formula

P( j + q; j, 3) = 1

3

(
j − q

2

)2
+ α(2 j − q) (2.11a)

with α(2 j − q) =
(

0,− 1

12
,−1

3
,

1

4
,−1

3
,− 1

12

)
if 2 j − q mod 6 = (0, 1, 2, 3, 4, 5) respectively. (2.11b)

For instance one can check for q = 1

P( j + 1; j, 3) =
{

1
3

(
j − 1

2

)2
if j − 1/2 = 3n,

1
3

(
j − 3

2

)(
j + 1

2

) = 1
3

(
j − 1

2

)2 − 1
3 if j − 1/2 = 3n + 1 or j − 1/2 = 3n + 2.

(2.12)

The formula (2.11a) does not assume that j is half-integer. Instead of (2.12), we would have, for integer j,

P( j + 1; j, 3) =
{

1
3

(
j− 1

2

)2− 1
12 = 1

3 ( j − 1) j if j = 3n + 1 or if j = 3n,

1
3

(
j − 1

2

)2 + 1
4 = 1

3 ( j2 − j + 1) if j = 3n + 2.
(2.13)

2. Case M less than or equal to j

In this section one assumes j half-integer such that j � 3/2. From the basic relation (1.3), one writes

P( j − q; j, 3) = P( j − q; j − 1, 3) + S( j, q) (2.14a)

where S( j, q) = P(2 j − q; j − 1, 2) + P(q; j − 1, 2) + P( j − q; j − 1, 1). (2.14b)

The quantity S( j, q) is easily transformed using the value (2.2) and the fact that P( j − q; j − 1, 1) = 1 if q > 0. Using this
definition one easily checks that the terms in S( j, 0) take the values 0, j − 1/2, 0 respectively, so that S( j, 0) = j − 1/2. If
q > 0 the identity (2.2) provides the result

S( j, q) = �(q − 1)/2� + � j − (q + 1)/2� + 1 (2.15)
and considering the cases q even or odd one easily verifies that, for j � 3/2,

S( j, q) = j − 1
2 , (2.16)

which is also valid if q = 0. The formula (2.14) leads to a recurrence relation,

P( j − q; j, 3) = P( j − q; j − 1, 3) + j − 1

2
(2.17a)

= P( j − q; j − 2, 3) + j − 3

2
+ j − 1

2
(2.17b)

...

= P( j − q; j − q − 1, 3) +
q∑

s=0

(
j − 1

2
− s

)
(2.17c)

= P( j − q; j − q − 1, 3) + (q + 1)

(
j − q + 1

2

)
. (2.17d)
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The initial value P( j − q; j − q − 1, 3) is derived from the expression (2.12). One finds for 0 � q � j − 1/2

P( j − q; j, 3) = (q + 1)

(
j − q + 1

2

)
+
{

1
3

(
j − q − 3

2

)2
if j − q = 3n + 3

2 ,

1
3

(
j − q − 5

2

)(
j − q − 1

2

)
if j − q = 3n + 1

2 or 3n + 5
2 ,

(2.18)

or after simplification

P( j − q; j, 3) = 1

3

(
j + q

2

)2
− q2

4
+ β( j − q − 1/2) (2.19a)

with β(n) =
(

− 1

12
,

1

4
,− 1

12

)
if n mod 3 = (0, 1, 2) respectively. (2.19b)

For instance, one obtains in the q = 0 case

P( j; j, 3) = j2

3

{+ 1
4 if j = 3n + 3/2,

− 1
12 = 1

3

(
j2 − 1

4

)
if j = 3n + 1/2 or 3n + 5/2.

(2.20)

Such formulas can be generalized for j integer but the resulting expressions will be different. The formula (2.18) was established
for q � 0. One can check that it remains true for q = −1. Assuming (2.18) is valid for q = −1, we get a piecewise expression
which is identical to (2.12). It is worth mentioning that the relation (2.18) applies in particular for j − q = 1/2, 3/2, . . . , n + 1/2.
A series of examples is provided in Appendix B. Finally if j − q = n + 1/2 with 0 � n � j − 1/2 one has

P(n + 1/2; j, 3) = P(n + 1/2; n − 1/2, 3) + 1

2

[
j2 −

(
n − 1

2

)2]
. (2.21)

3. General case

The formulas (2.11a), (2.19a) can be gathered in a single
equation, valid for any integer q. Using the Heaviside function
H (q) = 1 if q � 0, 0 otherwise, one has

P( j − q; j, 3) = 1

3

(
j + q

2

)2
−H (q)

q2

4
+H (q)β( j−q−1/2)

+ [1 − H (q)]α(2 j + q). (2.22)

Considering the various values of 2 j + q mod 6 and q mod 2,
one can then easily check that γ = α(2 j + q) − β( j − q −
1/2) is indeed a function of q and is equal to −(q mod 2)/4.
The above equation transforms into

P( j − q; j, 3) = 1

3

(
j + q

2

)2
+ α(2 j + q)

−H (q)

[
q2

4
+ γ (q)

]
(2.23a)

with γ (q) =
(

0,−1

4

)
for q mod 2 = (0, 1) (2.23b)

if −2 j + 3 � q � j − 1/2, and α defined above (2.11a).

C. Distribution of the total angular momentum

Using the fundamental relation (1.2a), the expression
(2.11a) allows us to derive the distribution of the total momen-
tum J . The evaluation of P( j + q; j, 3) − P( j + q + 1; j, 3)

provides

Q( j + q; j, 3) = 2 j − q

6
+ q3p

with q3p =
(

0,−1

6
,−1

3
,

1

2
,−2

3
,

1

6

)
for 2 j − q mod 6

= (0, 1, 2, 3, 4, 5) respectively. (2.24)

For instance one has Q( j; j, 3) = j/3 + (−1/6, 1/2, 1/6)
if j − 1/2 mod 3 = 0, 1, 2 respectively, i.e., Q( j; , j, 3) =
�(2 j + 1)/6�. One also verifies that Q( j + 1; j, 3) = (2 j −
1)/6 + (0,−1/3,−2/3) for j − 1/2 mod 3 = 0, 1, 2 respec-
tively, i.e., Q( j + 1, j, 3) = �(2 j − 1)/6�. Similarly, from
(2.18), the evaluation of P( j − q; j, 3) − P( j − q + 1; j, 3)
provides the following expression:

Q( j − q; j, 3) = j − q

3
+ q3m

with q3m =
(

−1

6
,

1

2
,

1

6

)

for j − q mod 3 = (1/2, 3/2, 5/2) respectively. (2.25)

The expression (2.18) for P( j − q; j, 3) remains valid for
q = −1, therefore the above expression applies if q = 0. One
verifies easily that (2.24), (2.25) are both correct for q =
0. One may also use the general expression (2.23a). When
computing the difference P( j − q; j, 3) − P( j − q + 1; j, 3)
some attention must be paid to the case q = 0 for which
H (q) = 1 �= H (q − 1) = 0. However, the term in the factor
of H (q − 1) is (q − 1)2/4 + γ (q − 1) = 0 for q = 0. The
evaluation of Q( j − q; j, 3) is then straightforward, defining
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α(n) = α(n) − α(n − 1), γ (n) = γ (n) − γ (n − 1). One gets

Q( j − q; j, 3) = 1

6

(
2 j + q − 1

2

)
+ α(2 j + q)

−H (q)

[
q

2
− 1

4
+ γ (q)

]
(2.26a)

with α(n) =
(

1

12
,− 1

12
,−1

4
,

7

12
,− 7

12
,

1

4

)
for n mod 6 = (0, 1, 2, 3, 4, 5) respectively, (2.26b)

γ (q) =
(

1

4
,−1

4

)
for q mod 2 = (0, 1) respectively,

(2.26c)

with the conditions 3 − 2 j � q � j − 1/2, since one must
have 1/2 � j − q � 3 j − 3.

III. FOUR-FERMION SYSTEMS

A. Determination of P(M; j, 4) if M � 2 j

We first derive the expressions for P(2 j + p; j, 4), which
are easier to obtain than the expressions for P(2 j − p; j, 4).
One has for any natural integer p

P(2 j + p; j, 4) = P(2 j + p; j − 1, 4) + P( j + p; j − 1, 3)

+ P(3 j+p; j − 1, 3)+P(2 j + p; j − 1, 2)

(3.1a)

= P(2 j + p; j − 1, 4) + P( j + p; j − 1, 3)

(3.1b)

= P(2 j + p; j − 2, 4) + P( j + p; j−1, 3)

+ P( j + p + 1; j − 2, 3) (3.1c)

=
σ∑

s=1

P( j + p + s − 1; j − s, 3), (3.1d)

where we used the properties 3 j + p > Jmax( j − 1, 3) and
2 j + p > Jmax( j − 1, 2). The upper bound σ in (3.1d) is cho-
sen so that P( j + p + s − 1; j − s, 3) is nonzero if s = σ

and zero if s = σ + 1, implying that P(2 j + p; j − σ, 4) = 0.
Explicitly

j + p + σ − 1 � Jmax( j − σ, 3) = 3 j − 3σ − 3

and j + p + (σ + 1) − 2 > Jmax( j − (σ + 1), 3)

= 3 j − 3(σ + 1) − 3, (3.2a)

σ =
⌊

2 j − p − 2

4

⌋
. (3.2b)

In order that the above formulas be meaningful one must have
σ � 1 or

2 j − p � 6 from which 2 j + p � 4 j − 6 = Jmax( j, 4).
(3.3)

The sum (3.1d) will be calculated with formulas (2.11a). This
lead us to define d (s) = j′ − q′/2 with j′ = j − s, q′ = p +
2s − 1, or

d (s) = j − p

2
− 2s + 1

2
. (3.4)

The following analysis will be done according to the value of
d (1) = j − p/2 − 3/2. From (3.2b)

σ =
⌊

1

2
d (1) + 1

4

⌋
=
⌊

1

2

(
j − p

2
− 3

2

)
+ 1

4

⌋
. (3.5)

To describe the procedure used to get P(2 j + p; j, 4) let us
consider the case d (1) = j − p/2 − 3/2 = 3n, where n is an
integer. One has then σ = �3n/2 + 1/4� so that one must split
the cases n even and odd. If n = 2ν with ν integer, then σ =
3ν. Writing θ (d ) for the number on the right of the bracket in
(2.11a), we have

P(2 j + p; j, 4) =
σ∑

s=1

1

3

(
j − p

2
− 2s + 1

2

)2

+
σ∑

s=1

θ (d (s)).

(3.6a)

The quantity d (s) = j − p/2 − 2s + 1/2 is equal to
j − p/2 − 3/2 = 3n = 6ν, 3n − 2, 3n − 4, . . . , 2 for
s = 1, . . . , σ . Since σ = 3ν, there are ν elements in the sum
such that d mod 3 = 0, and as many such that d mod 3 = 1
and d mod 3 = 2. The sum of θ (d ) is, according to (2.11a),
(0 − 1/3 − 1/3)ν = −2ν/3. The final result is

P(2 j + p; j, 4) =
σ∑

t=1

4

3
t2 − 2

3
ν (3.6b)

= 2

9
(3ν)(3ν + 1)(6ν + 1) − 2

3
ν

= 6ν2(2ν + 1) (3.6c)

= 1

18

(
j − p

2
−3

2

)2(
j− p

2
+3

2

)
in the case j

− p

2
− 3

2
= 6ν. (3.6d)

The procedure must be repeated in the cases d (1) = 3n, 3n +
1/2, 3n + 1, 3n + 3/2, 3n + 2, 3n + 5/2, with n = 2ν, n =
2ν + 1, where ν is integer. From the expression (2.11a),
one notes that the sought number P(M; j, 4) is a sum of
P( j + t ; j, 3) that can be written as

P(2 j + p; j, 4) = 1

3

σ∑
s=1

[d (s)]2 −
σ∑

s=1

θ (d (s)) (3.7a)

= 4

3

σ∑
s=1

(
j

2
− p − 1

4
− s

)2

−
σ∑

s=1

θ (d (s))

(3.7b)

= 4

3

σ−1∑
t=0

(t + b)2 −
σ∑

s=1

θ (d (s)) (3.7c)

where b = j/2 − (p − 1)/4 − σ is the smallest value of the
quantity d (s)/2 in the sum (3.7a). Therefore the computation
of P(2 j + p; j, 4) amounts to obtaining the sum of the squares
of numbers in arithmetical progression, which is easy to eval-
uate. This sum must be corrected by the term

∑
s θ (d (s)).
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TABLE II. Various cases for the computation of P(2 j + p; j, 4) in the case p = 2q even, i.e., j − p/2 + 1/2 integer. The number of
states P(2 j + p; j, 4) is given by 4

3

∑σ−1
t=0 (t + b)2 + S with S = ∑

s θ (d (s)). The number of terms in the sum defining P(2 j + p; j, 4) is σ =
�d (1)/2 + 1/4�. One has e2 = (2ν + 1)(6ν2 + 6ν + 1), e5 = (ν + 1)(12ν2 + 24ν + 11) for j − p/2 − 3/2 = 6ν + 2, 6ν + 5 respectively.

j − p
2 − 3

2 6ν 6ν + 1 6ν + 2 6ν + 3 6ν + 4 6ν + 5

σ 3ν 3ν 3ν + 1 3ν + 1 3ν + 2 3ν + 2
b 1 3/2 1 3/2 1 3/2∑

s θ (d (s)) −2ν/3 −2ν/3 −(2ν + 1)/3 −2ν/3 −2(ν + 1)/3 −(2ν + 1)/3
P(2 j + p; j, 4) 6ν2(2ν + 1) 3ν(2ν + 1)2 e2 3(ν + 1)(2ν + 1)2 6(ν + 1)2(2ν + 1) e5

The parameters σ, b,
∑

s θ (d (s)) corresponding to each case are described in the Tables II and III for p even and odd
respectively. The last line of these tables provides the number of states as given by (3.7c). The ν-dependent values can be
expressed back versus the physical quantities j, p. With the additional definition

X = j − p

2
− 1

2
(3.8)

the expressions for P(2 j + p; j, 4) will be even simpler. In the case p = 2q even, from Table II results, a detailed inspection
proves that the expression of P(2 j + 2q; j, 4) versus j, q is identical for each pair of adjacent columns. Namely, columns 6ν

(resp. 6ν + 1, 6ν + 2) and 6ν + 3 (resp. 6ν + 4, 6ν + 5) provide the same result, so that the P(2 j + 2q; j, 4) value does not
depend on j − q − 1/2 mod 6 but on j − q − 1/2 mod 3. Expressing ν versus j, q one has, using the definition (3.8),

P(2 j + 2q; j, 4) =

⎧⎪⎪⎨
⎪⎪⎩

1
18

(
j − q − 3

2

)2(
j − q + 3

2

) = X 3

18 − X
6 + 1

9 if j − q + 3
2 = 3n,

1
18

(
j − q − 5

2

)(
j − q + 1

2

)2 = X 3

18 − X
6 − 1

9 if j − q + 3
2 = 3n + 1,

1
18

(
j − q − 1

2

)[(
j − q − 1

2

)2 − 3
] = X 3

18 − X
6 if j − q + 3

2 = 3n + 2.

(3.9)

In the case of odd p one must also express P(2 j + 2q + 1; j, 4) versus j, q or more precisely versus X = j − q − 1. The six
cases considered in Table III provide as many different expressions. As seen on Eq. (3.9), the final expressions are simpler as
functions of X . One has

P(2 j + 2q + 1; j, 4) = X 3

18
− X

24
+ ψ

(
j − q − 1

2

)
,

where ψ

(
j − q − 1

2

)
=
(

− 1

72
,

1

72
,−1

8
,

17

72
,−17

72
,

1

8

)
if j − q − 1

2
mod 6 = (0, 1, 2, 3, 4, 5) respectively. (3.10)

B. Determination of P(M; j, 4) if M < 2 j

From Talmi’s equation one has, assuming q positive integer,

P(2 j − q; j, 4) = P(2 j − q; j − 1, 4) + P(3 j − q; j − 1, 3) + P( j − q; j − 1, 3) + P(2 j − q; j − 1, 2), (3.11)

which suggests implementing a recurrence on q. Indeed the elements P(3 j − q; j − 1, 3), P( j − q; j − 1, 3), P(2 j − q; j − 1, 4)
are known. In addition

P(2 j − q, j − 1, 4) = P(2( j − 1) − (q − 2), j − 1; 4) (3.12)

TABLE III. Various cases for the computation of P(2 j + p; j, 4) in the case p = 2q + 1 odd, i.e., j − p/2 + 1/2 half-integer. One has
o1 = 12ν3 + 15ν2 + 6ν + 1 for j − p/2 − 3/2 = 6ν + 3/2 and o2 = 12ν3 + 21ν2 + 12ν + 2 for j − p/2 − 3/2 = 6ν + 5/2. See Table II
for details.

j − p
2 − 3

2 6ν + 1/2 6ν + 3/2 6ν + 5/2 6ν + 7/2 6ν + 9/2 6ν + 11/2

σ 3ν 3ν + 1 3ν + 1 3ν + 2 3ν + 2 3ν + 3
b 5/4 3/4 5/4 3/4 5/4 3/4∑

s θ (d (s)) ν/12 (ν + 3)/12 (ν − 1)/12 (ν + 2)/12 (ν + 2)/12 (ν + 1)/12
P(2 j + p; j, 4) ν(12ν2 + 9ν + 2) o1 o2 (ν + 1)(12ν2 + 15ν + 5) 3(ν + 1)2(4ν + 3) 3(ν + 1)2(4ν + 5)
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shows that the expression for P(2 j + 1, j; 4) [resp. P(2 j, j; 4)] obtained above—using (3.10), (3.9) respectively—allows us to
get P(2 j − 1; j, 4) [resp. P(2 j − 2; j, 4)]. This leads us to split the discussion according to the parity of q. We first define

F ( j, q) = P(3 j − q; j − 1, 3) + P(2 j − q; j − 1, 2). (3.13)

Using the expression (2.11a), it is easy to prove that, if j � q + 1/2,

F ( j, 2q) =
{

q2/3 if q mod 3 = 0,

(q2 − 1)/3 if q mod 3 = 1, 2,
(3.14)

and, assuming again j � q + 1/2, that

F ( j, 2q + 1) =
{

q(q + 1)/3 if q mod 3 = 0, 2,

(q2 + q + 1)/3 if q mod 3 = 1.
(3.15)

1. Computation of P(2 j − 2p; j, 4)

We first consider the case where q is even. The above formula for F ( j, 2p) provides us with the expression for P(2 j − 2; j, 4).
Using (2.18) for P3 = P( j − q, j − 1, 3) and (3.9) for P1 = P(2 j − 2; j − 1, 4) we get P(2 j − 2; j, 4) = P1 + P3. Writing x =
j − 3/2, one considers three cases according to j mod 3.

(i) If j mod 3 = 1/2, P1 = x3/18 − x/6 − 1/9, P3 = 2( j − 2) + 1
3 ( j − 7/2)2, so that

P(2 j − 2; j, 4) = 1

144
(8 j3 + 12 j2 − 16 j + 5) = ( j + 1/2)3

18
− j + 1/2

6
+ 1

9
. (3.16a)

(ii) If j mod 3 = 3/2, P1 = x3/18 − x/6, P3 = 2( j − 2) + 1
3 ( j − 9/2)( j − 5/2), whence

P(2 j − 2; j, 4) = 1

144
(8 j3 + 12 j2 − 16 j − 27) = ( j + 1/2)3

18
− j + 1/2

6
− 1

9
. (3.16b)

(iii) If j mod 3 = 5/2, P1 = x3/18 − x/6 + 1/9, P3 = 2( j − 2) + 1
3 ( j − 9/2)( j − 5/2), from which

P(2 j − 2; j, 4) = 1

144
(8 j3 + 12 j2 − 16 j − 11) = ( j + 1/2)3

18
− j + 1/2

6
. (3.16c)

A series of similar computations for greater values of q has been performed and leads us to propose the formula

P(2 j − 2q; j, 4) = ( j + q − 1/2)3

18
− ( j + q − 1/2)

6
− f (q) + θ ( j + q), (3.17)

which we will prove by recurrence on q. The initial computations show that f (0) = 0, f (1) = 0, and the general expression for
f (q) will be obtained below. The initial value q = 0 (3.16) requires that

θ ( j + q) =
⎧⎨
⎩

−1/9 if j + q + 1/2 mod 3 = 0,

0 if j + q + 1/2 mod 3 = 1
+1/9 if j + q + 1/2 mod 3 = 2.

(3.18)

Let us assume the recurrence (3.17) true up to q = p (e.g., p = 0 or 1), and prove it for q = p + 1. With definition (3.14),

F ( j, 2p + 2) = 1
3 (p + 1)2 + εp+1, with εp+1 = − 1

3 if p + 1 mod 3 = 1 or 2, otherwise 0, (3.19)

we get from the fundamental relation (1.3)

P(2 j − 2p − 2; j, 4) = P(2( j − 1) − 2p; j − 1, 4) + P( j − 2p − 2; j − 1, 3) + F ( j, 2p + 2). (3.20)

The recurrence hypothesis applies to the first term of (3.20):

P(2( j − 1) − 2p; j, 4) = ( j + p − 3/2)3

18
− ( j + p − 3/2)

6
− f (p) + θ ( j − 1, p). (3.21)

The second term of (3.20) is obtained from (2.18):

P( j − 2p − 2; j − 1, 3) = 1

3
( j + p − 1/2)2 − (p + 1/2)2 − 1

12
+ τ ( j + p) (3.22a)

with τ ( j + p) = 1

3
if j − 2p − 1

2
mod 3 = j + p − 1

2
mod 3 = 0, (3.22b)

and τ ( j + p) = 0 if j − 2p − 1

2
mod 3 = j + p − 1

2
mod 3 = 1 or 2. (3.22c)
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In order to verify the recurrence for q = 2p + 2, according to Eq. (3.20) one must verify for every j

� − f (p + 1) + θ ( j + p + 1) = − f (p) + θ ( j − 1 + p) + εp+1 + τ ( j + p), (3.23)

where � contains the terms function of j, p except f (p) and the quantities defined modulo 3:

� = ( j + p + 1/2)3

18
− ( j + p + 1/2)

6
− ( j + p − 3/2)3

18
+ ( j + p − 3/2)

6

− 1

3
( j + p − 1/2)2 + (p + 1/2)2 + 1

12
− (p + 1)2

3
. (3.24)

After some basic algebraic manipulations one obtains

� = 2

3
p2 + p

3
− 2

9
. (3.25)

In addition, one may verify that δ = θ ( j + p + 1) − θ ( j − 1 + p) − τ ( j + p) does not depend on j. Indeed

δ =
⎧⎨
⎩

1/9
−1/9

0
−
⎧⎨
⎩

−1/9
0

1/9
−
⎧⎨
⎩

1/3
0
0

if j + p − 1

2
mod 3 =

⎧⎨
⎩

0
1
2

(3.26)

which leads to δ = −1/9 in all cases. Equation (3.23) may be rewritten, using εp+1 as given by (3.19):

f (p + 1) − f (p) = � + δ − εp+1 (3.27a)

=
{

2p2/3 + p/3 − 1/3 + 1/3 if p mod 3 = 0 or 1,

2p2/3 + p/3 − 1/3 if p mod 3 = 2,
(3.27b)

which is

f (p + 1) − f (p) =
{ 1

3 p(2p + 1) if p mod 3 = 0 or 1,
1
3 (p + 1)(2p − 1) = 1

3 p(2p + 1) − 1
3 if p mod 3 = 2.

(3.28)

Since f (p + 1) − f (p) is indeed independent of j, the recurrence assumption (3.17) is verified. The proof is completed by the
determination of f (p). Applying Eq. (3.28) for p, p + 1, p + 2, we get, whatever p mod 3,

f (p + 3) − f (p) = p

3
(2p + 1) + (p + 1)

3
(2p + 3) + (p + 2)

3
(2p + 5) − 1

3
= 2p2 + 5p + 4. (3.29)

From the known initial values f (0) = f (1) = 0 using (3.28) one gets f (2) = 1, and more generally f (p):

f (3n + p0) − f (p0) =
n−1∑
t=0

[2(3t + p0)2 + 5(3t + p0) + 4]; (3.30)

and considering p0 = 0, 1, 2 separately we obtain

f (p) = f0(p) = m

2
(12m2 − 3m − 1) = 2

9
p3 − p2

6
− p

6
if p = 3m, (3.31a)

f (p) = f1(p) = m

2
(12m2 + 9m + 1) = 2

9
p3 − p2

6
− p

6
+ 1

9
if p = 3m + 1, (3.31b)

f (p) = f2(p) = (m + 1)

2
(12m2 + 9m + 2) = 2

9
p3 − p2

6
− p

6
+ 2

9
if p = 3m + 2. (3.31c)

A further generalization consists in verifying that the expression (3.17) may be applied even for q negative provided one cancels
the f (q) term. Indeed, comparing this expression to the known values (3.9), one notes that

P(2 j − 2q; j, 4) = ( j + q − 1/2)3

18
− ( j + q − 1/2)

6
+ θ ( j + p) if q < 0 (3.32)

from which one gets, whatever the sign of the integer q,

P(2 j − 2q; j, 4) = ( j + q − 1/2)3

18
− ( j + q − 1/2)

6
− H (q) f (q) + θ ( j + q), (3.33)

H (q) being the Heaviside function, H (q) = 1 if q � 0, 0 otherwise.
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2. Computation of P(2 j − 2p − 1; j, 4)

As a first example, the computation of P(2 j − 1; j, 4) is detailed in Appendix C. In order to discover the general formula,
we also got expressions for P(2 j − 3; j, 4) and P(2 j − 5; j, 4). An analysis on P(M; j, 4) with 2 j − M odd similar to the case
2 j − M even leads us to propose the relation

P(2 j − 2q − 1; j, 4) = ( j + q)3

18
− ( j + q)

24
− g(q) + φ( j + q), (3.34)

which will be demonstrated by recurrence. The direct computation in the first two cases show that g(0) = 0 and g(1) = 0. From
the analysis of Appendix C one imposes that, if q � 0,

φ( j + q) =
(

1

72
,−1

8
,

17

72
,−17

72
,

1

8
,− 1

72

)
if j + q − 1

2
mod 6 = (0, 1, 2, 3, 4, 5) respectively. (3.35)

Assuming that (3.34) is true up to q = p, we now try to prove it for q = p + 1. Using the value of (3.15),

F ( j, 2p + 3) = 1

3
(p + 1)(p + 2) + μp+1, where μp+1 = 1

3
if (p + 1) mod 3 = 1, otherwise μp+1 = 0, (3.36)

the fundamental relation (1.3) may be written

P(2 j − 2p − 3; j, 4) = P(2( j − 1) − 2p − 1; j − 1, 4) + P( j − 2p − 3; j − 1, 3) + F ( j, 2p + 3). (3.37)

The recurrence hypothesis is again applied to the first term at the second member of (3.37):

P(2( j − 1) − 2p − 1; j, 4) = ( j + p − 1)3

18
− ( j + p − 1)

24
− g(p) + φ( j − 1, p). (3.38)

The second term at the second member of (3.37) is given by (2.19a)

P( j − 2p − 3; j − 1, 3) = 1

3
( j − 1 + p + 1)2 − (p + 1)2 − 1

12
+ υ( j + p) (3.39a)

with υ( j + p) = 1

3
if j − 2p − 1

2
mod 3 = j + p − 1

2
mod 3 = 1, (3.39b)

and υ( j + p) = 0 if j − 2p − 1

2
mod 3 = j + p − 1

2
mod 3 = 0 or 2. (3.39c)

In order to verify the recurrence for q = 2p + 3, from (3.37) one must have for every j

�′ − g(p + 1) + φ( j + p + 1) = −g(p) + φ( j − 1 + p) + μp+1 + υ( j + p), (3.40)

where �′ contains the terms function of j, p except g(p) and the terms defined modulo 3 or modulo 6

�′ = ( j + p + 1)3

18
− ( j + p + 1)

24
− ( j + p − 1)3

18
+ ( j + p − 1)

24
− 1

3
( j + p)2 + (p + 1)2 + 1

12
− 1

3
(p + 1)(p + 2). (3.41)

After some algebra one gets

�′ = 2

3
p2 + p + 4

9
. (3.42)

In addition one can check that δ′ = φ( j + p + 1) − φ( j − 1 + p) − υ( j + p) is independent of j. Indeed

δ′ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1/8
17/72

−17/72
1/8

−1/72
1/72

−

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−1/72
1/72
−1/8
17/72

−17/72
1/8

−

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
1/3
0
0

1/3
0

if j + p − 1

2
mod 3 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0
1
2
3
4
5

(3.43)

therefore δ′ = −1/9 in all cases. Equation (3.40) may be rewritten as

g(p + 1) − g(p) = �′ + δ′ − μp+1 = 2

3
p2 + p + 1

3
− μp+1, (3.44)

which is, using μp+1 as given by (3.36),

g(p + 1) − g(p) =
{ 1

3 p(2p + 3) = 1
3 (p + 1)(2p + 1) − 1

3 if p mod 3 = 0,
1
3 (p + 1)(2p + 1) if p mod 3 = 1 or 2.

(3.45)

064324-9



MICHEL POIRIER AND JEAN-CHRISTOPHE PAIN PHYSICAL REVIEW C 104, 064324 (2021)

Since g(p + 1) − g(p) is indeed independent of j the recurrence relation (3.34) is proved and g(p) may be computed. One may
use (3.45) in order to get g(1) = 0, g(2) = 2 from g(0) = 0. One has then, whatever p mod 3,

g(p + 3) − g(p) = (p + 1)

3
(2p + 1) + (p + 2)

3
(2p + 3) + (p + 3)

3
(2p + 5) − 1

3
= 2p2 + 7p + 7. (3.46)

From the values of g(p) for p0 = 0, 1, 2 one obtains the general expression

g(3n + p0) − g(p0) =
n−1∑
t=0

[2(3t + p0)2 + 7(3t + p0) + 7] (3.47)

and, splitting cases p0 = 0, 1, 2,

g(p) = g0(p) = n

2
(12n2 + 3n − 1) = 2

9
p3 + p2

6
− p

6
if p = 3n, (3.48a)

g(p) = g1(p) = n

2
(12n2 + 15n + 5) = 2

9
p3 + p2

6
− p

6
− 2

9
if p = 3n + 1, (3.48b)

g(p) = g2(p) = (n + 1)

2
(12n2 + 15n + 4) = 2

9
p3 + p2

6
− p

6
− 1

9
if p = 3n + 2. (3.48c)

As for even p, comparing expressions (3.10) and (3.34) for q negative or positive, one may write the general relation

P(2 j − 2q − 1; j, 4) = ( j + q)3

18
− ( j + q)

24
− H (q)g(q) + φ( j + q), (3.49)

where H (q) is the Heaviside function, and φ( j + q) is given by (3.35).

3. General expression for the distribution of the magnetic
quantum number

The formulas (3.17), (3.34) for P(2 j − n; j, 4) in the cases
n even and odd can even be gathered in a single expression.
One notices that the first term can be simply written as [ j +
(n − 1)/2]3/18, while the second is −[ j + (n − 1)/2]/6 +
π (n)[ j + (n − 1)/2]/8, where π (n) is 0 if n is even, 1 if n
is odd. The third term of the quoted formulas may also be
unified, noting that from the values (3.31a), (3.48) one has

g2(x − 1/2) = f1(x) − 1
8 , (3.50)

which allows us to write f (n/2) and g[(n − 1)/2] with
a single formula, namely f (n/2) = f1(n/2) + ξ (n) with

ξ (n) = (−1/9, 0, 1/9) if n/2 mod 3 = 0, 1, 2 respectively,
and g((n − 1)/2) = f1(n/2) + ξ (n) with ξ (n) = (−1/8 +
1/9,−1/8 − 1/9,−1/8) for (n − 1)/2 mod 3 = 0, 1, 2 re-
spectively. Finally the term θ ( j + n/2) and φ( j + (n −
1)/2) in these formulas can be collected in a sin-
gle expression, if one considers 2 j + n mod 12 value. If
n is even, from the expression (3.18) one may write
this term as θ ( j + n/2) = (0, 1/9,−1/9, 0, 1/9,−1/9) for
2 j + n − 1 mod 12 = (0, 2, 4, 6, 8, 10) respectively. If n is
odd, from (3.35) this term is φ( j + q) = φ( j + (n −
1)/2) = (1/72,−1/8, 17/72,−17/72, 1/8,−1/72) for 2 j +
n − 1 mod 12 = (1, 3, 5, 7, 9, 11) respectively. One obtains
the single formula

P(2 j − n; j, 4) = 1

18

(
j + n − 1

2

)3

−
(

1

6
− π (n)

8

)(
j + n − 1

2

)
− H (n)

[
f1

(n

2

)
+ ξ (n)

]
+ ω(2 j + n − 1)

(3.51a)

with π (n) = n mod 2, ξ (n) =
(

−1

9
,− 1

72
, 0,−17

72
,

1

9
,−1

8

)
if n mod 6 = (0, 1, 2, 3, 4, 5) respectively,

(3.51b)

f1(n) = 2

9
n3 − n2

6
− n

6
+ 1

9
, (3.51c)

ω(2 j + n − 1) =
(

0,
1

72
,

1

9
,−1

8
,−1

9
,

17

72
, 0,−17

72
,

1

9
,

1

8
,−1

9
,− 1

72

)
if 2 j + n − 1 mod 12 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11) respectively. (3.51d)

In this formula 2 j − n must be non-negative, n
may be negative. Explicitly, n must be such that
−2 j + 6 � n � 2 j.

Though this paper is not devoted to deriving approxi-
mations, one will observe that for n � 0 one has |ω(2 j +
n − 1) − ξ (n)| � 17/36, and for n < 0 one has |ω(2 j + n −
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FIG. 1. Magnetic quantum number distribution P(M; j, 4) for a
4-fermion system with spin j = 7/2. The red (resp. blue) curve is the
approximation (3.52) with π (n) = 0 (resp. 1). The black circles are
the exact values.

1)| � 17/72, so that the approximation

P(2 j − n; j, 4) � Papp(2 j − n; j, 4)

= 1

18

(
j + n − 1

2

)3

−
(

1

6
− π (n)

8

)

×
(

j + n − 1

2

)
− H (n) f1

(n

2

)
(3.52)

results in an absolute error below 1/2. The relative error
will be small if conditions [ j + (n − 1)/2] � 1, n � 1 are
met. For really large j, even the π (n) dependent term may
be omitted, but the resulting approximation is not as good.
This is illustrated by Figs. 1 and 2 for j = 7/2 and 15/2
respectively. As can be seen in the approximate form above,
both approximations π (n) = 0 and 1 exhibit a discontinuity of
1/9 at n = 0 or M = 2 j since f1(0) = 1/9. Though the above
approximation is rough for j = 7/2 it proves to be fair for
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FIG. 2. Magnetic quantum number distribution P(M; j, 4) for a
four-fermion system with spin j = 15/2. See Fig. 1 for details.

higher j, and correctly reproduces the even-odd staggering,
previously noticed in the atomic physics context [11,12].

C. Total number of levels

A direct application of the above derived expression for
P(M; j, 4) is the determination of the total number of levels.
From the relation (1.2a), one verifies that the total number
of levels for four fermions of spin j is given by P(0; j, 4),
which is easily obtained with (3.34). Writing q = j − 1/2 in
this equation, one gets

P(0; j, 4) = (2 j − 1/2)3

18
− (2 j − 1/2)

24

− g( j − 1/2) + φ(2 j − 1/2). (3.53)

One has to consider three cases according to j − 1/2 mod 3.
If j − 1/2 = 3n, the first equation in the group (3.48) ap-
plies, and one has φ(2 j − 1/2) = 1/72. If j − 1/2 = 3n + 1,
the second equation in the group (3.48) applies, and φ(2 j −
1/2) = 17/72. If j − 1/2 = 3n + 1, the third equation (3.48)
is relevant, and φ(2 j − 1/2) = 1/8. One obtains the general
formula

P(0; j, 4) = 2

9
j3 − j2

6

+ j

6

⎧⎨
⎩

−5/72 if j − 1/2 mod 3 = 0,

+3/8 if j − 1/2 mod 3 = 1,

+11/72 if j − 1/2 mod 3 = 2.

(3.54)

D. Distribution of the total angular momentum

Once again, the fundamental relation (1.2a), together with
the expression (3.51) of the M distribution for a four-fermion
system, allow us to derive the distribution of the total momen-
tum J . One must evaluate Q(2 j − n; j, 4) = P(2 j − n; j, 4) −
P(2 j − (n − 1); j, 4) which we will write as Q1 + Q2 + Q3.
The quantity Q1 consists in the contribution of first two terms
of (3.51), which is easily obtained noticing that π (n − 1) =
1 − π (n),

Q1 = X 3

18
− X

6
− (X − 1/2)3

18
+ X − 1/2

6
− j + n/2 − 1

8

+ π (n)

8
(2 j + n − 3/2) with X = j + n − 1

2
(3.55)

= 1

12

(
j + n − 3

2

)2

− 7

72
+ π (n)

8
(2 j + n − 3/2). (3.56)

The quantity Q2 is the difference of terms involving the
Heaviside factors H (n) and H (n − 1). These factors are equal
except in the case n = 0, which requires more attention: one
must note that the factor of H (n − 1) for n = 0 is f1(−1/2) +
ξ (−1), which is zero according to the values (3.51b), (3.51c).
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Therefore one may write

Q2 = −H (n)[ f1(n/2) + ξ (n)− f1((n − 1)/2)−ξ (n − 1)]

(3.57a)

= −H (n)

[
n2

12
− n

6
− 1

72
+ ξ (n)

]
(3.57b)

with

ξ (n) = ξ (n) − ξ (n − 1)

=
(

1

72
,

7

72
,

1

72
,−17

72
,

25

72
,−17

72

)

for n mod 6 = 0, 1, 2, 3, 4, 5 respectively. (3.57c)

Finally the ω-dependent term is simply

Q3 = ω(2 j + n − 1) = ω(2 j + n − 1) − ω(2 j + n − 2)

(3.58a)

=
(

1

72
,

1

72
,

7

72
,− 17

72
,

1

72
,

25

72
,−17

72
,

−17

72
,

25

72
,

1

72
,−17

72
,

7

72

)
(3.58b)

for 2 j + n − 1 mod 12 = 0 − 11 respectively. The complete
formula is

Q(2 j − n; j, 4) = 1

12

(
j + n − 3

2

)2

− 7

72
+ π (n)

8
(2 j + n − 3/2)

− H (n)

[
(n − 1)2

12
− 7

72
+ ξ (n)

]

+ ω(2 j + n − 1). (3.59)

Similarly to the M-distribution study, one observes that for
n � 0 one has |ω(2 j + n − 1) − ξ (n)| � 7/12, while for n <

0 one has |ω(2 j + n − 1)| � 25/72, so that the congruence-
free approximation

Q(2 j − n; j, 4) � Qapp(2 j − n; j, 4) = 1

12

(
j + n − 3

2

)2

− 7

72
+ π (n)

8
(2 j + n − 3/2)

− H (n)

[
(n − 1)2

12
− 7

72

]
(3.60)

holds with an error less than unity. The approximation is
tested in Figs. 3 and 4 for j = 7/2 and 15/2 respectively.
Since the main contribution to Q(J; j, 4) scales as the squares
j2 or n2 instead of cubes in the P(M; j, 4) case, the above
approximation is not as good as Papp(M; j, 4). Nevertheless
the above formula is quite simple and efficient for moderate
j values. As for the above P(M; j, 4) analysis, one notices
a significant even-odd staggering [11,12] which is correctly
reproduced by the above formula. Finally one will note that
the discontinuity on the approximate values at n = 0 is only
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FIG. 3. Angular momentum distribution Q(J; j, 4) for a four-
fermion system with spin j = 7/2. The red (resp. blue) curve is the
approximation (3.60) with π (n) = 0 (resp. 1). The black circles are
the exact values.

1/72 so that the red and blue curves look almost continuous
at J = 2 j.

IV. TOTAL NUMBER OF LEVELS IN FIVE-FERMION
SYSTEMS

The formula (3.51) allows us to get the total number of lev-
els for a five-fermion system, which is equal to P(1/2; j, 5).
From (1.3), one may write, for s from 1 to s = j − 3/2,

P(1/2; j − s + 1, 5) = P(1/2; j − s, 5)

+ P( j − s + 3/2; j − s, 4)

+ P( j − s + 1/2; j − s, 4)

+ P(1/2; j − s, 3), (4.1)
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FIG. 4. Angular momentum distribution Q(J; j, 4) for a four-
fermion system with spin j = 15/2. See Fig. 3 for details.
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which gives the total number of levels as a sum,

P(1/2; j, 5) = S1 + S2 + S3 (4.2a)

S1 =
j−5/2∑
s=1

P( j − s + 3/2; j − s, 4) (4.2b)

S2 =
j−5/2∑
s=1

P( j − s + 1/2; j − s, 4) (4.2c)

S3 =
j−3/2∑
s=1

P(1/2; j − s, 3), (4.2d)

knowing that for s = j − 3/2 the elements P( j − s + 1 ±
1/2; j − s, 4) vanish. The sum S3 is easily derived from (2.5)

S3 =
j−3/2∑
s=1

1

2

[
( j − s)2 − 1

4

]
= 1

48
(2 j − 3)(2 j − 1)(2 j + 1)

= j3

6
− j2

4
− j

24
+ 1

16
. (4.3)

Using the formula for the four-fermion distribution (3.51), the
sum (4.2) may be rewritten by gathering the contributions to
S1 and S2:

P(1/2; j, 5) = A − � + � (4.4a)

A =
∑

u=0,1

j−5/2∑
s=1

[
(3 j − 3s − u − 1/2)3

144
− (3 j − 3s − u − 1/2)

12
− f1

(
j − s − u − 1/2

2

)]

+
∑

u=0,1

j−5/2∑
s=1

[
π ( j − s − u − 1/2)

(3 j − 3s − u − 1/2)

16

]
+ S3, (4.4b)

� =
∑

u=0,1

j−5/2∑
s=1

ξ ( j − s − u − 1/2), (4.4c)

� =
∑

u=0,1

j−5/2∑
s=1

ω(3 j − 3s − u − 3/2). (4.4d)

In order that P( j − s + 1 ± 1/2; j − s, 4) be nonzero, on
must have j � 7/2. When evaluating the last part of the
sum A, because of the factor π ( j − s − u − 1/2) one must
consider separately the cases j − 1/2 even and odd. We de-
fine n = j − s − u − 1/2. If j − 1/2 = 2ν is even, we have
n = 2ν − 1 − s (resp. 2ν − s) for u = 1 (resp. u = 0), and n
will be odd if s = 2t, 1 � t � ( j − 5/2)/2 = ν − 1(resp. s =
2t − 1, 1 � t � ( j − 5/2)/2 = ν − 1). If j − 1/2 = 2ν + 1
is odd, we have n = 2ν − s (resp. 2ν + 1 − s) for u = 1, 0
respectively, and since n must be odd, the summation index is
s = 2t − 1, 1 � t � ( j − 3/2)/2 = ν (resp. s = 2t, 1 � t �
( j − 7/2)/2 = ν − 1). This allows one to compute A as a
sum of first, second, and third powers of terms in arithmetic
progression, which is a simple operation. Namely we get

A = 23 j4

288
− 23 j3

144
+ 49 j2

576
− 139 j

576
+ α, (4.5a)

α = 2063

4608
if j − 1/2 even,

1919

4608
if j − 1/2 odd.

(4.5b)

For j � 7/2, specifying the contributions u = 0, 1 the sum
� may be written � = �1 + �0, �1 = ∑ j−5/2

t=1 ξ (t ), �0 =∑ j−3/2
t=2 ξ (t ). The quantities �0, �1, � as functions of j are

easily derived from the definition (3.51b) of ξ . Since ξ (n)
is periodic with period 6, one will note that

∑5
n=0 ξ (n) =

−3/8, and therefore �1( j + 6) = �1( j) − 3/8, �0( j + 6) =
�0( j) − 3/8, and �( j + 6) = �( j) − 3/4.

We have, from the definition (4.4c), defining a new table
Tξ (n) equally periodic with period 6,

� =
j−7/2∑
t=0

[ξ (2 + t ) + ξ (1 + t )]

= −3

4

⌊
j − 7/2

6

⌋
+ Tξ ( j − 7/2)

= −1

8

[
j − 7

2
−
(

j − 7

2
mod 6

)]

+ Tξ ( j − 7/2),

where Tξ (n) =
(

− 1

72
,−1

4
,−3

8
,− 7

18
− 5

8
,−3

4

)

if n mod 6 = (0, 1, 2, 3, 4, 5) respectively. (4.6)

The sum over ω(n) is obtained in a similar way. One has, from
definition (4.4d),

� =
j−5/2∑
s=1

[ω(3 j − 3s − 5/2) + ω(3 j − 3s − 3/2)]

=
j−7/2∑
t=0

[ω(5 + 3t ) + ω(6 + 3t )] = �1 + �0 (4.7)

and using the ω value (3.51d) it easy to check that �1( j +
4) = �1( j) + 4/9, �0( j + 4) = �0( j), �( j + 4) = �( j) +

064324-13



MICHEL POIRIER AND JEAN-CHRISTOPHE PAIN PHYSICAL REVIEW C 104, 064324 (2021)

4/9. One obtains the last contribution

� = 4

9

⌊
j − 7/2

4

⌋
+ Uω( j − 7/2)

with Uω(n) =
(

17

72
,

17

36
,

11

24
,

4

9

)

if n mod 4 = (0, 1, 2, 3) respectively. (4.8)

With �( j − 7/2)/4� = [ j − 7/2 − ( j − 7/2 mod 4)]/4, one
gets

� = 1

9

[
j − 7

2
−
(

j − 7

2
mod 4

)]
+ Uω( j − 7/2). (4.9)

Collecting (4.9), (4.6), one obtains

� − � = 17

72
j − 119

144
+ T ( j − 7/2 mod 6)

+ U ( j − 7/2 mod 4) (4.10a)

with, for n = 0, 1, 2, 3, 4, 5, T (n) = −Tξ (n) − n/8 or

T (n) =
(

1

72
,

1

8
,

1

8
,

1

72
,

1

8
,

1

8

)
, (4.10b)

and, for n = 0, 1, 2, 3, U (n) = Uω(n) − n/9 or

U (n) =
(

17

72
,

17

36
,

17

72
,

1

9

)
. (4.10c)

The expression for P(1/2; j, 5) = A − � + � comes from re-
lations (4.5a), (4.10). We get

P(1/2; j, 5) = 23 j4

288
− 23 j3

144
+ 49 j2

576
− j

192
+ p0 (4.11a)

with

p0 =
(

− 73

512
,− 737

4608
,

55

512
,− 25

512
,−1169

4608
,

− 25

512
,

55

512
,− 737

4608
,− 73

512
,− 25

512
,

− 17

4608
,− 25

512

)

if j − 5

2
mod 12 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11).

(4.11b)

For instance, one gets P(1/2; 7/2, 5) = 6. Since a j = 7/2
subshell has a degeneracy g = 8, this corresponds to a three-
hole system. One expects that the total number of levels is
the same for a three-fermion j = 7/2 shell. Using Eq. (2.5)
one indeed finds P(1/2; 7/2, 3) = 6, in agreement with the
j5 number of levels. This is a simple consistency check of
Eq. (4.11a).

V. DERIVATION OF SUM RULES FOR SIX- j AND
NINE- j SYMBOLS

A. Three-fermion case: Sum rules for six- j symbols

It was shown in Ref. [9] that, for three-fermion systems,

Q(J, j, 3) = 1

3

∑
Jmin�J1�Jmax

J1 even

[
1 + 2(2J1 + 1)

{
J1 j J
J1 j j

}]
,

(5.1)
where Jmin = |J − j| and Jmax = min(2 j, j + J ). Replacing
the left-hand side of Eq. (5.1) by the expressions (2.24) and
(2.25) of Q(J, j, 3) provides a new sum rule on six- j coeffi-
cients:

2
∑

Jmin�J1�Jmax
J1 even

[
1 + 2(2J1 + 1)

{
J1 j J
J1 j j

}]

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(3 j−J )+q̃3p with q̃3p = (0,−1,−2, 3,−4, 1) for j�J
and (3 j − J ) mod 6 = (0, 1, 2, 3, 4, 5) respectively,

2J + q̃3m with q̃3m = (−1, 3, 1) for for j � J
and J mod 3 = (1/2, 3/2, 5/2) respectively.

(5.2)

To our knowledge, the above sum rule is not included in
reference books such as Ref. [13], nor can it be deduced in
a simple way from elementary sum rules.

B. Four-fermion case: Connection to Ginocchio-Haxton
and Rosensteel-Rowe sum rules

The number of J = 0 states for four fermions in a single- j
shell was originally solved by Ginocchio and Haxton [14–16].
They found that

Q(0; j, 4) =
⌊

2 j + 3

6

⌋
. (5.3)

Using formula (3.59) with n = 2 j, one gets after simple op-
erations Q(0; j, 4) = j/3 − 1/12 + ω(4 j − 1) − ξ (2 j). With
the above definitions of ξ and ω, one gets Q(0; j, 4) = ( j −
1/2)/3, ( j + 3/2)/3, and ( j + 1/2)/3 for j − 1/2 mod 3 =
0, 1, 2 respectively. It is then simple to verify that such ex-
pressions are identical to � j/3 + 1/2�. Rosensteel and Rowe
showed that the number of linear constraints and algebraic ex-
pressions for conservation of seniority can be derived with the
quasispin tensor decomposition of the two-body interaction.
They proposed a matrix which can project the eigenvectors
to two quasispin subspaces, stated that the eigenvalues of the
matrix must equal to 2 or −1, and showed that way [17] that
the number of J=0 states for four fermions is equal to

Q(0; j, 4) = 1

3

(
2 j + 1

3
+ 2

∑
even J0

(2J0 + 1)

{
j j J0

j j J0

})
.

(5.4)
From Eqs. (5.3) and (5.4), Zhao pointed out that

∑
even J0

(2J0 + 1)

{
j j J0

j j J0

}
(5.5)
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has a modular behavior [18] (the sum over all J0 was cal-
culated by Schwinger for instance [19] but none of these
sums—over all values of J0 or over even values only—are
given in the handbook by Varshalovich et al. [13]). The values
are (−0.5, 0.5, 0) for j values (1/2, 3/2, 5/2), and repeat
after that, i.e., are the same for j values (7/2, 9/2, 11/2),
(13/2, 15/2, 17/2), (19/2, 21/2, 23/2), etc. The first three
values −0.5, 0.5, 0 for j = 1/2, 3/2, and 5/2 respectively
were obtained by Zamick and Escuderos using recursion
relations for coefficients of fractional parentage [20,21].
Noticing that the number of J = j states for three fermions
is equal to the number of J = 0 states for four fermions,

Zamick and Escuderos proposed an alternate derivation
[15] of Q(0; j, 4). In 2010, Qi et al. published an alter-
native proof of the Rosensteel-Rowe relation relying on
a decomposition of the total angular momentum. In this
work, a matrix similar to that of Ref. [1] has been con-
structed from the decomposition and the eigenvalue problem
was explored in a general way with symmetry proper-
ties of angular-momentum coupling coefficients [22]. All
those properties (Ginocchio-Haxton and Rosensteel-Rowe re-
lations, sum rules over six- j symbols) are obtained in a
straightforward way by the formulas given in the preceding
sections.

C. Four-fermion case: Sum rules for nine-j symbols

In the same paper [9], the following expression was derived for j4:

Q(J, j, 4) = 1

6

∑
J1 even

0�J1�2 j

∑
J2 even

0�J2�2 j

�(J1, J2, J )

⎡
⎣1 + (−1)JδJ1,J2 − 4(2J1 + 1)(2J2 + 1)

⎧⎨
⎩

j j J2

j j J1

J2 J1 J

⎫⎬
⎭
⎤
⎦, (5.6)

where �(J1, J2, J ) = 1 if (J1, J2, J ) verify the triangular conditions, 0 otherwise. Setting J = 2 j − n in Eq. (3.59), we get the
sum rule

4
∑

J1 even
0�J1�2 j

∑
J2 even

0�J2�2 j

�(J1, J2, J )

⎡
⎣1 + (−1)JδJ1,J2 − 4(2J1 + 1)(2J2 + 1)

⎧⎨
⎩

j j J2

j j J1

J2 J1 J

⎫⎬
⎭
⎤
⎦

= 2

(
2 j − J + 3

2

)2

− 7

3
− H (2 j − J )

[
2(2 j − J − 1)2 − 7

3
+ 24ξ (2 j − J )

]

+ 24ω(4 j − J − 1)

{
if (2 j − J ) even,

+3(4 j − J − 3/2) if (2 j − J ) odd.
(5.7)

As implied by the triangular and parity conditions, the above relation is derived assuming that J � 4 j − 2. For higher J , the
left-hand side always vanishes while the right-hand side does vanish if 4 j − 1 � J � 4 j + 2, but equals 24 if J = 4 j + 3. The
total number of levels in j4 reads

Qtot ( j4) =
2(2 j−3)∑

J=0

Q(J, j, 4) (5.8a)

= 1

72
(2 j + 1)(8 j2 + 2 j + 9) − 2

3

∑
J1,J2 even

(2J1 + 1)(2J2 + 1)
J1+J2∑

J=|J1−J2|

⎧⎨
⎩

j j J2

j j J1

J2 J1 J

⎫⎬
⎭, (5.8b)

and therefore expression (3.53) enables one to write the sum rule

4
∑

J1,J2 even

(2J1 + 1)(2J2 + 1)
J1+J2∑

J=|J1−J2|

⎧⎨
⎩

j j J2

j j J1

J2 J1 J

⎫⎬
⎭ = 2 j2 + 2

3
j

⎧⎪⎨
⎪⎩

+ 7
6 if

(
j − 1

2

)
mod 3 = 0,

− 3
2 if

(
j − 1

2

)
mod 3 = 1,

− 1
6 if

(
j − 1

2

)
mod 3 = 2.

(5.9)

Equation (5.8) can also be expressed using the coefficients introduced by Dunlap and Judd [10],

DJa,Jb;k = 1

2k + 1

[
(2Ja − k)!(2Jb + k + 1)!

(2Jb − k)!(2Ja + k + 1)!

]1/2

, (5.10)

as

Qtot ( j4) = 2 j + 1

72
[2 j(4 j + 1) + 9]

− 2

3

∑
J1,J2

J1,J2 even

(2J1 + 1)(2J2 + 1)
min(2 j,2J1,2J2 )∑

k=0

(2k + 1)(−1)φDJM ,Jm;k

{
j j k

J2 J2 j

}{
j j k

J1 J1 j

}
(5.11)
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with φ = J1 + J2 + k, Jm = min(J1, J2), JM = max(J1, J2). Of course the sum is restricted to conditions 0 � J1 � 2 j, 0 � J2 �
2 j imposed by the six- j symbol. The corresponding sum rule is therefore

4
∑
J1,J2

J1,J2 even

(2J1 + 1)(2J2 + 1)
min(2 j,2J1,2J2 )∑

k=0

(2k + 1)(−1)φDJM ,Jm;k

{
j j k

J2 J2 j

}{
j j k

J1 J1 j

}

= 2 j2 + 2

3
j

⎧⎪⎨
⎪⎩

+ 7
6 if

(
j − 1

2

)
mod 3 = 0,

− 3
2 if

(
j − 1

2

)
mod 3 = 1,

− 1
6 if

(
j − 1

2

)
mod 3 = 2.

(5.12)

To our knowledge, Eqs. (5.7), (5.9), and (5.12) are not included in reference books such as Ref. [13], nor can they be deduced in
a simple way from elementary sum rules.

VI. PARTICULAR VALUES OF THE NUMBER OF LEVELS
WITH A GIVEN SPIN J

A property mentioned by Talmi is the vanishing of
Q(1/2; j, 3). It is worth mentioning that for j = 1/2 it is
not possible to get three distinct values m1, m2, m3 because
mi = ±1/2 and therefore Q(1/2; 1/2, 3) = 0. From the above
relation (1.2a), one also gets

Q(J; j, N ) = Q(J; j − 1, N ) + Q(J − j; j − 1, N − 1)

+ Q(J + j; j − 1, N − 1)

+ Q(J; j − 1, N − 2). (6.1)

The recurrence (6.1) reads, for J = 1/2, N = 3 and account-
ing for the formal symmetry property Q(−J − 1) = −Q(J ),

Q

(
1

2
; j, 3

)
= Q

(
1

2
; j − 1, 3

)
+ Q

(
1

2
− j; j − 1, 2

)

+ Q

(
1

2
+ j; j − 1, 2

)
+Q

(
1

2
; j − 1, 1

)
(6.2a)

= Q

(
1

2
; j − 1, 3

)
− Q

(
j − 3

2
; j − 1, 2

)

+ Q

(
j + 1

2
; j − 1, 2

)
+Q

(
1

2
; j − 1, 1

)
.

(6.2b)

Let us note first that the fourth term of that equation
is zero except if j = 3/2. For j = 3/2, the second term
is −Q(0; 1/2, 2) = −1, the third Q(2; 1/2, 2) = 0, and the
fourth Q(1/2; 1/2, 1) = 1 according to the elementary prop-
erties of the coupling of angular momenta j = 1/2. The sum
of the last three terms of (6.2b) is therefore zero. For j = 5/2,
−Q(1; 3/2, 2) = Q(3; 3/2, 2) = 0 because the total momen-
tum J must be even, and the sum of the last three terms
of (6.2b) cancels as well. For j � 7/2, one has j − 3/2 <

j + 1/2 � Jmax = 2 j − 3. For J � 0, Q(J; j − 1, 2) = 1 if J

even, 0 otherwise. One checks

− Q

(
j − 3

2
; j − 1, 2

)
+ Q

(
1

2
+ j; j − 1, 2

)

=
{−1 + 1 = 0 for j = 2n − 1

2 ,

0 + 0 = 0 for j = 2n + 1
2 ,

(6.3)

and therefore for each j the summation of the last three terms
of (6.2b) cancels. Such an equation implies that for j half-
integer

Q

(
1

2
; j, 3

)
= Q

(
1

2
; j − 1, 3

)
= · · · = Q

(
1

2
;

3

2
, 3

)

= Q

(
1

2
;

1

2
, 3

)
= 0. (6.4)

In addition, it is easy to show that Q(Jmax( j, N ); j, N ) = 1
and that Q(Jmax( j, N ) − 1; j, N ) = 0. Indeed, for each con-
figuration jN , the value J = Jmax is realized only once. This
manifests clearly if one notes that in order to get M =
Jmax there is only one solution except permutations of the
mi, which is m1 = j − N + 1, m2 = j − N + 2, . . . , mN = j,
yielding P(Jmax; j, N ) = 1. For M = Jmax − 1, the only pos-
sibility is to reduce m1 by 1 with respect to the Jmax case:
m1 = j − N, m2 = j − N + 2, . . . , mN = j and one has also
P(Jmax − 1; j, N ) = 1 and thus Q(Jmax − 1; j, N ) = 0.

VII. CONCLUSION

Closed-form expressions for the number of levels for three,
four, and five fermions in a single- j shell are obtained using
recursion relations for P(M ), the number of states with a given
magnetic quantum number M. We derive exact expressions
for P(M ) and Q(J ), the number of levels with a given total
angular momentum J , in the cases of j3 and j4. The formulas
involve polynomials, the coefficients of which are defined by
congruence relations. We provide supplementary results, such
as proofs of empirical formulas published by several authors
over the last years, cancellation properties and peculiar values
of Q(J ), or new sum rules over six- j and nine- j symbols.
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TABLE IV. Coefficient for the three-fermion distribution of the quantum magnetic number for the lowest M values. This number is given
by P(M; j, 3) = 1

2 ( j2 − cM/4), assuming j � M.

M 1/2 3/2 5/2 7/2 9/2 11/2

cM 1 1 9 17 25 41

APPENDIX A: RECURRENCE RELATION ON THE NUMBER OF FERMIONS
FOR THE QUANTUM NUMBERS j AND j − 1

We have established in Appendix B of Ref. [23] the two relations [respectively (B4) and (B8)]

P(M; j, N ) = P

(
M − N

2
; j − 1

2
, N

)
+ P

(
M − N

2
+ j + 1

2
; j − 1

2
, N − 1

)
, (A1a)

P(M; j, N ) = P

(
M + N

2
; j − 1

2
, N

)
+ P

(
M + N

2
− j − 1

2
; j − 1

2
, N − 1

)
(A1b)

from the recurrences for the Gaussian binomial coefficient. The first term on the right-hand side of (A1a) can be transformed
using (A1b):

P

(
M − N

2
; j − 1

2
, N

)
= P(M; j − 1, N ) + P(M − j; j − 1, N − 1). (A2)

In the same way, the second term on the right-hand side of (A1a) transforms with (A1b) into

P

(
M − N

2
+ j + 1

2
; j − 1

2
, N − 1

)
= P

(
M − N

2
+ j + 1

2
+ N − 1

2
; j − 1, N − 1

)

+ P

(
M − N

2
+ j + 1

2
+ N − 1

2
− j; j − 1, N − 2

)
(A3a)

= P(M + j; j − 1, N − 1) + P(M; j − 1, N − 2), (A3b)

and, gathering equations (A1a), (A2), (A3b), we get the basic equation (1.3) which was previously obtained by Talmi [Eq. (1) of
Ref. [3]].

APPENDIX B: EXAMPLES OF P(M; j, 3) VALUES FOR M � 11/2

The relation (2.18) may be used to get P( j − q; j, 3) for j − q = 1/2, 3/2, . . . , n + 1/2. Examples for the first j − q
values are given in Table IV, with the notation P(M; j, 3) = 1

2 ( j2 − cM/4), and assuming M � j. For instance P(11/2; j, 3) =
1
2 ( j2 − 41/4) only if j � 11/2. One calculates P(11/2; 7/2, 3) = 2, although this formula would give 1. We obtain again from
P(1/2; j, 3) the total number of levels for three fermions derived above (2.5) and also obtained in Ref. [9] using fractional
parentage coefficients.

APPENDIX C: DETERMINATION OF THE DISTRIBUTION P(2 j − 1; j, 4)

The value P(2 j − 1; j, 4) is derived starting from Eq. (3.10), that can be rewritten as

P(2 j + 1; j, 4) = ( j − 1)3

18
− ( j − 1)

24
+ ϕ, (C1a)

ϕ =
(

− 1

72
,

1

72
,−1

8
,

17

72
,−17

72
,

1

8

)
if j − 1

2
mod 6 = (0, 1, 2, 3, 4, 5) respectively. (C1b)

We will obtain P(2 j − 1; j, 4) from the fundamental equation (1.3), and the definition (3.13):

P(2 j − 1; j, 4) = P(2 j − 1; j − 1, 4) + P( j − 1; j − 1, 3) + F ( j, 1). (C2)

We note that F ( j, 1) = 0 according to (3.15). With the notations x = j − 2, P1 = P(2 j − 1; j − 1, 4), P3 = P( j − 1; j − 1, 3),
and the value (C1) for P1 we obtain the following results:

(1) If j mod 6 = 1/2, P1 = x3/18 − x/24 + 1/8, P3 = ( j − 1)2/3 − 1/12, P(2 j − 1; j, 4) = j3/18 − j/24 + 1/72,
(2) if j mod 6 = 3/2, P1 = x3/18 − x/24 − 1/72, P3 = ( j − 1)2/3 − 1/12, P(2 j − 1; j, 4) = j3/18 − j/24 − 1/8,
(3) if j mod 6 = 5/2, P1 = x3/18 − x/24 + 1/72, P3 = ( j − 1)2/3 + 1/4, P(2 j − 1; j, 4) = j3/18 − j/24 + 17/72,
(4) if j mod 6 = 7/2, P1 = x3/18 − x/24 − 1/8, P3 = ( j − 1)2/3 − 1/12, P(2 j − 1; j, 4) = j3/18 − j/24 − 17/72,
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(5) if j mod 6 = 9/2, P1 = x3/18 − x/24 + 17/72, P3 = ( j − 1)2/3 − 1/12, P(2 j − 1; j, 4) = j3/18 − j/24 + 1/8,
(6) if j mod 6 = 11/2, P1 = x3/18 − x/24 − 17/72, P3 = ( j − 1)2/3 + 1/4, P(2 j − 1; j, 4) = j3/18 − j/24 − 1/72.

These expressions are needed for initializing the recurrence (3.34).
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