
PHYSICAL REVIEW C 104, 064323 (2021)

Description of 93Nb stellar electron-capture rates by the projected shell model
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Capture of electrons by nuclei is an important process in stellar environments where excited nuclear states
are thermally populated. However, accurate treatment for excited configurations in electron capture (EC) rates
has been an unsolved problem for medium-heavy and heavy nuclei. In this work, we take the 93Nb → 93Zr
EC rates as the example to introduce the projected-shell model (PSM) in which excited configurations are
explicitly included as multi-quasiparticle states. Applying the prevalent assumption that the parent nucleus
always stays in its ground state in stellar conditions, we critically compare the obtained PSM results with the
recently measured Gamow-Teller transition data, and with the previous calculations by the conventional shell
model and the quasiparticle random-phase approximation. We discuss important ingredients that are required in
theoretical models used for stellar EC calculations, and demonstrate effects of the explicit inclusion of excited
nuclear states in EC rate calculations, especially when both electron density and environment temperature are
high.
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I. INTRODUCTION

The understanding of the dynamics of some astrophysical
objects relies on reliable information on the electron capture
(EC) process [1–8],

A
ZX + e− → A

Z−1Y + νe, (1)

in which the parent nucleus (with proton number Z and mass
number A) captures a relativistic electron and decays to the
daughter nucleus by emitting a neutrino. Due to the nature
of the stellar EC reaction, it may lead to three important
consequences with regard to compact astrophysical objects:
reducing the degeneracy pressure of electrons, cooling the en-
vironment by neutrino escaping, and driving nuclei to be more
neutron-rich (see Ref. [8] for the latest review). Especially,
the information of EC process is considered to be crucial
for core-collapse supernovae [7,9–11], cooling of neutron star
crust and ocean [12,13], and the thermonuclear explosions of
accreting white dwarfs [14], etc.

Electron capture is one of the fundamental nuclear pro-
cesses mediated by the weak interaction. Stellar EC rates can
be theoretically determined following the pioneering works
by Fuller, Fowler, and Newman (FFN) [1–4], where allowed
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nuclear transitions (especially the Gamow-Teller transitions
in the β+ direction) dominate. In principle, the Gamow-Teller
(GT) transition-strength distributions can be measured with
the modern experimental technique with the charge-exchange
(CE) reactions [11,15–17], although the energy resolution is
relatively limited at present. One should however keep in mind
that stellar electron captures may differ substantially from
those which can be studied in the laboratory today. For many
relevant astrophysical simulations such as the core-collapse
supernovae and neutron star crust, stellar EC rates for a large
number of nuclei are required. Furthermore, the contributions
from excited states of parent nuclei are indispensable [5,18].
Therefore, for the majority of the cases one has to rely on
theoretical calculations.

In the modern treatment, several nuclear-structure models
have been applied to study the GT transition and stellar EC
reactions. For the sd-shell (with A = 17–39) [19–21] and
some p f -shell (A = 45–65) nuclei [10,22–24], the large-scale
shell-model (LSSM) diagonalization method is considered
as the optimal tool [7,8]. While this method is exact within
the adopted model space, it becomes physically inappropri-
ate when environment temperature is high. This is because
when highly excited nuclear states are involved in the calcula-
tion, cross-shell configurations are inevitably needed, which
is technically difficult for the LSSM. For medium-heavy
and heavy nuclei (A > 65), especially if they are deformed,
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FIG. 1. The calculated energy levels for 93Nb and 93Zr, and com-
pared with experimental data [59].

alternative methods must be applied. The popular methods in-
clude the hybrid model based on the shell model Monte Carlo
approach and the random-phase approximation [25,26], and
the quasiparticle random-phase approximation (QRPA) with
different energy density functionals [27–36]. These methods
differ from each other in model space (the size of single-
particles in the intrinsic mean field) and/or in truncation on
configuration space (the variety of many-body correlations
among valence nucleons beyond the mean field), as well as in
effective (two-body) interactions. While these methods usu-
ally do not have a problem for including a large model space,
the way to build their configuration space does matter for stel-
lar EC calculations. This is because even though the sum rule
for the total GT transitions is satisfied, the GT fragmentation
as a function of excited states, which are closely related to
model configurations, can sensitively influence the stellar EC
results.

The stellar EC rates for medium-heavy, odd-mass nuclei
exhibit some unique characteristics as compared to those in
even-number nuclei. The main challenge in odd-mass calcula-
tions lies in the fact of denseness and variety in the distribution
of single-particle-type of states near the ground state. Fur-
thermore, unlike in even-number nuclei where the 0+ → 1+
GT transition is the main concern, in odd-mass nuclei, spin
and parity for individual low-lying levels determine the GT
distributions due to the selection rule of allowed GT transition.
For example, for the 93Nb → 93Zr case, the ground state of
the parent nucleus has the spin-parity 9/2+ (see Fig. 1) and
the GT transitions from such a ground state would populate
many final states with spin-parities of {7/2+, 9/2+, 11/2+}
of the daughter nucleus. Transitions from individual excited
states of the parent to the distributed states of the daughter
can result in a rich variety of GT patterns, for which the
Brink-Axel hypothesis [37,38] may hardly be expected as a
good approximation.

In the present work, we provide the calculation by the
projected shell model for stellar EC rates of medium-heavy
odd-mass nuclei, taking 93Nb → 93Zr as the first example.
When only transitions from the ground state of the parent
nucleus are considered, our PSM results are tested by the very
recent data and are compared to the results of the LSSM and

the QRPA. For more realistic stellar EC rates where transitions
from all excited states of the parent nucleus are taken into ac-
count, the contribution and effect of excited states are studied,
and discussed for different densities and temperatures of the
stellar environment. In Sec. II we briefly introduce our PSM
method for the calculation of stellar EC rates. In Sec. III we
compare our calculations for the EC reaction of 93Nb → 93Zr
with the recent data and with previous results of other nuclear
models. We finally summarize our work in Sec. IV.

II. THEORETICAL FRAMEWORK

For high-density and high-temperature stellar environ-
ments, we assume that parent nuclei are in a thermal
equilibrium with occupation probability for excited states fol-
lowing the Boltzmann distribution. The stellar EC rates (in
s−1) can be expressed as [1–4]

λEC = ln 2

K

∑
i

(2Ji + 1)e−Ei/(kBT )

G(Z, A, T )

∑
f

Bi f �
EC
i f , (2)

which explicitly takes into account all relevant transitions
from initial (i) states of EC parent nucleus to final ( f ) states
of daughter nucleus. In Eq. (2), the first summation over i
represents the occupation probability for the parent-nuclear
states at specific stellar temperature T , where G(Z, A, T ) =∑

i(2Ji + 1) exp(−Ei/(kBT )) is the partition function with kB

being the Boltzmann constant. Ji and Ei appearing in the i
summation in Eq. (2) are, respectively, the angular momenta
and excitation energies of the parent nucleus. The constant
K in Eq. (2) can be determined from superallowed Fermi
transitions, and K = 6146 ± 6 s [39] is adopted here. �EC

i f
in the second summation over f is the phase space integral
for individual nuclear transitions (with corresponding reduced
transition probability Bi f ),

�EC
i f =

∫ ∞

ωl

ωp(Qi f + ω)2F (Z, ω)Se(ω)dω, (3)

where ω and p = √
ω2 − 1 (in mec2 and mec, respectively)

label the total (rest mass and kinetic) energy and momentum
of the electron. For individual transitions, the total available
energy (the Qi f value) is

Qi f = 1

mec2
(Mp − Md + Ei − E f ), (4)

where Mp (Md ) denotes the nuclear mass of the parent (daugh-
ter) nucleus and E f is the excitation energy of the daughter
nucleus. ωl labels the capture threshold energy (in mec2) with
ωl = 1 if Qi f > −1, or ωl = |Qi f | if Qi f < −1. For a given
stellar temperature, the distribution functions read as

Se/p(ω) = 1

exp [(ω ∓ μe)/kBT )] + 1
, (5)

for electron (“−”) and positron (“+”), where the electron
chemical potential μe could be determined with the pro-
vided stellar baryon density ρ, the electron-to-baryon ratio Ye
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through

ρYe = 1

π2NA

(
mec

h̄

)3 ∫ ∞

0
(Se − Sp)p2d p (6)

with NA the Avogadro’s number. In Eq. (3), F (Z, ω) is the
Fermi function that reflects the Coulomb distortion of the
electron wave function near the nucleus [1,23].

In calculating stellar EC rates, the central task is the eval-
uation of Bi f in the second summation over j in Eq. (2). In
the present work we consider the stellar environments with
the typical densities ρYe = 107, 109, and 1011 g/cm3, and
temperatures T = 1 − 15 GK (109 K). Under these condi-
tions, the allowed Gamow-Teller transitions dominate. The
reduced transition probability, B(GT), being defined such that
the strength associated with the decay of the free neutron has
B(GT) = 3, can be measured experimentally with the modern
CE reactions [11], or calculated by nuclear-structure models
as

Bi f (GT+) =
(

gA

gV

)2

eff

〈
	

n f

Jf

∥∥∑
k σ̂ k τ̂ k

+
∥∥	

ni
Ji

〉2
2Ji + 1

, (7)

where (gA/gV )eff is the effective ratio of axial and vector
coupling constants,(

gA

gV

)
eff

= fquench

(
gA

gV

)
bare

, (8)

which usually differs from the bare value (gA/gV )bare =
−1.2599(25) [39] or = −1.27641(45) [40] by a quenching
factor. In the present 93Nb → 93Zr work we take fquench =
0.9 as suggested in Refs. [41–44] for medium-heavy nuclei.
The GT transition operator in Eq. (7) keeps only the one-body
current contributions as in the chiral effective field theory
[41,42,45,46], which includes the Pauli spin operator σ̂ and
the isospin raising operator τ̂+ for electron captures.

Description of the nuclear many-body states, 	n
J in Eq. (7),

is purely a structure problem, and is precisely the place where
nuclear structure enters into the discussion. It is desired that
calculations for excited states in medium-heavy nuclei apply
modern many-body techniques to obtain properly the wave
functions with good angular momentum J , as this index ap-
pears explicitly in Eq. (7). In the present work such wave
functions are described in the PSM by the projection tech-
nique [47–52], i.e.,∣∣	n

JM

〉 =
∑
Kκ

F n
JKκ P̂J

MK |�κ〉, (9)

where the angular-momentum projection operator P̂J
MK (see

Refs. [53,54] for details) restores the broken rotational sym-
metry in the intrinsic frame and transforms the description of
the wave functions from the intrinsic to the laboratory frame.
In the present work, the employed multi-quasiparticle (qp)
configuration space, |�κ〉 in Eq. (9), is large enough, which
includes up to 7-qp states, i.e.,{

â†
νi
|�〉, â†

νi
â†

ν j
â†

νk
|�〉, â†

νi
â†

π j
â†

πk
|�〉,

â†
νi

â†
ν j

â†
νk

â†
πl

â†
πm

|�〉, â†
νi

â†
ν j

â†
νk

â†
νl

â†
νm

â†
πn

â†
πo

|�〉,
â†

νi
â†

ν j
â†

νk
â†

πl
â†

πm
â†

πn
â†

πo
|�〉} (10)

for odd-neutron nuclei and

{
â†

πi
|�〉, â†

πi
â†

π j
â†

πk
|�〉, â†

πi
â†

ν j
â†

νk
|�〉,

â†
πi

â†
π j

â†
πk

â†
νl

â†
νm

|�〉, â†
πi

â†
π j

â†
πk

â†
πl

â†
πm

â†
νn

â†
νo
|�〉,

â†
πi

â†
π j

â†
πk

â†
νl

â†
νm

â†
νn

â†
νo
|�〉} (11)

for odd-proton nuclei. In Eqs. (10) and (11), |�〉 is the qp vac-
uum state, and â†

ν (â†
π ) the corresponding neutron (proton) qp

creation operators, which are obtained by the Nilsson+BCS
mean-field calculations. For the detailed construction of the
wave function and the philosophy of the model, we refer the
recent review article [51].

The Hamiltonian is diagonalized by solving the Hill-
Wheeler-Griffin equation for the case of a nonorthonormal
basis as in the PSM, which determines the expansion coef-
ficients F n

JKκ in Eq. (9). In this work, the separable two-body
Hamiltonian with explicit two-body GT force as well as the
same numerical parameter as in Refs. [18,52] are adopted.
The Nilsson parameters are taken from Ref. [55] and the
quadrupole deformation is adopted as ε2 = 0.1 for both nu-
clei.

The present PSM calculation for A = 93 nuclei considers a
large model space, allowing the nucleons active in four major
harmonic-oscillator shells (N = 2, 3, 4, 5 with 16O as the inert
core). Such a large model space ensures that both the neutron
and proton Fermi levels lie roughly in the middle of the single-
particle space, so that the nucleons have sufficient freedom to
be excited. However, the unique feature for the PSM, which
differ conceptually from all other existing structure models for
stellar EC rates, is the algorithm for the construction of the
configuration space. As shown in Eqs. (10) and (11), we clas-
sify the configuration space by the (2n + 1)-qp states (with
n being integers), corresponding to n broken pairs in each
configuration. For example, the term â†

νi
â†

π j
â†

πk
|�〉 in Eq. (10)

describes a 3-qp configuration in an odd-neutron nucleus with
one broken proton-pair added to the single-neutron state. This
algorithm for constructing the PSM configuration space using
the broken-pair states as building blocks was proposed to
study nuclear chaoticity at highly excited regions [56,57],
and is supported by the Oslo experiments for nuclear level
density, where, as excitation energies go up, clear evidences
for step-wise pair breakings are found [58]. The observed
several peaks in the 93Nb → 93Zr GT distribution [11] seem
to indicate also the pair breaking mechanism in the daughter
nucleus although the current experimental resolution may not
allow a quantitative interpretation.

III. RESULTS AND DISCUSSIONS

With the method introduced in the previous section, we
calculate stellar EC rates taking the 93Nb → 93Zr case as the
example to discuss features of the PSM results. The discussion
begins with the level structure of the parent and daughter
nuclei and the characteristic GT strength distribution, before
the EC rates at different densities and temperatures are pre-
sented. The theoretical results from the PSM are illustrated in
parallel with those from two other models, LSSM and QRPA,
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and compared with the recent experimental data in Ref. [11]
measured at MSU.

A. Level structure in parent and daughter nuclei

Level structures in parent and daughter nuclei directly in-
fluence calculated EC rates as their labels of the nuclear states
appear explicitly in the two summations for λEC in Eq. (2).
Especially, the level distribution determines patterns of GT
strengths because a GT strength distribution is expressed as
the function of excitation energies of the daughter nucleus.
Therefore, for a model that is used for calculation of EC rates,
it is required that it can correctly describe basic features of the
level structure.

In Fig. 1, we show the PSM calculation for the EC parent
(93Nb with Z = 41 and N = 52) and the daughter nucleus
(93Zr with Z = 40 and N = 53) for energy levels up to Ei/ f �
1.2 MeV, and compare them with the known experimental
data [59]. It is seen that for 93Nb, the energy levels are de-
scribed reasonably well by the calculation. The spin-parity
of the ground state is correctly reproduced as 9/2+ with the
corresponding wave function found to be a strong mixture
of proton 1-qp states originating from the proton g9/2 orbital.
The very low-lying first excited negative-parity 1/2− state is
also well described. Its wave function is found to be rather
pure, with the main configuration as π1/2−[301] (the Nilsson
notation) originating from the proton p1/2 orbital. The very
different structures between the 9/2+ ground state and the
1/2− first excited state can explain the fact that the 1/2− state
is a well-known isomer with a half-life of about 16 yr. Such
a low-lying state could be populated readily at low stellar
temperature T ∼ 1 GK (corresponding to about 90 keV), and
may potentially affect the stellar EC rates of 93Nb even at
low temperatures. In Fig. 1, the energy separation between
this 1/2− and the higher-lying states are also reproduced suc-
cessfully. The implication of the existence of this energy gap
in 93Nb is that contributions to the EC rates from the excited
states could be suddenly enhanced at the stellar temperature
T ≈ 6 GK (corresponding roughly to 550 keV). The effect
will be discussed later in Fig. 4.

The EC daughter nucleus 93Zr is described by the present
calculation only at a qualitative level, as shown in Fig. 1. The
energy of the experimental ground state 5/2+ is calculated
to be higher than the first excited state 3/2+, although the
energy gap between the 3/2+ and the higher-lying excited
states is roughly reproduced. For this odd neutron nucleus
with N = 53, the last neutron occupies the {d5/2, g7/2, s1/2}
spherical mean-field orbitals, which cannot be ideally de-
scribed by models based on deformed mean fields such as the
PSM. As we shall discuss in the next section, the relatively
poor description of 93Zr will directly affect the GT strength
distribution as differences in excitation energies of the daugh-
ter nucleus 93Zr will shift GT strength distribution peaks.

B. GT strength distribution

In Fig. 2(a), we present our calculated GT strength dis-
tribution B(GT+) for the transitions from the ground state
9/2+ of 93Nb to all obtained {7/2+, 9/2+, 11/2+} states of

93Zr as functions of the excitation energy E f [see red solid
curve in Fig. 2(a)]. Our results are compared with the recent
experimental data (black dots with the shaded area indicating
statistical errors) [11], and with the calculations from the
LSSM and QRPA. In the comparison with experiment, all the
theoretical results are plotted in 0.5-MeV-wide bins as the data
analysis does.

For descriptions of the medium-heavy nuclei 93Nb
and 93Zr, the cross-shell correlations in a large model
space and multiparticle-multihole (multi-qp) correlations
in large configuration space are expected to be impor-
tant. In the LSSM calculation, a small model space with
the {0 f5/2, 1p3/2, 1p1/2, 0g9/2} orbitals for protons and the
{0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2} orbitals for neutrons is
adopted, assuming a 78Ni core [11]. To make the calculation
feasible, the configuration space is further truncated to allow
only up to three protons in the 0g9/2 orbital and no neutrons in
the 0h11/2 orbital. To remedy these truncations, the calculated
GT strengths B(GT+) were renormalized (shrunk) by a phe-
nomenological hindrance factor h = 5.43 [11]. It is seen from
Fig. 2(a) that with the above calculation conditions, most of
the calculated B(GT+) by the LSSM concentrate in two peaks
roughly at E f ≈ 2.5 MeV and 4 MeV. No B(GT+) strengths
appear for E f � 6 MeV and the experimentally observed frag-
mentation at higher excitations is not reproduced, which can
be clearly seen in Fig. 2(b) where the cumulative (running)
sums of B(GT+) are plotted.

For the QRPA, a larger model space is adopted for calcu-
lation, with the quenching factor fquench ≈ 0.8 [11]. However,
its configuration space is constructed with phonon-like struc-
tures that are summed by individual quasiparticle states. This
is probably the reason that leads to a resonance-like GT peak
at E f ≈ 2.5 MeV, which almost exhausts the B(GT+) at the
low-energy region, leaving little strengths for necessary frag-
mentations, as illustrated in Figs. 2(a) and 2(b).

By comparison, the PSM employs a large model space
(with four major harmonic-oscillator shells for both neutrons
and protons) and a large configuration space [with up to 7-qp
states with the configurations listed in Eqs. (10, 11)]. For the
present calculation from 93Nb’s 9/2+ ground-state transition,
for example, we include about 1000 daughter states for each
of the {7/2+, 9/2+, 11/2+} states in 93Zr, which is almost
doubled as compared with the number of states in the LSSM
calculation [11]. The very distributed daughter states enable
a more realistic description of the broad fragmentation of
the experimental B(GT+) strengths for the entire excitation-
energy region. The fragmented GT distribution can be realized
in Fig. 2(a), with the four GT peaks observed in experiment
are qualitatively reproduced by the PSM calculation. We note
that the predicted locations for the first two peaks are shifted
to higher energies, which is likely attributed to the problem
in the description of level structure in 93Zr, as discussed
in Fig. 1. We also note that each of our 0.5-MeV-wide bin
in Fig. 2(a) may contain many individual transitions to the
daughter states. In Fig. 3, we plot the original B(GT+) values
from the PSM calculation without being grouped in bins. The
plot in Fig. 3(a) indicates the calculated GT transitions from
the ground state of 93Nb. Apart from the few strong strengths
at low energies, at about 4 MeV and 5–6 MeV we find

064323-4



DESCRIPTION OF 93Nb STELLAR … PHYSICAL REVIEW C 104, 064323 (2021)

FIG. 2. The GT strength distribution B(GT+) (upper panels) and the cumulative sum of the B(GT+) (lower panels) for the transitions from
93Nb to 93Zr as a function of the excitation energy of the daughter nucleus 93Zr. For transitions from the ground state (g.s.) of 93Nb [(a) and
(b)], calculations by three nuclear models are compared with each other and the recent data [11]. For transitions from different excited states
of 93Nb, predictions of the projected shell model are shown in (c) and (d). See the text for details.

concentrations, corresponding to the B(GT+) peaks in
Fig. 2(a). From 8 MeV up, many relatively weak strengths
exist, which may bring important contribution to the behavior
of the stellar EC at high temperatures, as we shall discuss later.

We emphasize an important feature from the PSM results,
which is in a clear distinction from the LSSM and QRPA,
that from E f � 8 MeV, the PSM predicts an increasing trend
for

∑
B(GT+) where the other calculations suggest vanishing

strengths. This increasing trend in
∑

B(GT+) predicted by
the PSM can be attributed to the contribution from the higher-
order of qp configurations. Although individual strengths of
the allowed GT transitions from the parent ground state to
these states may not be significant, the number of such higher-
order of qp configurations is large and increases with the
excitation energy, and therefore, the total contribution may
not be small. At this excitation energy and beyond where the
uncertainty of experimental B(GT+) gets larger due to the
difficulty to separate the GT strengths from the isovector spin
giant monopole resonance, the current data analysis stopped
[11].

With growing excitation energies, the cumulative sum of
B(GT+) can be viewed in Fig. 2(b). Among the theories, the
LSSM (with renormalizations for the results) gives the best
comparison with data up to about 6 MeV in excitation, and
afterwards, begins to departure from the data curve because
no new strengths further contribute. The discrepancy for the
LSSM in the high-excitation region is clearly due to the lack
of cross-shell correlations in its limited model space. The

QRPA produces too large
∑

B(GT+) at the low-energy region
but too little at the high-energy region. The reason leading
to this result is clearly due to the resonance-like behavior at
2.5 MeV in the QRPA. The PSM gives qualitatively correct
trend with increasing

∑
B(GT+), but the problem for the

PSM result is that the increase is delayed to high energies due
to inappropriate distribution of the energy levels in 93Zr, as
discussed before. At 10 MeV, the PSM and QRPA calculations
almost matches the experimental result, but begin to show
an important distinction: The QRPA curve seems to keep
flat while a robustly increasing trend starting from 6 MeV is
predicted by the PSM. This difference occurs because of the
applied algorithms for building configuration space in models.
As the energy goes up, higher-order qp states in the PSM start
to contribute to

∑
B(GT+) until the GT sum rule is reached,

while no such mechanism exists in the QRPA. Note that 5-qp
(7-qp) configurations for odd-mass nuclei in the PSM calcu-
lation correspond conceptually to the two-particle–two-hole
(three-particle–three-hole) excitations in the language of the
QRPA.

In stellar environments with finite temperatures, nuclei can
have considerable probability to be thermally populated in
excited nuclear states, which would in principle contribute
to stellar EC rates. The contributions depend on strengths of
the GT strength distributions as well as the precise excitation
energies where the GT strengths locate. If no experimen-
tal data are available and no explicit theoretical calculations
are performed, one assumes the Brink-Axel hypothesis. In
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FIG. 3. The individual GT strength distribution B(GT+) for the transitions from different states of the EC parent nucleus 93Nb to states of
the daughter nucleus 93Zr as a function of its excitation energies, as calculated by the PSM.

Figs. 2(c) and 2(d) we show, respectively, the B(GT+) dis-
tributions and their cumulative sums for the transitions from
three representative excited states (with different excitation
energies and spin-parity values) of the parent nucleus 93Nb.
For the very low-lying first 1/2− state with experimental value
at 30.77 keV, the calculated B(GT+) is found to be negligible
at E f � 5.0 MeV [seen more clearly in Fig. 3(b)]. This is
because the 1/2− state has a relatively pure wave function
with the main configuration as π1/2−[301] from the proton
p1/2 orbital, so that the connection by the GT operator with
negative-parity states of 93Zr can only be the type that mixes
strongly with the neutron p1/2 orbital. Such states lie in higher
energies across the neutron N = 50 shell gap. Figure 3(b)
illustrates the situation.

On the other hand, the wave function of the first 5/2+ state
in 93Nb (see Fig. 1) contains a strong mixture from many 1-
qp and 3-qp configurations that involves the mean-field levels
originating from the proton g9/2 orbital. This orbital can be
readily connected by the GT operator either with the neutron
g7/2 orbital at small energies, or with the neutron g9/2 orbital
at large energies crossing the N = 50 shell gap. The B(GT+)
is then found to be sizable in both lower-lying (E f ≈ 1 MeV)
and higher-lying (E f > 4 MeV) regions [see Fig. 3(c)], with a
broad fragmentation due to the latter configurations, as shown
in Fig. 2(c).

The wave function of the first high-spin 13/2+ state shows
qualitatively a similar configuration mixing as in the first 5/2+

state. The difference is that the former tends to mix config-
urations that involve the high-K components of the proton
g9/2 orbital, i.e., π9/2+[404] and π7/2+[413], while the lat-
ter mixes configurations with low-K components. Concretely,
the wave function of this 13/2+ state consists of ∼16% of
π1/2+[440], ∼13% of π3/2+[431], ∼10% of π5/2+[422],
∼11% of π3/2+[431] ⊗ 5/2+[422] ⊗ 5/2+[422] with the
K = 3/2 configuration, and many other 3-qp and 5-qp con-
figurations (some of which includes the π7/2[413] 1-qp
configuration). The B(GT+) from the first 13/2+ state is
found to be much smaller in strength than the first 5/2+ state
in the entire excitation-energy region, as seen from Fig. 2(d)
as well as Figs. 3(c) and 3(d).

C. Stellar electron-capture rates

With the calculated GT strength distributions, we can now
study the 93Nb stellar EC rates at different densities and tem-
peratures. From the second summation over f in Eq. (2), it
becomes evident that in order for a daughter state labeled f
to contribute significantly to the total λEC, it is required that
the f state necessarily has a large Bi f . At the same time, the
phase space must be open for the f state to contribute, which
requires a sizable �EC

i f .
We first discuss a popular treatment for electron capture

processes occurring in astrophysical problems. In such a sim-
plified treatment, the parent nucleus 93Nb is supposed to stay
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FIG. 4. The electron-capture rates for 93Nb → 93Zr as a function of the temperature T9 (GK) at different stellar densities ρYe = 107, 109,
and 1011 g/cm3. For the case where the parent nucleus 93Nb is supposed to stay in the ground state, calculations from three nuclear models
are compared with each other and with the recent data [11] in (a)–(c), with the common legend indicated in (a). For the realistic case that all
low-lying states of 93Nb could be populated in the finite-temperature condition, calculations of the projected shell model with and without the
excited states are shown in (d)–(f), with the common legend indicated in (d). See the text for details.

in its ground state all the time regardless of thermal excita-
tions. This simplification thus completely neglects detailed
thermal populations of the parent-nucleus states, and corre-
sponds to replacing the i summation in Eq. (2) by a unity
and setting i ≡ 1 in the second summation. We may call this
treatment zero-temperature approximation for parent nuclei.
The resulting EC rates as functions of the temperature T9 (GK)
at three typical stellar densities are shown in Figs. 4(a)–4(c).
Among the three density conditions, ρYe = 107 g/cm3 corre-
sponds to the condition of the core during the silicon-burning
stage in a pre-supernova star, ρYe = 109 g/cm3 represents the
condition for the pre-collapse of the core for massive stars,
and ρYe = 1011 g/cm3 labels the onset of the core collapse.

Calculations from the three different nuclear models are com-
pared with each other, and with the recent experimental values
[11].

As the ground-state to ground-state EC Q value is as small
as Q11 = −0.602 MeV in the present example, the contribu-
tion to stellar EC rates from transitions to excited states of
the daughter nucleus 93Zr would be considerable even at low
stellar densities and temperatures. For the low-density case
with ρYe = 107 g/cm3, the electron chemical potential μe ≈ 1
MeV. From Eq. (2) and the corresponding phase space integral
�EC

1 f distributions in Fig. 5(a), at low temperatures of T9 � 4

GK, transitions to the low-lying states of 93Zr with E f � 1
MeV are important. As the QRPA shows no B(GT+) strength
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FIG. 5. The phase space integral �EC
1 f for transitions from the

ground state of 93Nb to states of 93Zr at different stellar densities and
temperatures, as a function of the excitation energy Ef . Note that the
figure is in logarithmic scale and the scale is different in each panel.

in such low-excitation region [see Fig. 2(b)], the calculated EC
rates are strongly underestimated as seen from Fig. 4(a). With
increasing temperature, the electron Fermi surface becomes
more diffuse and the corresponding phase space integral �EC

1 f
increases rapidly as seen from Fig. 5(a). The transitions to
higher excited states of 93Zr within 1 � E f � 2 MeV begin
to contribute. Within experimental uncertainties, the derived
EC rates from the three nuclear models (LSSM, QRPA, and
PSM) are all consistent with data for T9 > 4 GK.

For the ρYe = 109 g/cm3 case, the electron chemical po-
tential increases to μe ≈ 5 MeV. The contributions of GT
transitions to the excited states of 93Zr with E f � 5.5 MeV
would play a role in the stellar EC rates. From the �EC

1 f
distributions in Fig. 5(b), the states with higher excitations
in 93Zr would be involved effectively when T9 goes high.
The EC rates are found not as sensitive to the details of
the GT strength distribution as in the low-density case, but
largely depend on both the GT strength distribution and the
integrated GT strength for E f � 5.5 MeV. As a consequence,
differences in calculated results from different models can be
as large as several times. It was seen from Fig. 2(b) that for

this energy region, the QRPA overestimates the B(GT+), the
PSM underestimates that, and the SM (with renormalizations
for the GT results) agrees better with the data. The derived EC
rates by the SM and PSM are compared well with data within
the uncertainties, but for the QRPA, the calculation is a little
bit overestimated, as seen from Fig. 4(b). Unfortunately, due
to large uncertainties, the current experimental data are not
able to discriminate the models.

For the high density case with ρYe = 1011 g/cm3, the
electron chemical potential increases to about 20 MeV. As
seen from Fig. 5(c), the phase space for this density condition
opens for all excited states that are included in the plot, with
�EC

1 f (nearly) exponentially decreasing with E f and essentially
being independent of stellar temperatures. The derived stellar
EC rates then mainly depends on the integrated GT strength.
As seen from Fig. 4(c), the calculated λEC by all the three
models fall consistently within data uncertainties, with no
temperature-dependence. One should keep in mind that these
λEC results are obtained with the zero-temperature approxi-
mation, i.e., when the assumption that electrons are captured
always by the ground state of the parent 93Nb is applied.

When the i summation for the parent-nucleus states is
fully taken into account in the stellar EC rates expression
in Eq. (2), thermal populations of different nuclear states
may vary considerably with stellar temperatures, and we thus
call it the finite-temperature environment. This can be clearly
seen in Eq. (2) through the i summation content

∑
i(2Ji +

1)e−Ei/(kBT )/G(Z, A, T ), which depend explicitly on Ei, Ji,
and T . In general, as temperature goes up, excited states are
successively populated while the occupation probability of
the ground state drops down. To see clearly how population
variations in the nuclear states affect the EC rates, we present
in Figs. 4(d)–4(f) the PSM calculations for EC rates with and
without the contributions of excited states of 93Nb. When only
transitions from the 9/2+ ground state of 93Nb are considered
in the finite-temperature environment (i.e., we extract only
the i = 1 term from the summation), the occupation prob-
ability of the ground state decreases with temperature, and
the corresponding EC rates are smaller when compared with
the calculations in Figs. 4(a)–4(c) where the parent nucleus
is supposed to stay in its ground state all the time. For the
ρYe = 107 g/cm3 case with small μe, EC rates climb rapidly
with temperature and the effect of the thermal occupation is
not very significant if we compare Fig. 4(d) with Fig. 4(a).
For the ρYe = 109 g/cm3 case with large μe, the EC rates in
Fig. 4(b) only show moderate increase with the temperature.
The effect of the thermal occupation of the ground state leads
to a clear decrease of the EC rates with temperature, if we
compare the black-dotted curve in Fig. 4(e) and the PSM
results in Fig. 4(b). Similar large differences can also be seen
when comparing Fig. 4(f) and 4(c).

With all the excited states of the parent nucleus 93Nb fully
taken into account in the i summation in Eq. (2), one can see
how the EC rates are changed by comparing the two curves
in Figs. 4(d)–4(f). At low temperatures with T9 � 3 GK, only
the first excited 1/2− state in 93Nb is populated effectively.
Since this state has negligible B(GT+) at E f � 5.5 MeV [see
Fig. 2(d)] and a small 2J + 1 factor [see Eq. (2)], the effect of
thermal population of excited parent-nucleus states is found to
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be very small [namely, the two curves in Figs. 4(d)–4(f) in this
temperature region are very close to each other]. This conclu-
sion has been obtained in a recent simulation by Misch et al.
[60]. At higher temperatures with T9 � 6 GK (corresponding
roughly to 550 keV), many excited states with sizable 2J + 1
factors begin to be populated effectively (see Fig. 1). The
B(GT+) strengths of these excited states are comparable to
that of the ground state (see Fig. 2), and the effects on EC
rates are thus significant. The realistic stellar EC rates (and the
effects of excited parent-nucleus states) are found to increase
rapidly with temperature. At T9 ≈ 15 GK, the effect of excited
parent-nucleus states is found to be more than one order of
magnitude when comparing the two curves in Figs. 4(d)–4(f).

Finally, it is illustrative to compare the two calculated EC
rates for 93Nb from the PSM: those in the zero-temperature
approximation in Figs. 4(a)–4(c) (red solid lines) and those
in the full calculations in Figs. 4(d)–4(f) (labeled as ‘from all
states’). It is seen that similar curves are obtained in the two
cases, except when the stellar temperatures are very high (with
T9 � 10 GK) the full calculation gives slightly higher EC
rates [which is illustrated clearly in Figs. 4(c) and 4(f)]. This
may suggest that the zero-temperature approximation used
for stellar EC rates is reasonably good. However, we caution
that this conclusion should be taken as special for the present
93Nb → 93Zr case because for the EC parent nucleus 93Nb,
the very-low first 1/2− state has negligible B(GT+) values,
and furthermore, there exists a large energy gap between this
1/2− state and the other excited states, which diminishes their
contributions to the EC rates.

IV. SUMMARY

To summarize, electron capture (EC) rates are important
nuclear inputs for understanding many astrophysical phenom-
ena such as the core-collapse supernovae, the Urca cooling of
neutron star crust, etc. In such stellar environments with high
temperature and density, the contribution of excited nuclear
states to the EC rates is indispensable, and their effects should
be considered. Astrophysical simulations usually take one
of the two approaches to the distribution of nuclear states:
either they assume a thermal equilibrium distribution (e.g.,
a finite-temperature environment with the Boltzmann distri-
bution), or they use only the ground state properties (the
zero-temperature approximation). With new development of
nuclear many-body techniques, explicit treatment of all ex-
cited states in theoretical calculations become possible. This
allows one to compare the novel method with the traditional
ones before it can be applied in astrophysical simulations.

In the present article, we introduced a projected-shell-
model calculation for stellar EC rates in medium-heavy

odd-mass nuclei by taking 93Nb → 93Zr as the example.
In the zero-temperature approximation with only the ground
state of the parent nucleus considered, the calculated Gamow-
Teller transition strength distribution B(GT+) were compared
with the recent experimental data [11] and discussed together
with the large-scale shell model calculation and the quasi-
particle random-phase approximation. As seen in Figs. 2(a)
and 2(b), theoretical B(GT+) from different models give large
deviations from each other, showing even no qualitative sim-
ilarities. We have discussed possible reasons that lead to the
characteristic GT pattern for each model. We further discussed
the derived stellar EC rates at different temperatures and
densities. We found that for the present example, although
different nuclear models give very different GT strength dis-
tributions, the derived stellar EC rates are all qualitatively
consistent with the data within the statistical errors and uncer-
tainties for most cases. In the full calculations by the projected
shell model with all excited parent-nucleus states taking into
account exactly, similar EC rates are obtained as compared to
those from the zero-temperature approximation in which only
the ground state properties of the parent nucleus is considered.
This seems to suggest equivalence of the two approaches to
including the effects of excited nuclear states.

The insensitivity of the stellar EC rates found in the present
work, to detailed nuclear structure and to different approaches
to treat the contribution of nuclear states, needs further inves-
tigation. In the present 93Nb case, the electron-capture Q value
is close to zero, and when the Fermi energy is sufficiently
high, the details of the GT strength distribution do not have
a strong impact on the derived EC rates. We however caution
that this conclusion for 93Nb should not be taken as general
since in principle the EC rates are expected to depend on
detailed nuclear-structure properties such as the energy levels,
B(GT+), Q values, and phase space factors, etc. For example,
the EC rates of 59Co in the full calculations are by one order
of magnitude larger than those from the zero-temperature
approximation in most temperature-density conditions [18].
Experimental data with improved resolution, which can dis-
criminate theoretical models, are very much desired.
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