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Precision tests of the standard model and searches for beyond the standard model physics often require nuclear
structure input. There has been a tremendous progress in the development of nuclear ab initio techniques capable
of providing accurate nuclear wave functions. For the calculation of observables, matrix elements of complicated
operators need to be evaluated. Typically, these matrix elements would contain spurious contributions from the
center-of-mass (c.m.) motion. This could be problematic when precision results are sought. Here, I derive a
transformation relying on properties of harmonic oscillator wave functions that allows an exact removal of the
c.m. motion contamination applicable to any one-body operator depending on nucleon coordinates and momenta.
Resulting many-nucleon matrix elements are translationally invariant provided that the nuclear eigenfunctions
factorize as products of the intrinsic and c.m. components as is the case, e.g., in the no-core shell model approach.
An application of the transformation has been recently demonstrated in calculations of the nuclear structure recoil

corrections for the 8 decay of *He.
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I. INTRODUCTION

Precision tests of the standard model (SM) and searches
for beyond the standard model (BSM) physics that involve
atomic nuclei typically require nuclear structure input. A
prime example is the neutrinoless double 8 decay [1,2] where
a knowledge of the nuclear transition matrix elements is
needed to extract the neutrino mass if such a decay is ob-
served. These matrix elements can be only obtained from
nuclear theory [3]. Recent years have brought advances in the
sensitivity of B-decay studies. The B decays are sensitive to
interference of currents of SM particles and hypothetical BSM
physics [4-8]. The potential of using B-decay observables
as the precision frontier for BSM searches has led to the
deployment of several experimental efforts [9-12]. However,
discovering deviations from the SM predictions demands also
high-precision theoretical calculations [13-15].

There has been a tremendous progress in the development
of nuclear ab initio techniques capable of providing accurate
nuclear wave functions reaching masses of A = 100 [16] and
beyond. For the calculation of observables, matrix elements of
complicated operators need to be evaluated. Typically, these
matrix elements would contain spurious contributions from
the center-of-mass (c.m.) motion. This could be problematic
when precision results are sought. Motivated by ongoing and
planned measurements of angular correlations between the
emitted B particles and the B-electron spectrum of °He B
decay, ab initio no-core shell model (NCSM) calculations
have been performed with the goal to determine as accurately
as possible the SM predictions for these observables [13].
As ®He is a light nucleus, a c.m. spurious contamination can
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be significant. Therefore, I developed a formalism to remove
such contamination from matrix elements of arbitrary one-
body operators including the complicated momentum transfer
dependent operators relevant for the studied S-decay observ-
ables. It is the purpose of this paper to describe technical
details of this formalism, which is a straightforward gen-
eralization of the calculation of the translationally invariant
density of Ref. [17]. However, the present result is much more
powerful with a broad applicability.

In Sec. II, coordinate and harmonic oscillator (HO) wave
function transformations are introduced. The NCSM approach
and the factorization of its eigenstates is discussed in Sec. III.
The derivation of the translationally invariant matrix elements
of general one-body operators is presented in Sec. IV. Ap-
plications with a particular focus on the ’He B decay are
reviewed in Sec. V and conclusions are given in Sec. VI.

II. COORDINATE AND HO WAVE FUNCTION
TRANSFORMATIONS

I follow the notation of Refs. [17,18]. For an A-nucleon
system, one considers nucleons with the mass m neglecting
the difference between the proton and the neutron mass and
use the following set of Jacobi coordinates:

N 1

§ = \/;[?1+72+"'+7A]» (1a)

- _\/Tq . b

& = 5[71—72], (1b)

R \/3 | ]
= §|:§(r1—|—r2)—r3i|, (Io)

©2021 American Physical Society

e
|


https://orcid.org/0000-0002-6535-2141
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevC.104.064322&domain=pdf&date_stamp=2021-12-27
https://doi.org/10.1103/PhysRevC.104.064322

PETR NAVRATIL

PHYSICAL REVIEW C 104, 064322 (2021)

o A—2 | R o

§an = E[A_z(rl+F2+-"+VA—2)—VA—1],
(1d)

- A—1 1 R N R

a1 = T|:A_1(rl‘|‘r2+"‘+rA—l)_rA:|-
(le)

Here, & is proportional to the center of mass of the A-

\/%0. On the other hand, g?p with p > 0

is proportional to the relative position of the p-+1-st nucleon
and the c.m. of the p nucleons. Identical transformations can
be introduced for the momenta p;, 7Z;. The c.m. momentum
P= Zle i is then related to the 77, by P=+/A7. In general,
Jacobi coordinates are introduced as an orthogonal transfor-
mation of the single-nucleon coordinates and are proportional
to differences of c.m. of nucleon subclusters. The particular
choice (1) is convenient for the present derivations. For exam-
ples of other Jacobi coordinate sets see, e.g., Ref. [18].
Let me rewrite the last and the first equation in Eq. (1) as

A—1
Ea 1= —RA! 7a, (2a)
= ,/TR‘Q;Q + ,/Ka, (2b)

where RA-! = JisF+ R+
Ref. [19], the HO wave functions depending on the coordi-
nates (2) transform as

Z (LM Ly | QM) n o, (RE ) @y tym, (Fa)
M1m1

= ) (INLQNLimhQ) +.

nlmNLM

X (ImLM QM) @uim Ea—1)onim (o), &)
where (nINLQ|NLnl; Q) .

two particles with mass ratio /ﬁ and Q M, the total angular
momentum and its projection.

It should be noted that the same oscillator length, b = by =
Vh/mS, is used where Q2 is the HO frequency, for all the
HO wave functions appearing in Eq. (3) and throughout this
paper, @, (F) = Ry (r, by)Y;,, () with R, the radial HO wave
function and Y}, the spherical harmonics and 7 any of the
coordinates in Egs. (1) and (2).

nucleon system: R =

+ 74—1]. Following, e.g.,

is the general HO bracket for

III. FACTORIZATION OF NO-CORE SHELL
MODEL EIGENSTATES

Expansions on square integrable many-body basis states
are among the most common techniques for the description
of the static properties of atomic nuclei. The HO basis is
frequently utilized.

The ab initio NCSM [20-23] is one of such techniques. Nu-
clei are considered as systems of A nonrelativistic point-like
nucleons interacting through realistic internucleon interac-
tions typically derived using the chiral effective filed theory

(EFT) [24]. All nucleons are active degrees of freedom.
Translational invariance as well as angular momentum and
parity of the system under consideration are conserved. The
many-body wave function is cast into an expansion over a
complete set of antisymmetric A-nucleon HO basis states
containing up to Ny.x HO excitations above the lowest pos-
sible configuration. The basis is further characterized by the
frequency 2 of the HO well and may depend on either Ja-
cobi [18] or single-particle coordinates [21]. In the former
case, the wave function does not contain the c¢.m. motion,
but antisymmetrization is complicated. In the latter case, anti-
symmetrization is trivially achieved using Slater determinants
(SD), but the c.m. degrees of freedom are included in the
basis. Calculations with the two alternative coordinate choices
are completely equivalent.

Square-integrable energy eigenstates are obtained by solv-
ing the Schrédinger equation

H|AMTMTT,) = E/;" |AMJ"MTT) 4)

with the intrinsic Hamiltonian
1 & (Bi— p))? 2 NN A W
Y i J A A
H=2 ) 52—+ 2 v+ 2 Vil
i<j=1

i<j=1 i<j<k=1

Here, p are nucleon momenta, V¥ s the nucleon-nucleon
(NN) and V3 the three-nucleon (3N) interaction. The A in
Eq. (4) labels eigenstates with identical J* T T.. In general, the
isospin T is only approximately conserved.

Calculations in the SD basis are typically more efficient for
nuclei with A > 4. The so-called M scheme is then often used
with the basis characterized by the angular momentum pro-
jection M, the parity 7, and T, = (Z — N)/2. The eigenstates
are then obtained by applying the Lanczos algorithm [25].
The relationship between the Jacobi coordinate and the SD
eigenstates is

(71 e 7,40‘1 e OATL . ‘CMA)»]”MTTZ)SD

TAlAAM MTT,) 9000 (o)
(6)

with the o and 7 the spin and isospin coordinates, respectively.
To simplify the notation, I will omit the isospin coordinates
and quantum numbers and the parity from now on. In order
to select the physical SD eigenstates satisfying the factoriza-
tion (6), one typically applies the Lawson projection [26] that
pushes SD eigenstates with the c.m. in excited HO configura-
tions to high energy relative to the c.m. 0k eigenstates.

It should be noted that the factorization (6) is not unique to
the NCSM approach, an analogous relation was found, e.g., in
converged coupled cluster calculations [27].

:(51...5/1,101...0‘,4‘[1...

IV. TRANSLATIONALLY INVARIANT
MATRIX ELEMENTS

Let me consider a general one-body operator

A
0% =% " 0%, 0, (7)

i
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that might also depend on nucleon momenta p;. A physical operator (8) can be evaluated as [18]
nuclear operator is expected to be translationally invariant,

i.e., the coordinates should be measured from the c.m. of <Akaf||5(’“||A)\,-J,->
the nucleus rather than from the origin of the HO well (or ~K)- 3
other potential used to define the single-particle basis). Con- =A (ArpJr |0 (Fa — R, 04)||AN ;)

sequently, one should rather consider the operator [18,28-30] —~ .
= A I IOW (- [AE o )llAnid), )

A

0% = Z 0" (7 — R, o07) (8)  where (]|0||) denotes a reduced matrix element in angular mo-
i mentum, é’ =&, with&,_; given by Eq. (le) and o = o4. If

the operator depends explicitly on nucleon momenta p; — %P,

with R the c.m. coordinate of the nucleus. I note that the . T . . .
5] a Jacobi momentum 7 = 74_; will appear in Eq. (9) with the

operator (8) may also depend on nucleon momenta, p; — %P,

B N : z - Al

with P the c.m. momentum of the nucleus. To simplify the  same scaling factor as that of §, i.e., — /== 7.
notation, I do not show this dependence explicitly. Let me rewrite the matrix element (9) as integral over the
As the nuclear wave functions are antisymmetric with re- Jacobi coordinates and introduce a single-particle-like matrix

spect to exchanges of the nucleons, a matrix element of the element of the operator:
|

—~ 1 N A 13 7 e i'—m. . . /
AT [|0PNIART) = ATy Z(JiMiKkufoxnlj||0‘K)(—,/%s, o)nn/l D T (Gmy — m) | Kk)
X (lm%mx|jmj)(l’m’%m;|j’m;) / dg, .. .dé’A,zdé'A,ldE/;,l

X (A)\.f]fo|§| e gA_ng_lal e O—A—IUA)wnlm(gA—l )XmJ (O—A)ﬁpz’[’m’ (g//l—l )X;:;( (O—f/\)
X (gl ...gA_zé;;_lo] -~-O—A—IUA|A)¥iJiMi>~ (10)

The sum runs over all quantum numbers that do not appear on the left-hand side except M;. An abbreviation J=V2J +1is
used. It should be noted that the ket and bra states in the single-particle-like matrix element (nl j||6(K)(—‘ / A%E, o)||n'l’j")

depend on the Jacobi coordinate £ rather than on a regular coordinate 7 like in a standard one-body operator matrix element. In
deriving Eq. (10) I used the Dirac é function properties and the completeness relations 5(§ - §A71 )= anm §0nlm(§A4)‘»";';lm(g )
and 50@ = Zm: Xmy (04 )X,j;A (o).

I aim at calculating the matrix element (10) with the help of the SD eigenstates (6) that are obtained more efficiently for nuclei
with A>4 usually by applying the second quantization. To achieve that goal, I investigate an analogous integral to that appearing
on the right-hand side of Eq. (10) for the Cartesian coordinate HO wave functions (summing over quantum numbers that do not
appear on the right-hand side),

Z(—l)jzimz(jlml‘h - m2|Kk)/d71 oo dTadT) sD{AAp T My P10 - FAOA) Py jimy (FACADPys 1 oy (AT A)
X (7101 . F;‘O'A |A)\.,‘JiM,'>SD

11 3
=7 JT(Jl‘MiKk|Jfo) sD(AXfJ ] I(aillljl oty )11 ANT:)sD (1
:

with @, (Fo )= Zm/ms(lmI%mA JM)@uim, (F) xm,(0), and aLim, an jmz(—l)f_”‘a,ﬂ j—m the creation and annihilation operators.
The second quantization matrix elements, (— 1 /I/(\ ) sp{AAsJy| |(a21 I an, 1, jz)(’( )||AA:J;)sp, contain the many-body structure infor-
mation and are typically referred to as the one-body density matrix elements (OBDME).

Next, I rewrite the left-hand side of Eq. (11) and perform a change of variables to the Jacobi coordinates using Egs. (1)-(3), (6),

together with S(RAL! — RATT) = 3"y 1 @viLon (RAGDQE 1 g, (RASD) (see also Eq. (12) in Ref. [17]),

c.m.

> (=D Gimy j — mo | Kk) / dFy ... dPsdF)y sp(AN T My |Fi01 . FAGA) Pty jum (FAOAD) 1, o (FATA)

x (F107 ... Fyo s |AL M) sp
. . . . . .
— soaamey KLttt ) ) Lo Lo Jlfi Lo
—Z]I]ZJJ (=1 {lz ! l’}{l oLl K h

2
x (nl00I|NyLyny ;1) (n’z’001’|N1L1n2121’>ﬁ(—1)]"—'"} (jmj' — m';|Kk)

1
A-1
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(lm ms|]mj)(l/ 1 |] )/dgl...dgA,1d§1471<A)\fijf|§1 ...5A710'1 ...O'A)

X Puim Ea—1)Xom, @)1 Ga_ ) o (G4 (&1 - .

SA_IO'] ..

O‘,ZAIA)\‘ZJZMZ>

_Z(M )n]lljﬂl')lzjz nljnl”( l)j mj (]m.] —m; |Kk)(lm m5|]mj)(l/ '3 |] )/dgl-“dgAfldgAfl

X (A)\.f.]fo|§] .. .gA_10'| ey

where I introduced the matrix

K
(M )nll]j]nzlzjz,n]jn’l’ i

= Zflfsz -

N Ly

Xj/LljZJILljlelj
L o5 Ul 5 ufli K bk

X (l’llOO”N]L[n]l]l) (n/l/001/|N|L1nzlzl/)

)K+L|+ll+lz+j'+jz

13)

The dimension of the matrix is given by all the combinations
of two-nucleon HO states {nl j},{nlj}, with the j;, j,» coupled
to K satisfying truncation criteria for the Ny.x model space.
The transformation matrix M¥ (13) is a straightforward gen-
eralization of the matrix introduced in Eq. (13) of Ref. [17].
Combining Egs. (10)—(12), one arrives at the final result

L 1
AT A-1

(Ar T 1O || AN)

l j10%) (= /A, o )11

nljn'l'j',nyly jinala jo
x sp(AhJrll@) ,  annp) OlART)sD. (14)

x (MK)

This relation can be contrasted with the “standard” many-
body matrix element of a one-body operator obtained in the
SD basis with the c.m. motion included:

sp (AL I 110F )| AL sp

1 AK)
=7 (il ji|lO™ (7, 0)linalz jio)

)(K)

X SD(A)\fJfH( ,,],mamlm [|AAiJ;)sD.- (15)

In Eq. (14), the OBDME contain the many-body nuclear
structure information, the transformation matrix MX removes
the spurious c.m. contributions from the OBDME, and the
operator action is given in the single-particle-like matrix el-
ements depending on the Jacobi coordinates E.

V. APPLICATIONS
A. ®*He — °Li 8 decay

The formalism developed in this paper was applied for
the first time in calculations of the electron spectrum of the
®He — SLi B decay [13]. In general, nuclear electroweak
processes can be described in terms of seven basic multi-
pole operators depending on the transferred momentum [31].
Four of these operators are relevant for the ®*He B decay

YonimEa1)Xm, (0@ o))y @D E -

E\_101...04ANTM;), (12)

(

calculations,

&y - lo = =
X, (qrj) = [avr,MJM, (qrj):| -0,

1’\// -
—EJM,(CIVJ‘),

), (@) = Myu, (7)) G - Vs, + >

>

Am, (qF)) = Myym, (gF;) - avfj,

A o . 1—> — N N
E}M,(qrj) = —l|:6—IV?,- X MJJM/(qrj)i| -0, (16)

with &; being the Pauli spin matrices associated with nu-
cleon j and g the magnitude of the transfer momentum.
Furthermore, My, (g7 ;) = ji(qrj)Yim, (7;) and My, (g7;) =
jL(qrj)?JLM_,(?j), where 7; represents azimuthal and polar an-

gles of 7;. Yy, and Y, 7Lm, are spherical and vector spherical
harmonics, and j; are spherical Bessel functions.

Results for the nuclear matrix elements of the one-body
operators (16) are shown in the figure in the Supplemental
Material of Ref. [13]. These matrix elements are then used to
construct the nuclear structure input for the electron spectrum
calculations, matrix elements of the longitudinal axial current
A, axial charge C*, and vector magnetic M" operators, given
in Ref. [13]. One observes that the translational-invariant
many-body matrix elements, Eq. (14), and the standard many-
body matrix elements, Eq. (15), are the same at g=0 for
the ¥/, £”, and A operators while the many-body matrix
elements of the ' differ by about a factor of two. In particular,
the spurious center-of-mass components of the wave functions
contaminate the matrix elements when the gradient in the first
term of the €’ is applied on the wave function. The overall ef-
fect is quite significant. With an increasing g, all the operators
become contaminated by spurious c.m. contributions although
the effect is small for 3/, £”, and A in the ¢ range relevant
for the °He g decay.

When evaluating the one-body-like Jacobi-coordinate ma-
trix elements appearing in Eq. (14) of the operators (16), one
first carries out the gradients in the parenthesis of the 3/, "

(see, e.g., Refs. [31,32]) and then replaces 7 by —‘/%5 in

all the operators, and, in addition, one replaces the gradients
in & and A by — %@g. The latter step corresponds to the

replacement of the momentum p by —, / %ﬁ.
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B. Matrix elements of the seven basic multipole operators

It should be noted that one-body matrix elements of the
seven basic multipole operators for electroweak processes can
be carried out analytically in the HO basis as demonstrated in
Refs. [31,32]. In Ref. [32], a Mathematica script is provided
for the calculation of the matrix elements. These results can
be readily applied to calculate the matrix elements of the
translationally invariant versions of the operators used here.
In the analytic results, e.g., Egs. (17)—(19) in Ref. [32], (i) the

q is replaced by —,/ /%q, (ii) the matrix elements (18) and

(19) in Ref. [32] are multiplied by one more factor of —, / AT’I

due to the gradient (momentum) acting on the wave function,
A1

A
terms with 1/g, i.e., &/, £”, and A Eq. (16), to compensate
for the extra scaling in step (i).

and, finally, (iii) yet another factor of — is applied to

C. Electromagnetic transitions

Electromagnetic transitions between nuclear states can
typically be described in long wave length approximation
using simple multipole operators, e.g., EL & epréYL(fp)—k
enr,fYL(ff,,) with L=1 for electric dipole, L=2 for electric
quadrupole, etc., and M1 ~ g;,jp =+ gljn + 85,5p + &s,5. For
these operators, applications of Eqs. (14) and (15) lead
to identical results as long as L>0. When calculating the
one-body-like matrix elements in Eq. (14), one substitutes

YR — (= /A e ) and T=7 x p— 2718 x 7.

There is obviously no scaling for the spin operators.

D. Nuclear radii and kinetic energy

Point proton, neutron, and matter radii are obtained by cal-
culating mean values of the operators % Z?:l 7 — ﬁ)z(l /2 +
i) % i (B — R?(1/2 — 1), and § Y i (7 — R)?, re-
spectively. These are not one-body operators and to calculate
their matrix elements, one typically rewrites them in a two-
body-like form proportional to (#; — ?j)z, see, e.g., Ref. [33].
The many-body matrix elements are then obtained with the
help of two-body density matrix elements, i.e., {(a'a’aa). The
present formalism allows a much simpler evaluation of the
radii using only the OBDME. The one-body-like matrix el-
ement in Eq. (14) is obtained in an analytical form using
(F—Ry? — &1gx

(nljl|E2|Inlj) = J @n+1+3/2)b%,
(nlj|E}In+11j) = —] /(i + D)(n + 1 + 3/2) b?
(n+11182|Inl ), (17)

. ) h ~ - .
and zero otherwise. Here, b' =5 and’the Jj= «/'2] +1is
due to the fact that the matrix element is reduced in j. The
point-proton (neutron, matter) radius is obtained using the
proton (neutron, proton plus neutron) OBDME, i.e., (a;ap)

((@}an), (ala,) + (afay)) with 1/Z(1/N, 1/A) times 431 scal-
ing.
The kinetic energy can be calculated in an analogous

way, starting from the operator ﬁ Z?zl (pi — %13’)2’ replacing

(p — +P)* — 2172 The one-body-like HO matrix elements
of 5% are obtained as in Eq. (17) with b replaced by /#Q/2
and a positive sign in the off-diagonal term. In this case,
one sums the proton and the neutron OBDME and scales
by /%. Again, a standard kinetic energy calculation would
require a two-body density. The present calculation is much
simpler.

E. Nuclear density

To obtain the nuclear density, one uses the opera-
tor p(F — R) = Y, 8(F — R — (7; — R)) and substitutes 7 —

R — —/27'& as done in Ref. [17]. Using the density opera-

tor, i.e., ,o(g) = 8(§ — §A,1) in Eq. (14) with the HO states
(Es_io|nl J), results numerically in the same local transla-
tionally invariant density as that obtained from Eq. (16) of
Ref. [17]. This is not obvious as the p(€) expression from
Eq. (14) does not simply reduce to Eq. (16) of Ref. [17].

The nonlocal translationally invariant density is obtained
using the operator 8(§ —E\_1) 8(E — é;H) in Eq. (14). Nu-
merically, the results are identical to those obtained from
Eq. (16) of Ref. [34]. Again, this is not obvious as Eq. (14)
does not simply reduce to Eq. (16) of Ref. [34]. From the
nonlocal density one can derive the translationally invariant
kinetic density [35], which the present formalism should also
simplify.

The present formalism can be readily applied to calculate
spin-dependent density, see, e.g., Ref. [36], to construct op-
tical potentials for high-energy nucleon scattering on nuclei.
Calculations in this direction are under way.

VI. CONCLUSIONS

I derived an expression for calculations of translationally
invariant nuclear matrix elements for arbitrary one-body oper-
ators. The derivation relies on the factorization of the c.m. and
intrinsic components of the nuclear eigenstates and utilizes
properties of HO wave functions. The main result given in
Eq. (14) is a straightforward generalization of the formalism
derived in Ref. [17] for nuclear density. It is, however, much
more powerful with a much wider applicability. It has been
already successfully applied to calculations of nuclear struc-
ture recoil corrections to *He S decay in Ref. [13] within the
NCSM.

The present formalism is in particular relevant for mo-
mentum transfer dependent operators such as the electroweak
seven basic multipole operators [31] or operators relevant for
the hypothetical dark matter scattering off nuclei [37,38] as
the c.m. contamination of matrix elements typically increases
with the transferred momentum. At the same time, Eq. (14)
in combination with Eq. (17) allows the calculation of nuclear
radii as well as the kinetic energy using only the OBDME
contrary to a traditional approach where two-body density
matrix elements are required.

In this paper, I discussed applications within the NCSM
method. The c.m. and intrinsic wave function factoriza-
tion is achieved also in other ab initio techniques, e.g.,
the coupled cluster method [27,39] or in-medium similarity
renormalization group method [40,41], at least to a good
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approximation. It remains to be seen how successfully the
present formalism can be applied in such techniques.
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