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Angular momentum projection in the deformed relativistic Hartree-Bogoliubov theory in continuum
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The angular momentum projection (AMP) method is implemented in the deformed relativistic Hartree-
Bogoliubov theory in continuum (DRHBc) with the point-coupling density functional. The wave functions of
angular momentum projected states are expanded in terms of the Dirac Woods-Saxon (WS) basis, providing a
proper description of the asymptotic behavior of the wave functions. The contribution of continuum induced by
the pairing is considered by treating the pairing correlation with the Bogoliubov transformation. We present the
formulas and numerical checks for the DRHBc+AMP approach in detail and use it to study low-lying excited
states of axially deformed nuclei. Our calculations show that neutron-rich magnesium isotopes 36,38,40Mg are
all well-deformed nuclei. The low-lying spectra of these three nuclei are obtained. The ground-state rotational
bands of 36,38,40Mg are reproduced reasonably well by using this new DRHBc+AMP approach with the density
functional PC-F1.
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I. INTRODUCTION

With the development of the radioactive-ion-beam facili-
ties, many exotic nuclear phenomena which differ from the
properties of nuclei close to the β-stability line have been
observed, including proton or neutron halos [1,2], changes
of the nuclear magic numbers [3–6], the island of inversion
[7], neutron skin [8], clustering effects [9,10], new radioactiv-
ities [11], nuclear bubble structure [12,13], shape coexistence
[14–16], etc. The study of these exotic structures is at the
frontier of nuclear physics nowadays [10,15,17–25]. The de-
scription of the structure of exotic nuclei has been achieved
by using many approaches, e.g., the shell model (SM) ap-
proach [25,26], nuclear density functional theory (NDFT)
[17,19,22,27], antisymmetrized molecular dynamics [28], and
few-body models [29]. One of the advantages of the NDFT
is that it can describe almost all nuclei in the nuclear chart
with global density functionals, especially for heavy and su-
perheavy nuclei.

The basic implementation of NDFT is achieved by us-
ing self-consistent mean-field (SCMF) methods, in which
the total energy of the system is constructed as a functional
of one-body local nucleon density [21]. The bulk properties
of finite nuclei, including binding energy, radius, deforma-
tion, etc., have been successfully described by using SCMF
methods [17,19,22,27,30,31]. In general, the wave function
obtained from mean-field (MF) calculations in the intrinsic
frame is approximated by a generalized Slater determinant
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of the Hartree-Fock-Bogoliubov (HFB) type and allowed to
break symmetries of the Hamiltonian, such as particle num-
ber conservation and rotational and translational invariances
[17,22,30,32–34]. As a consequence, the MF wave func-
tion cannot be used to study correlations corresponding to
the spontaneous symmetry breaking, quantum fluctuation of
collective degrees of freedom, spectroscopic observable in
the laboratory frame, and selection rules of the transitions.
These deficiencies can be complemented via beyond-mean-
field (BMF) calculations based on SCMF methods [32,35].
The violation of the SO(3) symmetry in the intrinsic frame
for deformed nuclei and U(1) symmetry in the gauge space
for superfluid nuclei can be restored by using the angular
momentum projection (AMP) and particle number projec-
tion (PNP), respectively [22,32,33]. The quantum fluctuation
of collective degrees of freedom is usually treated with the
generator coordinate method (GCM) [32]. In principle, these
broken symmetries should be restored by using projection be-
fore variation (PBV) calculations [32], which are technically
very complicated and have been rarely achieved in NDFT,
especially for the case of the AMP; see, e.g., Ref. [35] for
a recent review. Usually the projection after variation (PAV)
approach is adopted to restore the broken symmetries within
the framework of NDFT.

The AMP has been successfully implemented in nonrela-
tivistic and relativistic MF models (see Refs. [17,21,30,34,35]
and references therein) and has been used to explain or predict
many exotic nuclear structures connected with the nuclear
collective excitation, for instance, the structure of low-spin
and high-spin states [36–38], shape coexistence in Kr and
Pb isotopes [39,40], shell evolution in neutron-rich Ti and Cr
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isotopes [41], shape transitions [42,43], low-lying excitation
of hypernuclei [44–47], excitation of triaxially deformed nu-
clei [48–54], nuclear octupole excitation [55–58], and the
structure and fission of superheavy nuclei [59–61]. In addi-
tion, it is worth mentioning that the BMF calculations have
been performed to study the excitation of odd-N (Z ) nuclei
[62–65].

It should be noted that in the above-mentioned calculations
with the AMP, the wave functions of the intrinsic and excited
states are almost all expanded in terms of the harmonic oscil-
lator (HO) wave functions [66–68]. The HO wave functions
can be obtained analytically and have great advantages for
numerical treatments. But it has been shown in Refs. [69–72]
that the asymptotic behavior of the wave functions for weakly
bound and low-l orbitals cannot be described properly with
this basis in the MF ground states, even if the size of the basis
space is taken to be very large. Therefore expanding the wave
functions of angular momentum projected states in terms of
the HO basis is also not suitable to describe the asymptotic
behavior of the densities for loosely bound nuclei close to drip
lines, including halo nuclei.

Nuclear halos are characterized by the large spatial exten-
sion and formed in loosely bound nuclei when the valence
nucleons close to the threshold of particle emission occupy
low l (s- or p-wave) orbitals with considerable amplitudes
[73–79]. Therefore, when studying halo nuclei by employ-
ing SCMF approaches, the single-particle wave functions are
usually obtained in coordinate (r) space by using the shooting
and matching method [77,80], the finite element solution [81],
and the Lagrange-mesh method [82]. Alternatively, in config-
uration space, the wave function can be expanded by a set of
proper basis functions, such as the Woods-Saxon (WS) basis
[71], the Gaussian basis [83], and the transformed HO basis
[69,84]. Pairing correlations play a vital role in the formation
of halos and are usually treated by using the Bogoliubov trans-
formation [74,77,80]. For spherical halo nuclei, by solving
the Hartree-Fock-Bogoliubov (HFB) or relativistic Hartree-
Bogoliubov (RHB) equation with spherical potentials, the
ground-state property [75,77,85–87] can be well described.
Deformation-driven halos are common for halo nuclei in
medium mass region, such as those observed in 31Ne [88,89]
and 37Mg [90]. Within the framework of SCMF, the first self-
consistent study of deformed halo nuclei has been achieved by
using the deformed relativistic Hartree-Bogoliubov theory in
continuum (DRHBc) [91], and after that many deformed halo
nuclei have been predicted by using MF approaches [83,92–
97]. The establishment of rotational bands of deformed halo
nuclei is helpful to understand the halo structure and configu-
ration [89]. Therefore in the framework of DFT, it is necessary
to apply the BMF method to study deformed halo nuclei [98].

The covariant density functional theory (CDFT) has be-
come a powerful tool to study the properties of stable and
exotic nuclei over the whole nuclear chart with universal
density functionals [19–22,27,99–101]. For the study of halo
nuclei within the framework of the CDFT, the relativis-
tic continuum Hartree-Bogoliubov (RCHB) [75–77,102] and
relativistic HFB theories [87,103] have been developed for
spherical halos and the DRHBc theory based on the Dirac
WS basis for deformed ones [91,94]. When studying halos

in deformed nuclei, shape decoupling effects originated from
the intrinsic structure of valence levels have been predicted
by using the DRHBc theory [91]. Deformed halos with shape
decoupling effects in C, Ne, and Mg isotopes have been
revealed by using this theory [91,94–97]. Specifically, the
DRHBc theory can well explain the halo structures in 17,19B
[104,105]. In addition, the construction of the DRHBc nuclear
mass table is in progress [106–110].

Within the framework of the CDFT, the implementation
of AMP in the relativistic mean field (RMF) models with
the HO basis has been realized [21]. In Refs. [111,112], the
BMF methods for axially deformed nuclei with spatial re-
flection symmetry have been developed. Three-dimensional
(3D) AMP [47,50,51,113] has been applied to study low-
lying excited states of triaxially deformed nuclei. Beyond
RMF approaches have been also used to investigate nuclear
octupole excitations [55]. Recently, an AMP method based on
the multidimensionally constrained (MDC) CDFTs [23,114–
116] has been developed [117]. The calculations by using
MDC-CDFTs+AMP can describe the properties of both the
ground state in the MF level and low-lying excited states in
the laboratory frame for systems with various deformations,
such as β20, β22, β30, β32, β40, etc., in a microscopic and self-
consistent way. It is desirable to develop the AMP based on
the DRHBc theory to study the properties of the collective
motion for deformed nuclei.

In the DRHBc theory, the MF wave function is expanded
in terms of the Dirac WS basis, which can also be used
to construct the angular momentum projected states. In this
way, a proper description of the asymptotic behavior of the
wave functions in excited states is achieved. The angular
momentum projection after variation has been developed
based on the DRHBc theory, aiming at a microscopic de-
scription of low-lying excitation of the deformed nuclei,
especially for deformed halo nuclei. As a first application of
the DRHBc+AMP approach, the rotational excitation of a de-
formed halo nucleus was explored and it was found that both
the halo structure and shape decoupling effects can appear in
rotational excited states [98]. In this work we take 36,38,40Mg
as examples and present in detail how to implement the AMP
into the DRHBc theory, careful numerical checks, and the
study of ground-state rotational bands of these three nuclei.

This paper is organized as follows. The main formulas of
the DRHBc+AMP approach are given in Sec. II. We perform
numerical checks of this newly developed approach in Sec. III.
The applications on 36,38,40Mg are given and discussed in
Sec. IV. We summarize this work in Sec. V.

II. THEORETICAL FRAMEWORK

A. The DRHBc theory

The DRHBc theory with both the meson-exchange
[91,94,118,119] and point-coupling [106] effective interac-
tions have been developed. The AMP is implemented based
on the point-coupling density functionals. Here we intro-
duce the main formulas of the DRHBc theory with the
point-coupling density functionals. Under the MF and no-sea
approximations, the total energy of the system is constructed
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as a functional of nucleon densities. In the DRHBc theory,
by using the Bogoliubov transformation, the MF and pairing
correlations are treated self-consistently [77,80]. The equation
of motion for nucleons is the deformed RHB equation [120]
and reads(

hD − λτ �

−�∗ −h∗
D + λτ

)(Uk

Vk

)
= Ek

(Uk

Vk

)
, (1)

where λτ (τ = n, p) is the Fermi energy. (Uk,Vk )T is the
quasiparticle wave function with energy Ek and is expanded
in terms of the Dirac WS basis:

Uk (rs) =
∑
nκ

u(m)
k,(nκ )ϕnκm(rs),

Vk (rs) =
∑
nκ

v
(m)
k,(nκ )ϕ̄nκm(rs). (2)

The Dirac WS basis is obtained by solving the Dirac equation
in r space with the spherical WS scalar and vector potentials
[71,121], and the basis function reads

ϕnκm(rs) = 1

r

(
iGnκ (r)Y l

jm(�s)
−Fnκ (r)Y l̃

jm(�s)

)
, (3)

where Y l
jm(�s) is the spin spherical harmonics with the total

angular momentum j, orbital angular momentum l , and the
projection m of the total angular momentum on the symmetry
axis. Gnκ (r)/r and Fnκ (r)/r are radial wave functions for the
upper and lower components of the Dirac spinor with the
radial quantum number n and the relativistic quantum number
κ = (−) j+l+1/2( j + 1/2). ϕ̄nκm(rs) is the time reversal partner
of ϕnκm(rs).

The Dirac Hamiltonian reads

hD = α · p + V (r) + β[M + S(r)], (4)

where S(r) and V (r) are the scalar and the vector potentials
and read

S(r) = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (5)

V (r) = αV ρV + γV ρ3
V + δV �ρV + e

1 − τ3

2
A0

+αTV τ3ρ3 + δTV τ3�ρ3. (6)

The densities read

ρS (r) =
∑
k>0

V †
k (r)γ0Vk (r),

ρV (r) =
∑
k>0

V †
k (r)Vk (r),

ρ3(r) =
∑
k>0

V †
k (r)τ3Vk (r). (7)

The pairing potential is written as

�(r1, r2) = V pp(r1, r2)κ (r1, r2), (8)

where κ (r1, r2) is the pairing tensor [32,122], and a density-
dependent zero-range force,

V pp(r1, r2) = 1

2
V0(1 − P̂σ )δ(r1 − r2)

[
1 −

(
ρ(r1)

ρsat

)]
, (9)

is used in the present work.

In the intrinsic frame, for axially symmetric and spatial
reflection symmetric nuclei, the densities and potentials are
expanded in terms of the Legendre polynomials,

f (r) =
∑

λ

fλ(r)Pλ(cos θ ), λ = 0, 2, 4, . . . , (10)

with

fλ(r) = 2λ + 1

4π

∫
d� f (r)Pλ(cos θ ). (11)

After getting the wave functions by solving the RHB equation,
the total energy of the system can be obtained, and more
details can be found in Ref. [106].

B. Angular momentum projection

Due to the breaking of spherical symmetry by the axially
deformed MF potential in the intrinsic frame, the wave func-
tion |�(β2)〉 with a certain quadrupole deformation parameter
β2 is not an eigenvector of angular momentum operators Ĵz

and Ĵ2. The projected ground state and low-lying excited
states with good angular momentum can be constructed by
performing the AMP on |�(β2)〉 given by DRHBc calcu-
lations with the quadrupole deformation constraint [97] and
read [32] ∣∣�JM

α (β2)
〉 =

∑
K

f JK
α P̂J

MK |�(β2)〉, (12)

where f JK is a coefficient and the angular momentum projec-
tion operator reads

P̂J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (13)

with the Euler angles � ≡ (φ, θ, ϕ), the Wigner
function DJ

MK (�), and the rotational operator R̂(�) =
e−iφĴz e−iθ Ĵy e−iϕĴz . The energy EJ and f JK of a projected state
can be calculated by solving the Hill-Wheeler equation [32]:∑

K

f JK
α

[〈
�(β2)|Ĥ P̂J

MK |�(β2)
〉

−EJ
α

〈
�(β2)|P̂J

MK |�(β2)
〉] = 0. (14)

For axially deformed nuclei, the calculation of EJ and f JK

can be simplified because Ĵz|�(β2)〉 = 0. The integration over
φ and ϕ can be calculated analytically. Using the properties of
the projection operator and spatial reflection symmetry, one
can deduce K = 0 and f JK can be replaced by f J . EJ and f J

are calculated as [123]

EJ = 〈�(β2)|Ĥ P̂J
00|�(β2)〉

〈�(β2)|P̂J
00|�(β2)〉 ,

f J = 1√
〈�(β2)|P̂J

00|�(β2)〉
. (15)

The normal overlap kernel N J (β2) and the Hamiltonian over-
lap kernel HJ (β2) can obtained by using the formulas in [111].

For the calculation of the normal overlap kernel and Hamil-
tonian overlap kernel, the generalized Wick’s theorem is used
[124–127], and in this work we use the formulas and notation
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given in Ref. [50]. In practical calculations, the wave functions
of single-particle states in the canonical basis with tiny occu-
pation probabilities v2 have negligible contribution to kernels.
Therefore a truncation ξ on the occupation probability is intro-
duced, which can reduce the numerical computational efforts
[50,124] effectively.

The main ingredient for calculating the normal overlap
defined as n(β2; θ ) ≡ 〈�(β2)|R̂(θ )|�(β2)〉 with R̂(θ ) ≡ e−iθ Ĵy

is the rotational matrix, and the matrix elements can be easily
obtained:

Rkk′ =〈φk|R̂(θ )|φk′ 〉
=

∑
nκ

∑
n′κ ′

ck
nκmck′

n′κ ′m′δ j j′δll ′d
j′

mm′ (θ ). (16)

We notice that it is simpler to calculate the rotation matrix
elements in the Dirac WS basis than in the HO basis shown
in Refs. [50,111] because the Dirac WS basis functions are
eigenvectors of angular momentum operators and

〈nκm|R̂(θ )|n′κ ′m′〉 = δ j j′δll ′d
j′

mm′ (θ ). (17)

We follow the procedures given in Refs. [50,111] to cal-
culate the Hamiltonian overlap kernel. For each rotational
angle, the energy density E (β2; θ ) has the similar structure
with that in the MF level and is a functional of the mixed
density ρ(r; β2; θ ) and pairing density κ (r; β2; θ ) in r space.
It should be mentioned that in AMP calculations, the rotation
operation breaks the time reversal symmetry, and therefore
the spatial components of the currents have contribution to
the total energy. In coordinate space, the mixed densities and
currents are

ρV (r; β2; θ ) =
∑
i, j

φ̄i(r; β2)ρ ji(θ )φ j (r; β2),

ρ3(r; β2; θ2) =
∑
i, j

φ̄i(r; β2)τ3ρ ji(θ )φ j (r; β2),

jμ(r; β2; θ ) =
∑
i, j

φ̄i(r; β2)γ μρ ji(θ )φ j (r; β2),

(18)

where φ(r) and φ̄(r) are the single-particle wave function and
its time reversal partner. ρ(θ ) is the mixed density matrix
in the canonical basis for each rotation angle and can be
calculated after obtaining the rotational matrix. More details
can be found in Ref. [50].

In the DRHBc theory, the intrinsic densities are axially
symmetric along the z axis and are spatial-reflection symmet-
ric. Therefore the density is expressed as a linear combination
of the Legendre polynomials [cf. Eq. (10)]. For the mixed
densities, the rotational invariance along the z axis is broken
but kept along the y axis and the spatial reflection symme-
try is also held. For the currents, the symmetry of the time
component is the same as that of the mixed densities, and the
spatial components are spatial-reflection asymmetric. So in
the DRHBc+AMP approach, we expand the mixed densities
and currents in terms of the spherical harmonics,

f (r, ϑ, ω) =
∞∑

l=0

m=l∑
m=−l

alm(r)Ylm(ϑ,ω), (19)

where

alm(r) =
∫ 2π

0
dω

∫ π

0
sin ϑdϑY ∗

lm(ϑ,ω) f (r, ϑ, ω). (20)

For the mixed scalar density and vector density, we have

ρ(r) =
∑

l

m=l∑
m=−l

ρlm(r)Ylm(ϑ,ω), l = 0, 2, 4, . . . , (21)

and ρl−m(r) = (−1)mρlm(r).
For the spatial components of the mixed currents,

�j(r) =
∑

l

m=l∑
m=−l

�jlm(r)Ylm(ϑ,ω), l = 1, 3, 5, . . . , (22)

with jx(z),l−m(r) = (−1)m jx(z),lm(r) and jy,l−m(r) =
(−1)m+1 jy,lm(r). The details about how to calculate the
mixed densities and currents in coordinate space within the
framework of the DRHBc+AMP are given in Appendix.

After the calculation of the mixed densities and currents,
the interaction part of E (β2; θ ) can be obtained. The Coulomb
part of the mixed energy density is calculated as

Eem(r; θ ) = e2

8π
ρp(r; θ )

∫
d3r′ ρp(r′; θ )

|r − r′| . (23)

As what is usually done, the exchange term of Coulomb
energy is neglected. By expanding 1

|r−r′| and mixed proton
density in terms of the spherical harmonics, one can get the
Coulomb energy. The pairing part of the mixed energy density
is given by

Epair (r; θ ) = −
∑

τ

Vτ (r; θ )

4
κ∗

τ (r; θ )κτ (r; θ ), (24)

and the mixed densities are used when calculating Vτ (r; θ ).
The correction energy of the center-of-mass spurious motion
in the AMP is taken to be the same as that in MF calculations.
To consider the correction from the breaking of particle num-
bers, following the procedures in Ref. [51], a term with the
form of −λp[Z (r; θ ) − Z0] − λn[N (r; θ ) − N0] is added into
the mixed energy density. Z0 and N0 are the number of protons
and neutrons for a given nucleus, and λp (λn) is the Fermi
energy for protons (neutrons) of the intrinsic state |�(β2)〉.
Z (r; θ ) and N (r; θ ) are the mixed vector densities in r space
for protons and neutrons, respectively. After the calculation
of the mixed energy density, the solution of Eq. (15) can be
gotten.

In this work we study even-even nuclei and focus on
excited states with positive parity. The reduced transi-
tion probability, the spectroscopic quadrupole moment, and
dimensionless quadrupole deformation parameter βs are cal-
culated by using the formulas given in Refs. [128] and [129].

III. NUMERICAL CHECKS

In this section we check the numerical parameters involved
in DRHBc+AMP calculations in detail. The whole numerical
process includes two parts: the MF (i.e., DRHBc) and AMP
calculations. For MF calculations with the point-coupling and
meson-exchange density functionals, the numerical details
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have been presented in Refs. [106] and [94], respectively.
In this work, most of the parameters are taken to be the
same as those given in Ref. [106], and here we reexamine
the energy cutoff in the Fermi sea of the Dirac WS basis in
order to save computation time. For AMP calculations, we
examine the accuracy of the integral for the calculations of
the normal overlap and the expansion of the spherical har-
monics in Eq. (19). Two truncation parameters are introduced
to determine the number of the single-particle levels (SPLs)
used in AMP calculations, and the convergences of energies
of projected states and reduced transition probability with
respect to these two cut-off parameters are shown.

A. MF calculations

In the particle-hole channel, the density functional PC-
F1 [130] is adopted to compare our results obtained from
DRHBc+AMP calculations with those in Ref. [50]. The box
size Rbox used to generate the Dirac WS basis can be ap-
proximated by 4r0A1/3, with r0 = 1.2 fm for light nuclei [94],
and is taken to be 20 fm for other nuclei. The mesh size �r
is equal to 0.1 fm. The order of the Legendre expansion is
up to 6 in Eq. (10) [131]. The angular momentum cutoff is
taken to be 21/2h̄. By adjusting pairing gaps around 38Mg
(three-point formula), the pairing strength V0 is taken to be
240 MeV fm3 and 325 MeV fm3 for neutrons and protons,
respectively, which slightly differs from those values used
in Ref. [132] with a density-independent zero-range pairing
force. For the pairing window, the cut-off energy is taken to
be 60 MeV in the quasiparticle space [94]. In the DRHBc
theory, an energy cutoff Ecut is introduced to determine the
number of basis states in the Fermi sea, and the number of
basis states in the Dirac sea is taken to be the same as that
in the Fermi sea. For the nuclear mass table calculation with
the density functional PC-PK1 [106], the energy cutoff for
positive energy states is Ecut = 300 MeV for the Dirac WS
basis, which can provide an accuracy about 0.001% for global
calculations of the total energy. If we use this cut-off energy
in DRHBc+AMP calculations with PC-F1, it takes too many
CPU hours due to the very large space size of the single
particle basis. Therefore we recheck the relative accuracy of
the bulk properties with respect to Ecut for calculations with
the density functional PC-F1 and find a relatively small and
reasonable value of Ecut which can ensure the precision, as
well as save the computation time, especially for AMP calcu-
lations.

For 38Mg, two energy minima are found in the potential
energy curve and the ground state has a prolate shape. In
Fig. 1 we show the calculated bulk properties of 38Mg in the
ground state with prolate shape and in the oblate minimum by
using the DRHBc theory with the density functional PC-F1.
From this figure it is obvious that with the increase of Ecut,
the total energy, rms matter radius, and deformation parameter
all converge well at Ecut = 200 MeV. The difference of total
energies between Ecut = 200 MeV and Ecut = 220 MeV is
about 0.01 MeV. This means that when Ecut = 200 MeV the
relative accuracy of binding energy is less than 0.005%, which
is accurate enough for the study of ground-state properties.
The relative accuracies of radius and deformation parameter

FIG. 1. The total energy EB, rms matter radius Rm, and
quadrupole deformation parameter β2 of the ground state (a) and
oblate isomer (b) for 38Mg as a function of Ecut in DRHBc calcu-
lations with PC-F1.

are close to 0.1%. Therefore in the following calculations,
Ecut = 200 MeV is adopted.

B. AMP calculations

For axially deformed nuclei, the normal overlap can be
analytically calculated by using the Gaussian overlap approx-
imation (GOA) [37,133],

nGOA(β2; θ ) = exp

[
−1

2

〈
Ĵ2

y

〉
sin2 θ

]
, (25)

with 〈Ĵ2
y 〉 = 〈�(β2)|Ĵ2

y |�(β2)〉. It has been checked in several
works [37,50,111,133] that the GOA is a good approximation
for the normal overlap for both small and large deformation
parameters and can be used to examine the result of the normal
overlap in AMP calculations. In Fig. 2, we show the n(β2; θ )
values calculated numerically by using the AMP and those
obtained under the GOA for 24Mg with β2 constrained to be
0.9. It can be seen that the calculated values of n(β2; θ ) are in
good agreement with those obtained under the GOA, meaning
that our calculations for the normal overlap are reliable. For
the spherical case (β2 = 0), the calculated values of n(β2; θ )
are equal to 1 due to the rotational invariance. It also should be
mentioned that the GOA is only valid for the normal overlap
but not for the rotational energy correction for weakly bound
deformed systems [128,133], which can be well approximated
by using the topologically corrected GOA [134].

For the Hamiltonian and normal overlap kernels, the
one-dimensional integral over θ is calculated by using the
Gaussian-Legendre quadrature, and the number of the mesh
points in the interval [0, π ] is nθ . We have checked that when
the number of the mesh point of the Euler angle θ in the
interval [0, π ] satisfies nθ � 10, the relative accuracies of
EJ=0 and B(E2, 2+ → 0+) are about 0.0001%. In this work,
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FIG. 2. Normal overlap of 24Mg with the quadrupole deforma-
tion parameter of 0.9 from the AMP (black circles) and GOA (red
lines) calculations as a function of θ with PC-F1.

nθ = 12 is used. This conclusion is consistent with that given
in Ref. [50].

The ingredients for the mixed energy density are the mixed
densities and currents, which are expanded in terms of the
spherical harmonics [cf. Eq. (19)]. The convergence with re-
spect to the maximum expansion orders lρ in Eq. (21) and l j in
Eq. (22) for mixed densities and currents should be analyzed.
In the left panel of Fig. 3, the calculated values of EJ=0 and
B(E2, 2+ → 0+) for 24Mg with β2 = 0.55 are plotted as a
function of lρ with l j fixed to be 7. The calculated values
of B(E2, 2+ → 0+) are almost unchanged with lρ . We find
that to achieve a precision of 0.01% for EJ=0, the maximum
expansion order lρ should fulfill lρ � 6. With lρ fixed to be
6, the calculated values of EJ=0 and B(E2, 2+ → 0+) are
plotted as a function of l j in the right panel of Fig. 3. One
can see that when l j = 3 and l j = 5, the calculation of EJ=0

and B(E2, 2+ → 0+) can reach a relative accuracy of 0.01%
and 0.001%, respectively. The time consumption of the calcu-
lations of the currents is much heavier than that for the mixed
densities, and the relative accuracy with l j = 3 is good enough

FIG. 3. EJ=0 and B(E2, 2+ → 0+) obtained from angular mo-
mentum projections on the intrinsic state with β2 = 0.55 for 24Mg as
a function of lρ (the left panel, l j = 7) and l j (the right panel, lρ = 6).

FIG. 4. EJ=0 and B(E2, 2+ → 0+) obtained from angular mo-
mentum projections on the intrinsic state with β2 = 0.55 for 24Mg as
a function of εcut .

for the spectroscopic study. Therefore for later calculations we
choose l j = 3 and lρ = 6.

For the calculation of the rotational matrix, as mentioned
in Sec. II B, we introduce a truncation ξ on the occupation
probability of SPLs in the canonical basis to determine the
dimension of this matrix. It has been shown in Ref. [50]
that EJ=0 and reduced transition probability converge well
at ξ = 10−7 or 10−8. This also holds in our calculations. But
when the calculated pairing energy equals zero or the pairing
strength is taken to be zero, the SPLs below or above the
Fermi level (λτ ) are fully occupied or empty, respectively. The
truncation on the occupation probability is no longer suitable
in this case. Therefore we also introduce a cut-off energy
on the single-particle energy (SPE) in the canonical basis to
determine the total number of SPLs for AMP calculations, i.e.,
SPLs with the energy larger than λτ + εcut are neglected for
neutrons (τ = 1) and protons (τ = −1). In Fig. 4, EJ=0 and
B(E2, 2+ → 0+) are shown as a function of the cut-off energy
εcut. The relative accuracies of EJ=0 and B(E2, 2+ → 0+) are
about 0.01% when εcut = 50 MeV. In practical calculations,
those SPLs with v2 > 10−7 or SPE smaller than λτ + 50 MeV
are used.

Now we summarize the parameters involved in
DRHBc+AMP calculations. The energy cutoff Ecut for
positive energy states in the Dirac WS basis is 200 MeV
in MF calculations. The number of mesh points in the
Gaussian-Legendre quadrature for the calculation of the
normal overlap kernel and Hamiltonian overlap kernel is
nθ = 12 in the interval [0, π ]. For the mixed density and
currents expanded in terms of the spherical harmonics,
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TABLE I. Excitation energies and B(E2) from DRHBc+AMP (Th. I) and MDC-RHB+AMP (Th. II) calculations for 24Mg with β2 = 0.55
and β2 = 0.65.

β2 = 0.55 β2 = 0.65

Th. I Th. II Th. I Th. II
E (2+) (MeV) 1.009 1.006 1.149 1.128
E (4+) (MeV) 3.553 3.556 3.956 3.890
E (6+) (MeV) 8.024 8.074 8.627 8.542
B(E2, 2+ → 0+) (e2 fm4) 81.083 81.214 110.606 110.750
B(E2, 4+ → 2+) (e2 fm4) 118.126 118.752 161.459 162.156
B(E2, 6+ → 4+) (e2 fm4) 135.674 136.939 185.670 186.912

the maximum orders are lρ = 6 and l j = 3, respectively.
For determining the number of SPLs, the truncation of the
occupation probability is ξ = 10−7 and εcut = 50 MeV for
SPE.

To check this newly developed method further, the
DRHBc+AMP method is applied to stable nuclei and the
calculated results are compared with those from MDC-
RHB+AMP calculations [117]. In Table I, we show the
excitation energies of 2+, 4+, and 6+ states and B(E2) values
obtained in DRHBc+AMP and MDC-RHB+AMP calcula-
tions for 24Mg with the quadrupole deformation parameter
constrained to be 0.55 and 0.65. The density functional PC-F1
is used in both methods. In MDC-RHB+AMP calculations,
the number of oscillator shells is taken to be 14 and the
number of mesh points of the Euler angle θ in the interval
[0, π ] equals 12. For both the excitation energies and B(E2)
values, the relative differences between these two methods are
around 1%. From this comparison one can conclude that for
well-bound nuclei, the low-lying excited spectra and B(E2)
values from DRHBc+AMP calculations are well consistent
with the results from the MDC-RHB+AMP method.

IV. LOW-LYING EXCITED STATES OF 36,38,40Mg WITH
DRHBc+AMP

In this section we will use the DRHBc+AMP approach
to study the neutron-rich Mg isotopes 36,38,40Mg. The spec-
tra of these nuclei are interesting topics, both theoretically
and experimentally in recent years, which are closely related
to the weakening of spherical shells, the disappearance of
magic numbers, and the island of inversion. The low-lying
spectra of 36,38,40Mg have also been established [135,136],
and the recent experimental results of 40Mg indicates the
quenching of the shell closure at N = 28 [136]. There are
many systematic theoretical investigations on these nuclei,
including MF calculations [94,96,137], the shell model calcu-
lations [138,139], BMF calculations with the Skyrme density
functional [17,124] and Gogny force [49,128,140,141], and
beyond RMF calculations [132,142].

A. Bulk properties

Before exploring the excitation of these nuclei, we show
the ground-state properties in MF level by using the DRHBc
theory. The calculated bulk properties of 36Mg, 38Mg, and
40Mg are listed in Table II. In DRHBc calculations with the

density functional PC-F1, the quadrupole deformation pa-
rameters of the ground states of 36Mg, 38Mg, and 40Mg are
0.45, 0.49, and 0.48, respectively. The calculated rms mat-
ter radii (Rm) of 36Mg and 38Mg are 3.49 fm and 3.62 fm,
which are well consistent with the experimental values [143],
3.49 ± 0.01 fm and 3.60 ± 0.04 fm, which are extracted from
the measurements of total cross sections [144]. The calculated
value of Rm for 40Mg is 3.70 fm. The two-neutron separa-
tion energy with considering the correction from the AMP
of 38Mg is 3.06 MeV, which agrees with the experimental
value, 2.45(85) MeV [145,146], and that of 40Mg is 2.74 MeV,
which is larger than the experimental values, 1.87(71) MeV
in AME2016 [145] and 0.65(0.71) MeV in AME2020 [146].
In Fig. 5 we show the SPLs with −12 MeV < εcan < 1 MeV
in the canonical basis for 36,38,40Mg in DRHBc calculations.
It should be noted that near the neutron Fermi energy λn,
the 1/2− and 3/2− levels contain p-wave components and
the 5/2− level is totally dominated by f -wave components.
Around λn, SPLs are all fully occupied, with v2 = 1 for
36,40Mg and partially occupied for 38Mg, meaning the en-
hancement of pairing in 38Mg. 37Mg is a p-wave halo nucleus,
and the valence neutron is unpaired [83,147]. The configu-
ration of the two valence neutrons for 38Mg also includes
p-wave components and is mainly the mixing of 2p1/2 and
1 f7/2 with occupation numbers of 0.72 and 1.18. For 40Mg,

TABLE II. Ground-state properties from DRHBc calculations
with PC-F1 and energies of the projected 0+ state of 36Mg, 38Mg,
and 40Mg. For each nucleus, we show the neutron, proton, and total
quadrupole deformation parameters (βn, βp, β2), neutron, proton, and
total rms matter radii (Rn, Rp, Rt), the correction energy (Ec.m.) of
center-of-mass spurious motion, the total energy (EB), and the energy
(EJ=0) of the projected 0+ state.

36Mg 38Mg 40Mg

βn 0.4568 0.5150 0.5006
βp 0.4331 0.4339 0.4197
β2 0.4489 0.4894 0.4764
Rn (fm) 3.6593 3.8191 3.9066
Rp (fm) 3.1276 3.1568 3.1815
Rt (fm) 3.4911 3.6230 3.7040
Ec.m. (MeV) −9.3127 −9.1469 −8.9914
EB (MeV) −265.3905 −267.9706 −270.9131
EJ=0 (MeV) −268.0396 −271.1044 −273.8405
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FIG. 5. SPLs of neutrons around the Fermi energy (λn) of 36Mg,
38Mg, and 40Mg in the canonical basis. The length of the solid line
is proportional to the occupation probability v2 of each level labeled
by �π , where � and π are the projection of total angular momentum
on the symmetry axis in the intrinsic frame and parity. Red and black
lines represent levels with π = − and π = +, respectively.

the fully occupied levels 5/2− and 1/2− near the Fermi energy
are close to each other. It has been shown in Refs. [143,148]
that there is a cross between the 5/2− and 1/2− orbitals when
β2 ≈ 0.5 around the neutron Fermi energy. Because of the
near degeneracy of (1/2−, 5/2−), it is reasonable to regard
40Mg as a “36Mg +4n” system instead of “38Mg +2n” from
the point of view of the structure of SPLs. The four valence
neutrons are dominated by p- and f -wave components with
the occupation numbers of 1.2 and 2.8, respectively. In con-
clusion, the configurations of the valence neutrons for 38Mg
and 40Mg all have p-wave components with considerable oc-
cupation, but they are not halo nuclei because the valence
neutrons are not weakly bound with calculated two-neutron
separation energies larger than 2 MeV. Note that the study
in Ref. [83] shows that 40Mg is a two-neutron halo nucleus,
which is contrary to the conclusion drawn in our DRHBc
calculations.

B. Ground-state rotational bands of 36,38,40Mg

In this study, the low-lying excited spectrum is obtained by
performing the AMP on the deformed ground state obtained
from DRHBc calculations with the density functional PC-F1,
i.e., for each nucleus the same MF wave function is used to
get the projected states. For 36,38,40Mg, the calculated val-
ues of the excitation energy E (J+), spectroscopic quadrupole
moment Q(s)(J+), and reduced transition probability B(E2)
are summarized in Table III. As shown in Refs. [128,132],
for well-deformed nuclei 36,38,40Mg the differences of exci-
tation energies between AMP and AMP+GCM calculations
are relatively small. Therefore, for these three nuclei, we can
directly compare our results from DRHBc+AMP calculations
with those with GCM. In Fig. 6 the calculated ground-state

TABLE III. Calculated excitation energy E (J+), spectroscopic
quadrupole moment Q(s)(J+), and reduced transition probabilities
B(E2) for 36,38,40Mg with PC-F1.

36Mg 38Mg 40Mg

E (2+) (MeV) 0.46 0.66 0.53
E (4+) (MeV) 1.61 2.15 1.82
E (6+) (MeV) 3.65 4.44 3.94
Q(s)(2+) (e fm2) −18.21 −18.96 −18.99
Q(s)(4+) (e fm2) −23.22 −24.19 −24.26
Q(s)(6+) (e fm2) −25.64 −26.73 −26.83
B(E2, 2+ → 0+) (e2 fm4) 80.91 87.66 87.89
B(E2, 4+ → 2+) (e2 fm4) 117.39 127.01 126.88
B(E2, 6+ → 4+) (e2 fm4) 133.06 143.29 142.57

bands of 36Mg, 38Mg, and 40Mg are shown and compared
with the experimental values taken from Ref. [136]. B(E2 ↓)
values obtained from DRHBc+AMP calculations are also
given. The overall trends of spectra from DRHBc+AMP
calculations are consistent with the results obtained from
the RMF+1DAMP+GCM calculations with PC-F1 [132], in
which the HO basis is used and close to those shown in
Ref. [141]. The excitation energies from BMF calculations
with Gogny force [128] are higher than these results in this
work. The ground-state band of 40Mg from our calculations is
also close to that of recent Monte Carlo shell model (MCSM)
calculations [139]. The calculated excitation energies of the
2+ and 4+ states for 36Mg are slightly smaller than the
experimental values. The 2+ states of 38Mg and 40Mg are
very close to the experimental values. Generally speaking,
the DRHBc+AMP calculations reproduce the experimental
low-lying spectra of 36,38,40Mg reasonably well. All the BMF
calculations mentioned above support that the shell closure

FIG. 6. The ground-state rotational bands and values of B(E2)
of 36Mg, 38Mg, and 40Mg. Black lines and gray arrows represent
the results from DRHBc+AMP calculations, and red lines show the
experimental data taken from Ref. [136]. Transitions between two
states are represented by arrows, and the width of each arrow is
proportional to reduced transition probability.
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FIG. 7. SPLs of neutrons for 40Mg in the canonical basis. Solid
and dotted lines represent levels with π = − and π = +, respec-
tively. The Fermi energy λn is shown by the dashed line. Black, red,
blue, and cyan colors represent levels with � of 1/2, 3/2, 5/2, and
7/2, respectively.

at N = 28 is quenched and 40Mg has a prolate shape as a
consequence of the very small value of the excitation energy
of the 2+ state.

The disappearance of the shell N = 28 in 40Mg can be also
indicated by the evolution of the SPLs, which are shown in
Fig. 7. When β2 ∈ [−0.6,−0.3] and [0.3,0.6], pairing ener-
gies of neutrons are zero and thus the Fermi energies are equal
to the SPE of the last occupied levels. In the spherical limit,
the energy gap between the weakly bound neutron 1 f7/2 and
2p3/2 orbitals is about 1 MeV, meaning that they are nearly
degenerated. The strong Y20 correlations between these two
orbitals drive this nucleus to be well deformed. This can also
be interpreted that the nearly degenerated, weakly bound 1 f7/2

and 2p3/2 orbitals in the spherical limit lead to the stable
quadrupole deformation due to the nuclear Jahn-Teller effect
[149]. The well-deformed MF ground state of 40Mg results in
that the low-lying excited states are rotational ones, which will
be analyzed next.

The spectroscopic quadrupole moments Q(s) in the 2+ and
4+ states of 36,38,40Mg obtained from DRHBc+AMP calcu-
lations with PC-F1 are shown in the top panel of Fig. 8 and
compared with the results taken from Ref. [128]. From Fig. 8
it is found that calculated values of Q(s) with PC-F1 are well
consistent with those from Ref. [128], indicating the prolate
shapes of 36Mg, 38Mg, and 40Mg. A similar conclusion can
also be found in Ref. [132]. The ratios Q(s)(4+)/Q(s)(2+)
obtained from DRHBc+AMP calculations and Ref. [128] are

FIG. 8. Spectroscopic quadrupole moments Q(s) of the 2+ and
4+ states (the top panel) and the ratios Q(s)(4+)/Q(s)(2+) (the bottom
panel) for 36,38,40Mg.

presented in the bottom panel of Fig. 8 and compared with the
value that corresponds to a rigid axial rotor without triaxial
shapes, 1.27, labeled by the dotted blue line. One can find that
all the calculated ratios are close to those of a rigid rotor. This
indicates that these three nuclei are all good rotors.

In the calculated ground-state bands, the ratios R4/2 =
E (4+)/E (2+) are 3.50, 3.26, and 3.43, and those correspond-
ing to the experimental values taken from Ref. [136] are 3.01,
3.10, and 2.34 for 36Mg, 38Mg, and 40Mg, respectively. One
can conclude that for 36Mg and 38Mg, both the experimental
and calculated bands are rotational ones. For 40Mg, all the
above-mentioned theoretical calculations support that this nu-
cleus is a good rotor. But this is not the case in Ref. [136],
where the excitation energy of the second excited state is
about 1.2 MeV, leading to the ground-state band no longer
being a rotational band. Recently the MCSM calculations pre-
dicted that the ground-state band is a rotational band, and there
is a state with the excitation energy of 1.2 MeV belonging to
the triaxial rotational band, showing nice agreement with the
experimental energy levels [139]. Future detailed studies on
both the structure of SPLs and excitation spectra of 40Mg by
using BMF methods with considering the triaxial deformation
are needed, but this is beyond the scope of the approach in the
present work.

In this section we have studied the ground-state rotational
bands of 36,38,40Mg by using the DRHBc+AMP approach.
Our calculations reproduce the low-lying excited spectra of
36,38,40Mg reasonably well. For 40Mg the observed first excited
state is well reproduced, but the second excited state cannot be
understood by the present investigation if this state belongs to
the ground-state rotational band.
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V. SUMMARY AND PERSPECTIVE

We have implemented the AMP based on the DRHBc
theory, which can treat the large spatial extension, the con-
tribution of continuum, deformation effects, and the coupling
among them self-consistently and has been widely used to
study deformed halo nuclei by solving the deformed RHB
equation in the Dirac WS basis, aiming at a microscopic
description of low-lying excitation of weakly bound deformed
nuclei, especially for deformed halo nuclei. In the newly
developed DRHBc+AMP approach, the projected wave func-
tion, the mixed densities, and currents are calculated in
the Dirac WS basis. We perform careful numerical checks
on convergence with respect to the parameters involved in
the DRHBc+AMP method. The low-lying excited spectra
of 36,38,40Mg are investigated by using the DRHBc+AMP
method with the density functional PC-F1. We have shown
that these three nuclei, 36,38,40Mg, all have pronounced prolate
shape in the ground states from DRHBc calculations. The
configuration of the valence neutrons for 38Mg is the mixing
of p- and f -wave orbitals with occupation amplitudes of 36%
and 59%. 40Mg is not a halo nucleus, but the configurations
of the four valence neutrons have p-wave components with
an occupation amplitude of 30%. The ground-state rotational
bands are calculated by performing the AMP on the deformed
ground-state wave function obtained from DRHBc calcula-
tions. Our results are consistent with other theoretical studies
and reproduce the experimental data reasonably well. It is
found that these three nuclei are all good rotors. The low-
lying excited spectrum of 40Mg indicates the breakdown of
the shell closure at N = 28. It should be noted that for 32Mg,
similar to previous studies given in Refs. [50,112], our AMP
calculations with PC-F1 in the WS basis also cannot give a
reasonable description on the low-lying excitations.

It is found that the calculated excitation energy, reduced
transition probability, and spectroscopic quadrupole moment
with the DRHBc+AMP approach are similar to those from
beyond RMF calculations with HO basis [50,132]. This is
understandable because in our calculations 36,38,40Mg are not
halo nuclei, and the nuclear densities from the WS basis are
almost the same as those from the HO basis. The point that
we want to emphasize is that the proper asymptotic behavior
of the wave function provided by the WS basis makes it
suitable to describe halo nuclei, which is characterized by the
long low-density tail and cannot be studied by expanding the
wave function in terms of the HO functions. Very recently, the
low-lying excitation of deformed halo nuclei were explored by
our DRHBc+AMP approach and showed that the deformed
halo structure persists from the ground state in the intrinsic
frame to collective states [98].

In this work the density functional PC-F1 is adopted be-
cause it is convenient to compare DRHBc+AMP calculations
with previous BMF calculations in Refs. [50,132]. It is also
very interesting to investigate the excitation properties of
weakly bound nuclei with other point-coupling density func-
tionals, such as PC-PK1 [150], PC-X [151], and DD-PC1
[152], and such studies are in progress. In addition, it is
very necessary to develop the PNP and GCM based on the
DRHBc+AMP approach to restore the particle number and

take into account the quantum fluctuation of collective degrees
of freedom in the future.
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APPENDIX: MIXED DENSITIES AND CURRENTS
IN COORDINATE SPACE

In coordinate space, the Dirac spinor of the Dirac WS basis
is

ϕnκm(rsp) = ip Rnκ (r, p)

r
Y l (p)

κm (�, s), (A1)

where p = 1 stands for the upper components and p = 2
for the lower component. Rnκ (r, 1) = Gnκ (r) and Rnκ (r, 2) =
Fnκ (r) are the radial wave functions. l (p = 1) = j + 1

2 sgn(κ )
and l (p = 2) = j − 1

2 sgn(κ ).
In coordinate space, the mixed vector density for the Eu-

ler angle θ expanded in terms of the spherical harmonics is
written as

ρV (r; β2; θ ) =
∑
kk′

ρk′k (θ )φ†
k (r; β2)φk′ (r; β2)

=
∑
λμ

ρV,λμ(r; β2; θ )Yλμ(�), (A2)

where

ρV,λμ(r; β2; θ )

=
∑
nκ

∑
n′κ ′

∑
kk′

ρk′k (θ )ck
nκmck′

n′κ ′m′ 〈κm|Y ∗
λμ(�)|κ ′m′〉

× 1

r2

∑
p=1,2

Rnκ (r, p)Rn′κ ′ (r, p), (A3)

and

〈κm|Yλμ|κ ′m′〉

=
∑

σ

∫
d�Y l ′∗

κ ′m′ (�, σ )Yλμ(�)Y l
κm(�, σ )

=
ms,m′

s∑
ml ,m′

l

C j′m′

l ′m′
l

1
2 m′

s
C jm

lml
1
2 ms

√
λ̂l̂

4π l̂ ′ C
l ′m′

l
λμmml

Cl ′0
λ0l0, (A4)

with λ̂ = 2λ + 1, l̂ = 2l + 1, and l̂ ′ = 2l ′ + 1.
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Similarly, for the mixed scalar density we have

ρS (r; β2; θ ) =
∑
kk′

ρk′k (θ )φ̄k (r; β2)φk′ (r; β2)

=
∑
λμ

ρS,λμ(r; β2; θ )Yλμ(�), (A5)

where

ρS,λμ(r; β2; θ )

=
∑
nκ

∑
n′κ ′

∑
kk′

ρk′k (θ )ck
nκmck′

n′κ ′m′ 〈κm|Y ∗
λμ(�)|κ ′m′〉

×
∑
p=1,2

i2(p−1)

r2
Rnκ (r, p)Rn′κ ′ (r, p). (A6)

The spatial components of the current read

�j(r; β2; θ ) =
∑

i j

ρk′k (θ )〈φi|α|φ j〉

=
∑
λμ

�jλμ(r; β2; θ )Yλμ(�), (A7)

with

�jλμ(r; β2; θ )

=
∑

i j

n′κ ′∑
nκ

ci
nκmc j

n′κ ′m′ρk′k (θ )
i

r2

ml ,ms∑
m′

l ,m
′
s

σms,m′
s

×
{

GnκFn′κ ′C jm
lml

1
2 ms

C j′m′

l̃ ′m′
l

1
2 m′

s
〈lml |Y ∗

λμ(�)|l̃ ′m′
l〉

−FnκGn′κ ′C jm
l̃ml

1
2 ms

C j′m′

l ′m′
l

1
2 m′

s
〈l̃ml |Y ∗

λμ(�)|l ′m′
l〉

}
. (A8)
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