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Charge radii in covariant density functional theory: A global view
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A systematic global investigation of differential charge radii has been performed within the CDFT framework
for the first time. Theoretical results obtained with conventional covariant energy density functionals and the
separable pairing interaction of Tian et al. [Phys. Lett. B 676, 44 (2009)] are compared with experimental
differential charge radii in the regions of the nuclear chart in which available experimental data crosses the
neutron shell closures at N = 28, 50, 82, and 126. The analysis of absolute differential radii of different
isotopic chains and their relative properties indicate clearly that such properties are reasonably well described
in model calculations in the cases when the mean-field approximation is justified. However, while the observed
clusterization of differential charge radii of different isotopic chains is well described above the N = 50 and
N = 126 shell closures, it is more difficult to reproduce it above the N = 28 and N = 82 shell closures because
of possible deficiencies in the underlying single-particle structure. The impact of the latter has been evaluated
for spherical shapes and it was shown that the relative energies of the single-particle states and the patterns of
their occupation with increasing neutron number have an appreciable impact on the evolution of the δ〈r2〉N,N ′

values. These factors also limit the predictive power of model calculations in the regions of high densities of the
single-particle states of different origin. It is shown that the kinks in the charge radii at neutron shell closures
are due to the underlying single-particle structure and due to weakening or collapse of pairing at these closures.
The regions of the nuclear chart in which the correlations beyond mean field are expected to have an impact
on charge radii are indicated; the analysis shows that the assignment of a calculated excited prolate minimum
to the experimental ground state allows us to understand the trends of the evolution of differential charge radii
with neutron number in many cases of shape coexistence even at the mean-field level. It is usually assumed
that pairing is a dominant contributor to odd-even staggering (OES) in charge radii. Our analysis paints a more
complicated picture. It suggests a new mechanism in which the fragmentation of the single-particle content of
the ground state in odd-mass nuclei due to particle-vibration coupling provides a significant contribution to OES
in charge radii.
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I. INTRODUCTION

Together with nuclear masses, the charge radii are among
the most fundamental properties of atomic nuclei. The es-
sential information on the saturation density of symmetric
nuclear matter is imprinted into them. They also depend on the
properties of nuclear forces and nuclear many-body dynamics.

Significant experimental efforts have been dedicated over
the decades for the measurement of charge radii [1,2]. While
the changes of the charge radii within the isotopic chain are
measured with high precision using laser spectroscopy, the
situation with the measurements of absolute values of root-
mean-square (rms) charge radii rch is less satisfactory because
of lower precision of their determination in muonic spectra
and electronic scattering experiments and the impossibility
of such experiments in radioactive elements [1,2]. For exam-
ple, for nuclei with proton number Z > 83 (uranium is the
exception), there are no experimental data for the absolute nu-
clear charge radii [1]. Theoretical calculations within different
density functional theories (DFTs) provide a quite accurate

global description of experimental charge radii presented in
the compilation of Ref. [1]: the rms deviations of calculated
rch from experimental ones are at the level of ≈0.03 fm [3].
Considering that the average experimental rms charge radius
in the nuclear chart is around 4.8 fm (see, for example, Fig. 23
in Ref. [3] and Figs. 2–4 in Ref. [1]), this amounts to high
average precision of 0.625% in the prediction of charge radii.
However, this information has to be taken with a grain of salt
because of the issues mentioned above with the measurements
of absolute values of rms charge radii and some reliance on
interpolation/extrapolation procedures in the compilation of
Ref. [1].

Thus, the differential mean-square (ms) charge radii [see
Eq. (6) below for definition], measured with high precision
within the isotopic chains, become an important quantity.
The evolution of the charge radii within the isotopic chain
with increasing neutron number is defined by the pull on the
proton states generated by neutrons gradually added to the
nuclear system. This is, in reality, a quite complicated and, in
some cases, contra-intuitive process. Here the strong nuclear
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symmetry energy acts to increase the overlap between all the
proton states and the overall nuclear density. This effect is
expected to be enhanced when the overlap between the wave
functions is maximal. The most investigated case here is the
kink in charge radii at N = 126 and the evolution of charge
radii above N = 126 in the Pb isotopic chain. The pattern
of these effects critically depends on the occupation of the
2g9/2 and 1i11/2 orbitals, on their relative energies, and on
how close they are in energy [4,5]. Both in relativistic and
nonrelativistic density functional theories (DFT), the single-
particle rms neutron radius of the 2g9/2 orbital is larger than
that of the 1i11/2 orbital [by ≈0.6 fm (see Table II below) and
≈1.0 fm (see Ref. [4]), respectively]. Intuitively (for example,
by using liquid drop model concepts), the occupation of the
neutron 2g9/2 orbital would bring a larger proton radius as
compared with the occupation of the 1i11/2 orbital. However,
the DFT calculations showed an opposite trend [4,5] the deep
microscopic origin of which has been found only in Ref. [5]. It
is traced back to a nodal structure1 of these two orbitals (n = 1
for 1i11/2 and n = 2 for 2g9/2, where n stands for principal
quantum number; see also Fig. 6.2 in Ref. [8] for a pattern
of respective wave functions). The principal quantum number
of the neutron 1i11/2 orbital is the same as for the majority
of occupied proton orbitals (including deeply bound ones).
This leads to a large overlap of their wave functions and thus
provides a large pull of these neutron states on proton orbitals
via the symmetry energy and allows the reproduction of the
kink in charge radii at N = 126.

A significant amount of experimental data on charge radii
has been collected over the years: the review [1] provides a
compilation of such data measured by early 2011.2 In recent
years an explosion of high-quality measurements of charge
radii is observed (see, for example, review [2]). They cover,
for example, in recent years the K [9], Ca [10,11], Cu [12],
Cd [13], Sn [14,15], Hg [16], Bi [17], At [18], Ac [19],
and No [20] isotopic chains. These experimental studies are
supplemented mostly by a theoretical analysis within non-
relativistic Skyrme or Fayans DFTs (see overview below)
and occasionally by the analysis within Gogny DFT (the Ca
isotopes in Ref. [10]), the CDFT (the Pb and Hg isotopes in
Ref. [16] and No isotopes in Ref. [21]) or nonrelativistic ab
initio calculations (see Refs. [9,10]).

They reveal several interesting features. The most familiar
are the kinks in charge radii at neutron numbers corresponding
to shell closures and the odd-even staggering (OES) in charge
radii. In charge radii, a shell closure is observed as a sudden

1Note that the nodal structure of the wave functions plays an impor-
tant role not only in the evolution of charge radii of spherical nuclei.
In extremely deformed nuclei, it also defines the necessary conditions
for α clusterization in very light nuclei, and its suppression with the
increase of mass number [6]. Moreover, the nodal structure of the
deformed wave functions allows us to understand the coexistence of
ellipsoidal mean-field-type structures and nuclear molecules at sim-
ilar excitation energies and the features of particle-hole excitations
connecting these two types of structures [6,7].

2The experimental data shown in the present paper is based on this
compilation supplemented when available with more recent data.

increase in the rate of the change of charge radius of the
isotopes just beyond magic shell closure; this leads to the
kinks in charge radii which are well known at N = 28, 50, 82,
and 126 [1,10,14,22]. In addition, the analysis of experimental
data presented in Ref. [22] reveals a puzzling feature related to
similar slopes of differential charge radii δ〈r2〉 as a function of
neutron number above the neutron shell closures for different
isotopic chains [see Fig. 5 in Ref. [22] for even- and odd-Z
isotopic chains and Figs. 12(a), 17(a), 20(a), and 25(a) below
for only even-Z isotope chains]. On the contrary, all these
isotopic chains have different slopes of differential charge
radii for neutron numbers below the shell closures. To our
knowledge, this observed feature, which exists in the Ca, Sr,
Sn, and Pb regions, has not been addressed in a systematic
theoretical analysis so far.

Different theoretical approaches have been used with dif-
ferent degrees of success to describe the evolution of charge
radii in various isotopic chains. The initial focus of such
studies was the kink in differential charge radii of the Pb iso-
topes at N = 126 but later studies covered also other isotopic
chains. The calculations in nonrelativistic density functional
theories (NR-DFTs) based on conventional energy density
functionals (EDFs) were unable to reproduce the kink in the
Pb isotopes [14,23]. On the contrary, this kink is quite success-
fully reproduced in covariant DFT (CDFT) for all employed
covariant energy density functionals (CEDFs) [16,24,25]. As
discussed above the relative energies of the 1i11/2 and 2g9/2

neutron orbitals play a crucial role in this difference between
NR-DFT and CDFT results in the Pb isotopes. Two possible
ways of resolving the problem emerged in the NR-DFTs.
The first one includes a modification of spin-orbit interaction
either by its fitting to CDFT results [4] or by introducing
a density dependence in the spin-orbit interaction [26]. The
second approach, introduced by Fayans et al. [27–29] includes
an extension of nonrelativistic functionals by adding gradi-
ent terms into the surface part and the pairing interaction.
Although this approach has been reasonably successful (espe-
cially after fitting the Fayans functionals to differential charge
radii data in Ref. [30]) in the description of the evolution
of charge radii [10,12–14,28–30], the microscopic origin of
these gradient terms is not clear. It was stated that the pairing
functional of the Fayans model is supposed to effectively
account for the coupling to surface vibrations [30]. However,
this contradicts to the observation that such a coupling is quite
small for the ground states in even-even nuclei in the Sn and
Pb regions (see discussion in Sec. IX below) so that the charge
radii of such nuclei are not expected to be strongly modified
by it.

Alternative DFT approaches are based either on non-
relativistic finite range Gogny functionals, a nonrelativistic
Yukawa interaction or on CEDFs. The Gogny DFT studies of
differential charge radii are less frequent than those based ei-
ther on the Skyrme or Fayans EDFs. For example, the isotopic
evolution of charge radii in even-even and even-odd Sr, Zr,
and Mo isotopes with N = 47–68 and the impact of triaxiality
on charge radii of even-even Mo isotopes with N = 62, 64,
and 66 have been investigated in Ref. [31]. The differential
charge radii of the 52,48Ca isotopes were studied at and beyond
mean-field level with the Gogny functional D1S in Ref. [10].
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The nonrelativistic HFB approach with a finite-range Yukawa
interaction [32] and density-dependent spin-orbit interaction
has been successfully applied for the description of differen-
tial charge radii in spherical nuclei of the Ca, Ni, Sn, and Pb
isotopic chains [26,33,34].

The studies of differential charge radii are also rare within
the CDFT.3 The first-ever (among any type of DFT) successful
description of the kink in charge radii of the lead isotopes has
been achieved in Ref. [24] for CDFT with the NL-SH and
NL1 functionals. This work was followed by a number of
the studies of differential charge radii in spherical even-even
nuclei in the Ca, Sn, and Pb isotopic chains in Refs. [4,37,38].
The odd-even staggering and the kink in charge radii of the
Pb and Hg isotopes has been successfully described recently
in Ref. [16] using the DD-ME2 CEDF. An ansatz for charge
radii in CDFT has been suggested in Ref. [39]; it adds the
phenomenological term a0/

√
A| ∑n

k>0 ukvk − ∑p
k>0 ukvk| to

the definition of charge radii without affecting the definitions
of other physical observables. Although it can describe the
charge radii and their OES in selected isotopic chains, its
physical meaning is not clear and it does not appear in con-
ventional DFTs.

The goal of the present paper is to perform detailed studies
of differential charge radii within the CDFT framework to un-
derstand specific facts, such as the underlying single-particle
structure and the role of pairing, affecting the theoretical
description of the evolution of charge radii with the neutron
number, the presence and magnitude of the kinks and OES
in the isotopic chains. Note that we employ conventional
functionals which do not use any new fit parameters nor the
above mentioned modifications. The aim is to understand to
which extent they can provide a satisfactory description of
differential charge radii in the regions of the nuclear chart
in which available experimental data crosses shell closures at
N = 28, 50, 82, and 126. One should note that conventional
relativistic functionals provide, amongst many other nuclear
properties, a reasonable description of rotational bands, which
are sensitive to pairing, not only in even-even but also in
odd-A nuclei (see Refs. [40,41]). Thus, they provide access
to OES in the moments of inertia, the physical mechanism of
which (blocking in odd-A nuclei) is similar to the one partially
responsible for OES in charge radii and in binding energies.
At present, it is not clear whether the inclusion of gradient
terms into the pairing functional will preserve this feature. An
additional goal of the present paper is to search for alternative
physical mechanisms affecting differential charge radii and
OES.

The paper is organized as follows. A brief outline of the
theory is given in Sec. II. Charge radii and related indicators
are discussed in Sec. III. The charge radii of the Pb isotopes

3This is despite the fact that global studies of charge radii of even-
even nuclei located between the two-proton and two-neutron drip
lines with the assessment of systematic theoretical uncertainties have
been performed in Refs. [3,35] and tabulated values of charge radii
are publicly available in the Supplemental Material for Ref. [3] (for
the DD-PC1 functional) and at MassExplorer [36] (for the DD-PC1,
DD-ME2, DD-MEδ, and NL3* CEDFs).

are used in Sec. IV as a testing ground to evaluate the impor-
tance of the underlying single-particle structure and pairing
in the evolution of differential charge radii between the two-
proton and two-neutron drip lines, in the appearance of the
kinks at shell closures and for the comparison of the results
of calculations with and without pairing. Charge radii, their
evolution with neutron number, the sources of the discrep-
ancies between theory and experiment, absolute and relative
properties of differential charge radii in different isotopic
chains in the Pb, Sn/Gd, Sr, and Ca regions are discussed in
detail in Secs. V–VIII, respectively. Note that the discussion
in these sections is restricted to even-even nuclei. Section IX
is dedicated to the analysis of odd-even staggering in charge
radii and its origin. A new mechanism of OES, relying on the
fragmentation of the single-particle states in odd-N nuclei due
to particle-vibration coupling, is suggested for the first time
in this section. Finally, Sec. X summarizes the results of our
paper.

II. THEORETICAL FRAMEWORK

In the present paper, the relativistic Hartree-Bogoliubov
(RHB) approach is used in the calculations. The formalism
of this approach is discussed in detail in Refs. [3,42]. The
calculations are performed with computer codes that preserve
either spherical or axial symmetry. The former code has been
considerably modified to allow for fully self-consistent cal-
culations of the ground and excited states in odd-A spherical
nuclei; in was applied for the first time in Ref. [16]. The axial
code employed in Ref. [3] has been used here for calculations
which include deformation.

To assess the dependence of the results on the underly-
ing single-particle structure, several state-of-the-art covariant
energy density functionals (CEDFs) such as NL3* [43], DD-
PC1 [44], DD-ME2 [45], DD-MEδ [46], and PC-PK1 [47] are
used in the present paper. They represent the major classes of
CEDFs and their global performance in describing ground-
state properties such as masses and charge radii of even-even
nuclei has been tested in Refs. [3,35,48]. Note that many
of the results on charge radii and the deformations of the
ground states employed in the present analysis are taken from
Refs. [3,36]. This allows us to test the predictive power of the
models with respect to the description of differential charge
radii.

The separable pairing interaction of finite range, intro-
duced as a simplification of the Gogny pairing by Tian et al.
[49], is used in the present paper. Its matrix elements in r-
space have the form

V (r1, r2, r′
1, r′

2) = − f Gδ(R− R′ )P(r)P(r′) 1
2 (1 − Pσ ), (1)

with R = (r1 + r2)/2 and r = r1 − r2 being the center of mass
and relative coordinates. The form factor P(r) is of Gaussian
shape

P(r) = 1

(4πa2)3/2
e−r2/4a2

. (2)

The parameters G = 728 MeV fm3 and a = 0.644 fm of this
interaction, which are the same for protons and neutrons, have
been derived by a mapping of the 1S0 pairing gap of infinite
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nuclear matter to that of the Gogny force D1S [49] under the
condition that f = 1.0. The particle number dependence of
the scaling factor f of the pairing force is taken from Ref. [3].

The proton quadrupole deformation β2 is defined from
proton quadrupole moment Q20 as

β2 =
√

5π Q20

3ZR2
0

, (3)

where

Q20 =
∫

d3rρ(r) (2z2 − r2
⊥), (4)

with r2
⊥ = x2 + y2. Here R0 = 1.2A1/3 and ρ(r) stands for

proton density. Equation (3) is used also in the extraction of
experimental β2 deformation parameters from measured data
[50]. This justifies its application despite the fact that this
simple linear expression ignores the contributions of higher
power/multipolarity deformations to the proton quadrupole
moment. Including higher powers of β2, as in Ref. [51], yields
values of β2 that are ≈10% lower.

III. CHARGE RADII AND RELATED INDICATORS

The charge radii were calculated from the corresponding
point proton radii as

rch =
√

〈r2〉p + 0.64 fm, (5)

where 〈r2〉p stands for proton mean-square point radius and
the factor 0.64 accounts for the finite-size effects of the proton.
Here we have neglected the small contributions to the charge
radius originating from the electric neutron form factor and
the electromagnetic spin-orbit coupling [52,53] as well as the
corrections due to the center of mass motion. Note that the
functional DD-PC1 [44] has been adjusted only to nuclear
binding energies.

In addition, two differential indicators are commonly used
to facilitate the quantitative comparison of the experimental
results with those from theoretical calculations. One of them
is the differential mean-square charge radius4

δ〈r2〉N,N ′
p = 〈r2〉p(N ) − 〈r2〉p(N ′)

= r2
ch(N ) − r2

ch(N ′), (6)

where N ′ is the neutron number of the reference nucleus.
Another is the three-point indicator

�〈r2〉(3)(N ) = 1
2 [〈r2(N − 1)〉 + 〈r2(N + 1)〉 − 2〈r2(N )〉]

= 1
2

[
r2

ch(N − 1) + r2
ch(N + 1) − 2r2

ch(N )
]
, (7)

which quantifies OES in charge radii.
In addition, the neutron skin thickness is commonly de-

fined as the difference of proton and neutron rms radii

rskin = 〈
r2

n

〉1/2 − 〈
r2

p

〉1/2
. (8)

4This quantity is frequently written as a function of mass number
A. However, we prefer to define it as a function of neutron number
N since this allows us to see the behavior of the δ〈r2〉N,N ′

p curves at
neutron shell closures.

The neutron skin thickness is an important indicator of isovec-
tor properties.

IV. THE PB ISOTOPES: FROM UNPAIRED
TO PAIRED RESULTS

For a better understanding of the physical features which
affect the description of charge radii it is very illustrative
to start from the analysis of the results of the calculations
performed without pairing but with different CEDFs repre-
senting the major classes of the CDFT models. They provide
comparable global descriptions of the ground-state properties
[3,48,54] but reveal visible differences in the single-particle
properties (see, for example, Fig. 1). The addition of pairing
will reveal how it affects the detailed properties of differential
charge radii.

The experimental absolute value of the charge radius of the
nucleus 208Pb is well described by the employed functionals
(see Table I), but there exist some uncertainties in the pre-
diction of the neutron skin in the model calculations and in
its experimental measurements. One can see that non-PREX5

experiments provide neutron skins which are by ≈0.09 fm
smaller than the one obtained in the PREX-II experiment.

The δ〈r2〉N,126 values of the Pb isotopes obtained with
various CEDFs in calculations without pairing are shown in
Fig. 2. One can see that the slope of this function (namely,
the derivative δ〈r2〉N,126/δN) changes at N = 120, N = 124,
and N = 126 in all functionals. The changes in the slope of
δ〈r2〉N,126 as a function of N are traced back to the changes in
the occupation of different spherical neutron subshells. The
sequence of the occupation of different spherical subshells
with increasing neutron number is the same for all function-
als (see Figs. 2 and 1). The ν2 f5/2 subshell is occupied for
neutron numbers N = 115–120.6 For higher neutron numbers
N = 121–124, the ν3p3/2 subshell gradually fills up with
increasing neutron number. This change of the occupation

5Different types of non-PREX experiments are discussed in
Refs. [55,56] and references quoted therein. Note that the experi-
mental data on the neutron skin are extracted in a model-dependent
way in all these experiments. For instance, the neutron skin thick-
nesses rskin = 0.161 ± 0.042 fm [57] and rskin = 0.190 ± 0.028 fm
[58] obtained from the energy of the anti-analog giant dipole reso-
nance rely on relativistic proton-neutron quasiparticle random-phase
approximation calculations based on the RHB model. Another ex-
ample is the value of the neutron skin thickness of rskin = 0.15 ±
0.03(stat)+0.01

−0.03(sys) fm extracted from coherent pion photoproduc-
tion cross sections [59]. In this case the extraction of information
on the nucleon density distribution depends on the comparison of
the measured (γ , π 0) cross sections with model calculations. On
the contrary, the electroweak probe (PREX types of experiment) has
the advantage over experiments using hadronic probes that it allows
a nearly model-independent extraction of the neutron radius that is
independent of most strong interaction uncertainties [60].

6In the calculations without pairing, the occupation of either an odd
neutron (in odd-A nuclei) or a pair of neutrons (in even-even nuclei)
from the same spherical subshell leads to the same slope of the
δ〈r2〉N,126 function. Thus, for simplicity we consider only even-even
nuclei in this part of the discussion.
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FIG. 1. Neutron and proton single-particle states at spherical shape in 208Pb obtained in the calculations without pairing with the indicated
CEDFs. Solid and dashed connecting lines are used for positive- and negative-parity states, respectively. Spherical gaps are indicated.

from the ν2 f5/2 to the ν3p3/2 subshell leads to the change
of the slope of the δ〈r2〉N,126 function at N = 120 because
these two subshells have different density distributions and
thus different neutron radii. The next change of the slope of
this function takes place at N = 124 at the transition from
the occupation of the ν3p3/2 to the ν3p1/2 subshell. Since
these two subshells are spin-orbit partners, they have the same
orbital quantum number and, as a consequence, very similar
spatial distributions of the density. Minor differences in the
latter are caused by the fact that the ν3p1/2 subshell is located
somewhat higher in energy than the ν3p3/2 one [see Fig. 1(b)]

TABLE I. The charge radius rch and the neutron skin rskin of
the nucleus 208Pb obtained in calculations with the indicated func-
tionals. The experimental value of rch is taken from Ref. [1]. Two
experimental values are provided for rskin: one (approximate, labeled
as non-PREX) obtained from the experiments which do not employ
parity violating electron scattering on nuclei (PREX) (see discussion
in Sec. X of Ref. [3] for more details) and another (labeled as
PREX-II) from the PREX-II experiment [61].

CEDF rch [fm] rskin [fm]

DDME2 5.518 0.193
DDMEδ 5.509 0.186
DD-PC1 5.513 0.202
NL3* 5.509 0.288
PCPK1 5.519 0.257
exper. 5.5012 ± 0.0013 ≈0.19 [non-PREX]

0.283 ± 0.071 [PREX-II]

and thus in the region of a somewhat larger radius of the
nucleonic potential.

The inclusion of pairing modifies the results visibly as
compared to those obtained in the calculations without pairing
(compare Fig. 3 with Fig. 2). First, the changes of the slopes
of the δ〈r2〉N,126 curves at N = 120 and N = 124, which are
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FIG. 2. The δ〈r2〉N,126 values of the Pb isotopes relatively to
208Pb obtained in the calculations without pairing with the indicated
CEDFs. Vertical black lines indicate the neutron numbers at which
the slope of the δ〈r2〉N,N ′

curves change. The spherical subshell labels
indicate the orbitals which are populated with increasing neutron
number between these vertical lines (see text for details). Note that
the presentation is restricted to the range of the nuclei in which
experimental ground states of the Pb isotopes are spherical [16].
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FIG. 3. The same as Fig. 2 but for the results of calculations with
pairing included. The experimental data are taken from Ref. [16].

present in the calculations without pairing, are almost washed
out when pairing is taken into account. This is because pairing
modifies the occupation of different subshells (see, for exam-
ple, Fig. 5) and thus the evolution of the δ〈r2〉N,126 values with
neutron number becomes more gradual at these particle num-
bers. Second, the kink in the δ〈r2〉N,126 values at N = 126 still
exists because of the large shell closure at this particle number
which leads to the collapse of pairing. If (hypothetically)
pairing would survive at N = 126, then the kink would be less
pronounced. Third, the spreads and absolute magnitudes in
the predictions of the δ〈r2〉116,126 and δ〈r2〉134,126 values (the
values taken at the extremes of the plots presented in Figs. 2
and 3) are reduced when the pairing is taken into account.
These values are located in the ranges from −0.58 fm2 to
−0.48 fm2 (from −0.51 fm2 to −0.49 fm2) and from 0.86 fm2

to 1.12 fm2 (from 0.78 fm2 to 0.92 fm2) in the calculations
without (with) pairing, respectively. Fourth, the relative order
of the results obtained with different functionals in Figs. 2 and
3 at given neutron number is different in the calculations with
and without pairing. This is best illustrated by considering
the case of N = 134 and the sequence of functionals ordered
according to the increase of calculated δ〈r2〉N,126 values. The
sequences of functionals are DD-MEδ, DD-ME2, DD-PC1,
NL3*, and PC-PK1 in the calculations without pairing (see
Fig. 4) and DD-ME2, DD-PC1, NL3*, PC-PK1, and DD-MEδ

in the calculations with pairing (see Fig. 3).
To better understand these features we analyze the results

of the calculations presented in Figs. 4 and 5. The calculations
without pairing clearly show that the occupation of the ν1i11/2

subshell for N > 126 is needed for the formation of the exper-
imentally observed kink at N = 126 and that the occupation
of the ν2g9/2 subshell above N = 126 does not lead to the
formation of a kink at N = 126 (see Fig. 4). The inclusion
of pairing leads to a partial occupation of these two subshells
(see Fig. 5) and thus to δ〈r2〉N,126 values located in between
of those obtained in the calculations without pairing for the
occupation of these two subshells (see Fig. 4).

Figure 4 also illustrates that the sequential occupation of
a given subshell (either ν1i11/2 or ν2g9/2) above N = 126 in
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obtained in calculations without pairing with the NL3* CEDF (see
text for details). The results of RHB calculations with pairing for
even-even nuclei are presented for comparison.

odd-A and even-even nuclei leads to δ〈r2〉N,126 values that
form a straight line as a function of neutron number. Thus,
with this occupation pattern, the OES of charge radii cannot
be formed in the calculations without pairing. However, as
discussed in detail in Ref. [16] the scattering of the occupation
of the orbitals in these subshells will lead to the formation of
an OES in the charge radii which has a magnitude comparable
to experiment.

Figure 5 allows us to better understand the role of pairing
and the impact of the underlying single-particle structure on
the magnitude of the kink in the charge radii at N = 126.
This figure focuses on the occupation pattern and the relative
energies of the neutron 2g9/2 and 1i11/2 orbitals located above
N = 126. Other states (such as 3d5/2, 4s1/2, 2g7/2 etc) do not
play a significant role in the creation of the kink since they
are separated by a large energy gap from the pair of the states
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FIG. 5. (a) The evolution of occupation probabilities v2/(2 j +
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number in the N > 126 nuclei. (b) The evolution of the energies of
these single-particle states as a function of neutron number.
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under study [see Fig. 1(b)] and their occupation in the pres-
ence of pairing is small. The occupation probability v2/(2 j +
1) of the respective subshell is defined in such a way that it is
equal to 1 or 0 when a given subshell of multiplicity 2 j + 1 is
either fully occupied or empty. This occupation probability
grows almost linearly with increasing neutron number [see
Fig. 5(a)].

The largest energy gap between the neutron 2g9/2 and
1i11/2 subshells exists in the DD-MEδ functional for all neu-
tron numbers of interest [see Fig. 5(b)]. As a consequence, for
a given neutron number the occupation of the lowest (highest)
in energy 1i11/2 (2g9/2) subshell is large (small) but they
gradually raise with increasing neutron number [see Fig. 5(a)].
This significant preference in the occupation of the 1i11/2

subshell leads to the largest δ〈r2〉N,126/δN values for N > 126
isotopes among the considered functionals which exceeds the
experimental data (see Fig. 3). In all other functionals, the
gap between the 2g9/2 and 1i11/2 subshells is smaller [see
Fig. 5(b)] but still the occupation of the 1i11/2 subshell is
favored.7 Thus, as compared with the DD-MEδ functional the
difference in the occupation of these orbitals becomes smaller
[see Fig. 5(a)]. This leads to a reduction of the δ〈r2〉N,126/δN
values for N > 126 nuclei which now become close to exper-
iment (see Fig. 3).

There are large similarities between the results obtained
with the different CEDFs presented in Fig. 3. This is the
consequence of the fact that in all functionals (i) different
single-particle subshells are well separated in energy below
N = 126 (see Fig. 1) and (ii) the sequence of the single-
particle subshells occupied with increasing neutron number
is the same (see Table III). To see whether a similar sit-
uation persists for higher neutron numbers, we performed
calculations with and without pairing for all even-even Pb
isotopes located between the two-proton and the two-neutron
drip lines (see Fig. 6). Note that we restrict the calculations to
spherical shapes to see the sources (not affected by the shape
changes) of major differences between the functionals. This is
a somewhat hypothetical scenario since the calculations with
deformation included indicate the presence of deformation in
the ground states of the Pb isotopes located in the middle of
the region between the magic neutron closures (see Fig. 19 of
Ref. [3]). The neutron single-particle rms radii of the single-
particle orbitals are shown in Table II. One can see very large
neutron rms radii of the 3d5/2, 2g7/2, 3d3/2 and, especially, of
the 4s1/2 subshells. However, as discussed in the introduction
and in Ref. [5] the real impact of the occupation of these
orbitals on the charge radii will be defined by the pull they
exert on proton densities.

We start from the analysis of calculations performed with-
out pairing (see upper curves in Fig. 6). The significant
(comparable to that seen at N = 126) changes of the slope of
the δ〈r2〉N,126 curves are observed at N = 138: at this neutron
number the 1i11/2 subshell is completely filled and the 2g9/2

7It is only in the PC-PK1 functional that the 2g9/2 subshell is
lower in energy than the 1i11/2 one for N = 126 [see Fig. 1(b)].
However, already at N = 128 the 1i11/2 subshell dives below 2g9/2

[see Fig. 5(b)].
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Note that the results of the calculations with pairing are shifted down
by −2.0 fm2 to compare the results of the calculations with and
without pairing on the same panel.

subshell is filled at higher neutron number (up to N = 148).
The slopes of the δ〈r2〉N,126 curves for different CEDFs as
a function of the neutron number are similar in the neutron
range N = 126–148, and these curves do not cross. However,
the situation starts to change above N = 148 because of the
different sequences of the occupation of the single-particle

TABLE II. Neutron single-particle rms radii rsp
neu =

√
〈r2〉sp of

the indicated single-particle orbitals obtained in 208Pb in calculations
without pairing with the CEDF DD-ME2. The order (from top to
bottom) of the orbitals is the same as in Fig. 1(b). The radii of the
first two orbitals located above the N = 126 spherical shell gap are
shown in bold.

s-p orbital rsp
neu [fm]

1 2

3d3/2 8.9411
2g7/2 7.4880
4s1/2 9.3128
3d5/2 8.2905
2g9/2 7.0227
1i11/2 6.4131
3p1/2 6.4775
3p3/2 6.3856
2 f5/2 6.2215
1i13/2 6.4108
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TABLE III. The sequence of the spherical subshells occupied in
the Pb isotopes with increasing neutron number in the calculations
without pairing. Note that these sequences are the same for the
pairs of the NL3* and PC-PK1 as well as DD-PC1 and DD-MEδ

functionals. The numbers in the brackets [N1 − N2] provide the range
of neutron numbers between N1 and N2 for which the occupation
of a given subshell takes place. The sequences of the subshells and
neutron number ranges are shown in the columns 2 and 3 only
starting from the point at which the difference with the column 1
emerges.

NL3*/PC-PK1 DD-PC1/DD-MEδ DD-ME2

1 2 3

1i13/2 [101–114]
2 f5/2 [115–120]
3p3/2 [121–124]
3p1/2 [125–126]
1i11/2 [127–138]
2g9/2 [139–148]
3d5/2 [149–154] 1 j15/2 [149–164] 3d5/2 [149–154]
2g7/2 [155–162] 2g7/2 [165–172] 4s1/2 [155–156]
4s1/2 [163–164] 3d5/2 [173–178] comp. [157–172]
1 j15/2 [165–180] 4s1/2 [179–180] 3d5/2 [173–178]
3d3/2 [181–184] 3d3/2 [181–184] 4s1/2 [179–180]

3d3/2 [181–184]

subshells (see Table III) caused by the fact that five different
subshells, clustered into an energy window which is slightly
larger than 1 MeV (see top of Fig. 1), have somewhat differ-
ent relative energies for the different functionals. The NL3*
and PC-PK1 functionals have the same sequences of filling
of spherical subshells with increasing neutron number (see
column 1 in Table III). As a consequence, the δ〈r2〉N,126 curves
for these two functionals have comparable evolutions as a
function of neutron number with minor changes of the slope
at neutron numbers at which the transition from filling of
one subshell to another one takes place. A similar situation
also exists in the pair of functionals DD-PC1 and DD-MEδ

(see Fig. 6) for which the sequences of the occupation of the
single-particle subshells with increasing neutron number are
the same (see column 2 in Table III). Note that the δ〈r2〉N,126

values calculated with these two functionals are extremely
close to each other.

The situation is more complex in the case of the DD-
ME2 functional. Calculations with this functional reveal a
complicated interplay of the occupation of different spher-
ical subshells with increasing neutron number. The neutron
3d5/2 and the 4s1/2 subshells are gradually occupied for N =
149–156 (see Table III). However, in the neutron number
range N = 157–172 a complicated interplay of the occupation
of the 2g7/2 and 1 j15/2 subshells and deoccupation of the
3d5/2 and 4s1/2 subshells with increasing neutron number take
place [this region is labeled as “comp.” in Table III]. It leads
to substantial irregularities in the δ〈r2〉N,126 curve at these
particle numbers (see Fig. 6). At N = 172 the 2g7/2 and 1 j15/2

subshells are fully occupied, and the repetitive occupation of
the 3d5/2 and 4s1/2 subshells as well as the occupation of the
3d3/2 subshell takes place at higher neutron numbers.

The inclusion of pairing leads to a redistribution of the oc-
cupation of the single-particle states located in the vicinity of
the neutron Fermi level and basically removes all the changes
in the slopes of the δ〈r2〉N,126 curves seen in the calculations
without pairing for N > 126 (compare the results of the cal-
culations with and without pairing shown in Fig. 6). However,
important differences between the functionals still exist. This
is best illustrated by comparing the results obtained with the
DD* functionals. For these functionals δ〈r2〉184,126 ≈ 4.3 fm2

both in the calculations with and without pairing (see Fig. 6).
At N = 184, neutron pairing collapses (see, for example,
Fig. 2 in Ref. [62]) but proton pairing is present due to the
reduced size of the Z = 82 shell closure as compared with the
one for the N = 126 isotope. It is weakest for the DD-ME2
functional and strongest for the DD-MEδ one. This feature ex-
plains the slightly larger spread �(δ〈r2〉184,126) = 0.117 fm2

of the δ〈r2〉184,126 values obtained with the DD* functionals in
the calculations with pairing as compared without pairing.

Thus, the results of the DD* functionals are the same at
N = 126 (by normalization) and almost the same at N =
184. However, the difference between the DD-ME2 and DD-
PC1/DD-MEδ functionals8 is increasing on moving away
from the shell closures, and it is maximized at N = 170 where
it reaches 0.302 fm2 (see bottom curves of Fig. 6). This is due
to different sequences of the filling of spherical subshells in
these two groups of the functionals (see Table III).

Thus, the relative energies of the single-particle states and
the patterns of their occupation with increasing neutron num-
ber are still important even in the calculations with pairing.
They can lead to different predictions in different function-
als and to discrepancies with experiment. It is important
to remember that the group of the single-particle subshells
discussed above is located in a very narrow energy range
(≈1.0 MeV, see Fig. 1). Thus, the correct description of
the sequence of the occupation of the single-particle states
with increasing neutron number requires an enormous accu-
racy (within approximately 200 keV) for the description of
the energies of the single-particle states. Such an accuracy
is unachievable in the present generation of energy density
functionals (both covariant and nonrelativistic ones). This is
because the structure of the experimental ground states in odd-
A nuclei is reproduced globally only in approximately 40% of
the nuclei in the DFTs, and there are substantial differences
between experimental and calculated single-particle spectra
[63–65]. The inclusion of particle-vibrational coupling in-
creases the accuracy of the description of the single-particle
configurations in odd-A nuclei but such studies are, so far,
limited to spherical nuclei (see Refs. [66–68]).

The results of the calculations with PC-PK1 and NL3*
functionals show the same trends in the δ〈r2〉N,126 curves
(see Fig. 6) reflecting the same sequence of the occupations

8Note that the δ〈r2〉N,126 curves obtained with the CEDFs DD-PC1
and DD-MEδ are almost the same for all neutron numbers. This is
the consequence of (i) the same sequences of the filling of spherical
subshells with increasing neutron number (see Table III) and (ii)
similar isovector properties of these two functionals (see Table III
in Ref. [35]).
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FIG. 7. The charge radii rch of the Pt (Z = 78), Hg (Z = 80), Pb (Z = 82), Po (Z = 84), and Rn (Z = 86) isotopes as a function of neutron
number. In panel (a), experimental data are shown only for even-even nuclei. The only exception is the Hg isotopes for which experimental
data for odd-N isotopes is included to illustrate a typical magnitude of OES in charge radii induced by shape coexistence (the N = 101–106
region, see Sec. IX A for a detailed discussion) or by other effects when neighboring even and odd-N isotopes have comparable shapes (the rest
of the Hg curve). In panels (b)–(f), thick solid lines show the rch values obtained in the calculations for the lowest in energy solutions in each
isotopes. Open symbols show the isotopes for which these solutions are either spherical or quasispherical (|β2| � 0.05). This “line-symbol”
convention is used in all figures below. Thin dashed lines show the charge radii of spherical solutions in neutron-poor Pt, Hg, and Pb isotopes.
Vertical black dashed line indicates N = 126.

of the spherical subshells (see Table III). At N = 184, the
δ〈r2〉184,126 values obtained with these two functionals are
higher than those obtained with the DD* ones. This is most
likely the consequence of the different isovector properties of
the compared functionals (see Ref. [35]).

V. CHARGE RADII IN ISOTOPIC CHAINS
OF THE PB REGION

The absolute values of experimental and calculated charge
radii of the Pt, Hg, Pb, Po, and Rn isotopes are compared
in Fig. 7, while a similar comparison for differential charge
radii is presented in Fig. 12 below. Note that in these and in
other figures, which cover the nuclei over the specific region,
we consider only experimental even-Z and calculated even-
even nuclei. This is done to focus on general global features

and avoid the discussion of odd-A nuclei and related OES in
charge radii which will be separately considered in Sec. IX
below. The calculated quadrupole deformations of the lowest
in energy solutions are presented in Fig. 8.

The relative charge radii of the Pt, Hg, and Pb isotopes are
reasonably well reproduced in the region of neutron numbers
around N ≈ 120 (see Fig. 7). The increase of proton number
above Z = 82 leads to a gradual increase of charge radii in
model calculations with all employed CEDFs [see Figs. 7(b)–
7(f)]. In contrast, there is a substantial gap in experimental
charge radii of the Z = 82 and Z = 84 isotopes [see Fig. 7(a)]
which is larger than that predicted in the calculations. The in-
crease of charge radii in going on from the Po to Rn isotopes is
somewhat smaller in experiment as compared with theoretical
results. Note that at this point it is not clear whether these
differences are due to the deficiencies of the model predictions
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or experimental evaluations of absolute values of charge radii
(see discussion in the Introduction).

The evolution of experimental charge radii in the Rn iso-
topes are rather well reproduced in model calculations (see
Fig. 7). Note that only the isotopes in the vicinity of the
neutron shell closure at N = 126 are spherical in the lowest
in energy solutions (see Fig. 8). Some moderate deforma-
tion |β ≈ 0.10| appears in the calculations for experimentally
known nuclei at N = 116–120, but their potential energy
curves (PEC) are very soft (see Fig. 1 in the Supplemental
Material [69]) so they are expected to be transitional. The shift
from spherical to transitional nuclei does not trigger visible
changes in charge radii in experiment since beyond mean-field
effects are expected to smooth out this transition.

The evolution of charge radii in the Po isotopes is repro-
duced rather well from the isotope with the highest neutron
number accessible in experiment down to N = 120 in DD-
MEδ, N = 118 in DD-ME2, NL3*, and DD-PC1 and N =
116 in PCPK1 CEDFs (see Fig. 7). At lower neutron numbers,
the experimental charge radii gradually bend up so that at
N = 108 experimental rch exceed the value defined from the
trend of charge radii defined at N = 118–126 by ≈0.04 fm.
However, this process is more abrupt in the calculations,
since the calculated radii for N = 108–116 exceed the above
mentioned trend by ≈0.04 fm. In the calculations, this abrupt
shift in calculated charge radii at N ≈ 118 is caused by the
transition from spherical to oblate shapes with β2 ≈ −0.18
(see Fig. 8). These facts suggest that the rch values of the
N = 108 and N ≈ 118 [depends on functional] isotopes are
rather well reproduced in the calculations, but the mean-field
calculations fail to reproduce the gradual transition in rch seen
between N = 106 and N ≈ 118 isotopes. This gradual transi-
tion is most likely due to beyond mean-field effects since the
nuclei in this neutron number range have soft PECs (see Fig. 2

in the Supplemental Material [69]). In addition, the triaxiality
could play a role in this gradual transition.

The charge radii of the Pb isotopes in the N = 116–132
range are well described in the model calculations of Sec. IV.
Here we focus on more neutron-poor Pb isotopes in the
range of N = 100–116. Experimental charge radii in this
neutron range continue the trend seen at N = 116–126 [see
Fig. 7(a)]. This suggests that the shapes of the nuclei in the
measured states are either spherical or near-spherical. Indeed,
if we consider spherical solutions in these nuclei [see green
dashed lines in Figs. 7(b)–7(f)], then the experimental data
are rather well reproduced. However, the calculations predict
either oblate or prolate shapes for the ground states of the
N = 104–114 isotopes in CEDFs DD-ME2, NL3*, and DD-
PC1, of the N = 102–118 isotopes in DD-MEδ and of the
N = 108–110 isotopes in PC-PK1 (see Fig. 8). Despite that,
spherical minima, located either close in energy to the ground
states or at some excitation energy, exist in all isotopes in
all functionals with the exception of DD-MEδ (see Fig. 9).
Note that PECs of these nuclei are rather soft in quadrupole
deformation (see Fig. 9). Thus, the correlations beyond mean
field can play an important role in these nuclei.

According to the droplet model (DM) [70] the relation

〈r2〉DM = 〈r2〉spher
DM

(
1 + 5

4π
β2

2

)
(9)

exists between the predictions of charge radii 〈r2〉DM and
〈r2〉spher

DM at quadrupole deformation β2 and at spherical shape,
respectively. This relation is frequently used in the experi-
mental analysis of the data for the extraction of quadrupole
deformations. This equation tells us that the charge radii form
a parabolic function of β2 with the minimum at spherical
shape; this function is symmetric with respect to a sign change

064313-10



CHARGE RADII IN COVARIANT DENSITY FUNCTIONAL … PHYSICAL REVIEW C 104, 064313 (2021)

0

2

4

6

DD-ME2
DD-MEδ
DD-PC1
NL3*
PC-PK1

0

2

4

6

E
ne

rg
y 

 E
  [

M
eV

]

-0.2 0 0.2 0.4

-0.2 0 0.2 0.4

0

2

4

6

-0.2 0 0.2 0.4

Quadrupole   deformation  β2

-0.2 0 0.2 0.4

100 102 104 106

108 110 112 114

116 118 120

Pb (Z=82)  

(a) (b) (c) (d)

(e) (f)

(g) (h)

(i) (j) (k)

FIG. 9. Potential energy curves (PECs) of the Pb isotopes with neutron numbers N = 100–120 as a function of quadrupole deformation β2

obtained in the RHB calculations with the indicated functionals. Note that their energies are normalized to zero at the global minimum.

of the deformation. Realistic calculations presented in Fig. 10
confirm this parabolic dependence of charge radii on the
quadrupole deformation. However, it is somewhat asymmetric
with respect of the change of the sign of the deformation.9

This difference between Eq. (9) and the results of Fig. 10
are most likely due to neglecting higher-order deformations
(such as β4, etc.) in Eq. (9). Note that the functional de-
pendence of the charge radii on deformation β2 almost does
not depend on the functional (see Fig. 9). This fact is quite
useful in the selection of the most probable scenario when
comparing the experimental situation in the Pb region with
the results of the calculations that provide several local closely
lying minima.

Detailed investigations within the CDFT framework of
charge radii in Hg isotopes with neutron numbers N =
121–128 are presented in Refs. [16,72]. Good agreement be-
tween theory and experiment is obtained. The charge radii
are also well described for neutron numbers N = 110–120
in calculations with DD-ME2, NL3*, and DD-PC1, for N =
112–120 with DD-MEδ, and for N = 108–120 in PC-PK1
(see Fig. 7). However, they also suggest that these nuclei are

9Note that Ref. [71] provides even higher order expansion of charge
radii in terms of multipole deformations within the droplet model.
However, the asymmetry of 〈r2〉DM as a function of β2 is opposite to
that seen in the RHB calculations in Fig. 10 because of cubic term
in β2.

oblate with β2 ≈ −0.15 in their ground states (see Figs. 8 and
11) which leads to a slight increase of rch as compared with
the ones for the spherical solution (compare dashed red lines
with solid red lines with red squares in Figs. 7(b)– 7(f)). A sig-
nificant odd-even staggering in the Hg charge radii exists for
N = 100–106 [see Fig. 7(a)] the origin of which is discussed
in Sec. IX A.

Except for calculations with the DD-MEδ functional, the
evolution of experimental data in the Pt isotopes is rather
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calculations with the indicated functionals.
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FIG. 11. The same as Fig. 9 but for the Hg isotopes with N = 100–120.

well reproduced for the N = 112–120 nuclei. The results of
the calculations with DD-ME2, NL3*, DD-PC1, and PC-PK1
suggest that the ground states of these nuclei have weakly
deformed oblate shapes with β2 ≈ −0.13 (see Fig. 3 in the
Supplemental Material [69]). However, the competing prolate
minimum exists in all these isotopes. With decreasing neu-
tron number, this prolate minimum with β2 ≈ 0.3 becomes
the lowest in energy at N = 110 (see Figs. 8 and 3 in the
Supplemental Material [69]). This leads to a sharp increase
in charge radii which overshoots the experimental data by
roughly 0.04 fm (see Fig. 7). However, if we would asso-
ciate excited oblate states with deformation β2 ≈ −0.2 in the
N = 100–110 nuclei with the observed ground states, then
the experimental data on charge radii would be much better
described since they are characterized by lower charge radii
(see discussion of Fig. 10 above). The change of the slope of
experimental charge radii at N ≈ 106 is possibly an indicator
of such a transition from oblate shapes with nearly constant
β2 ≈ −0.2 for N = 100–106 to oblate shapes where the de-
formation decreases in absolute value with increasing neutron
number above N = 106 (see Figs. 8 and 3 in the Supplemental
Material [69]).

Figure 12 shows the evolution of the δ〈r2〉N,126 values in
the Pt, Hg, Pb, Po, and Rn isotopes. These curves are similar
[clustered] for different isotopic chains for N = 112–136, but
their slopes change at N = 126. Below N = 112 this feature

is disturbed in the Po isotopes due to the gradual transition to
prolate shapes, but still, it is present for the isotopic chains
of Pb, Hg (excluding odd nuclei), and Pt. This clustering
of the δ〈r2〉N,126 values for different isotopic chains is well
reproduced in all functionals above N = 126. The situation
is somewhat different below N = 126. The DD-ME2, NL3*,
DD-PC1, and PC-PK1 functionals reproduce this clustering of
the δ〈r2〉N,126 values down to N ≈ 116 and for the Pt, Hg, and
Rn isotopic chains even to lower neutron numbers. However,
as discussed above in the low-N region the calculations do not
reproduce correctly the lowest in energy minimum leading to
the discrepancies between theory and experiment. Note that
among the functionals under consideration DD-MEδ provides
the worst description of experimental data in the nuclei with
N < 126.

VI. CHARGE RADII IN ISOTOPIC CHAINS
OF THE SN/GD REGION

The calculated and experimental differential charge radii
for the Sn isotopes are compared in Fig. 13. The experimental
δ〈r2〉N,74 curve is well described in the N = 58–74 range
in model calculations with the best reproduction provided
by the NL3*, DD-MEδ, and DD-PC1 functionals. However,
the slope of the experimental δ〈r2〉N,74 curve is somewhat
overestimated in the N = 74–82 range by all functionals. The
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FIG. 12. The δ〈r2〉N,126 values of the Pt (Z = 78), Hg (Z = 80), Pb (Z = 82), Po (Z = 84), and Rn (Z = 86) isotopes as a function of
neutron number. Thick lines (with open symbols for spherical of quasispherical solutions) show the δ〈r2〉N,126 values obtained for the lowest
in energy solutions in each isotopes. Thin dashed lines show the charge radii of spherical solutions in neutron-poor Pt, Hg, and Pb isotopes.
Vertical black dashed line indicates N = 126 and horizontal dashed line δ〈r2〉N,126 = 0.

experimental data shows a kink at N = 82, the magnitude of
which is underestimated by the NL3*, PC-PK1, DD-ME2,
and DD-PC1 CEDFs. Only the DD-MEδ functional repro-
duces it reasonably well with the slope of the experimental
δ〈r2〉N,82 curve for N > 82 described almost perfectly (see
inset in Fig. 13).

The origin of this feature can be traced back to the occu-
pation pattern of the neutron 1h9/2 and 2 f7/2 subshells located
above the N = 82 shell closure [see Fig. 14(a)]. The calcu-
lations without pairing show that the occupation of the 2 f7/2

orbital, which is the lowest in energy subshell above N = 82
[see Fig. 14(a)], does not create a kink at N = 82 (see inset in
Fig. 13). A similar situation exists for the occupations of other
orbitals such as the n = 2 orbital 2 f5/2 and the n = 3 orbitals
3p3/2, and the 3p1/2 orbitals located above N = 82. It is only
the occupation of the n = 1 1h9/2 orbital which drives the
N = 84 isotope to a visibly larger charge radius and creates
a kink at N = 82 (see inset in Fig. 13). This situation is very
similar to the one seen in the Pb isotopes in which only the

occupation of the n = 1 1i11/2 subshell above N = 126 creates
a kink in charge radii at this particle number (see Sec. IV).

Pairing leads to a redistribution of the occupation of dif-
ferent single-particle orbitals in the N = 84 isotope of Sn (see
Fig. 15). However, it is only for the DD-MEδ functional that
the 1h9/2 orbital is strongly occupied in the RHB calculations
[stronger than the 2 f7/2 one] because of the closeness of the
2 f7/2 and 1h9/2 orbitals in energy [see Fig. 14(b)]. And this
balance of the occupation of these orbitals leads to an almost
perfect reproduction of the slope of differential charge in
the N > 82 Sn isotopes (see inset in Fig. 13). In contrast,
in other functionals the 1h9/2 orbital is higher in energy by
approximately 2 MeV than the 2 f7/2 one [see Fig. 14(b)] and,
as a result, its occupation probability is by a factor three or
four [dependent on CEDF] smaller than that for 2 f7/2 (see
Fig. 15). As a consequence, the slope of differential charge
radii in the N > 82 isotopes as well as the magnitude of the
kink at N = 82 is underestimated by these functionals (see
inset in Fig. 13).
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FIG. 13. The same as Fig. 3 but for the Sn isotopes. The ex-

perimental data are taken from Ref. [14]. The N = 74 and N = 82
nuclei are used as reference nuclei in the full figure and in the
inset, respectively. The latter is done to show the kink at N = 82
in more detail. The dashed lines in the inset show the results of
the calculations without pairing and with the CEDF NL3* in which
either only neutron 1h9/2 or only neutron 2 f7/2 orbitals are occupied
in the N > 82 nuclei.

The experimental and calculated differential charge radii in
the Cd, Sn, Te, Xe, Ba, Ce, Nd, Sm, and Gd isotopic chains
are compared in Figs. 16 and 17. One can see that, on average,
the experimental data are well reproduced.

For the nuclei with N < 82, the experimental δ〈r2〉N,82

curves diverge away from each other with decreasing neutron
number (see Fig. 17). The only exceptions from this trend
are the Cd (Z = 48) and Sn (Z = 50) isotopic chains, for
which the experimental differential charge radii are almost
the same. These features are best reproduced by the NL3*
functional [compare Figs. 17(a) and 17(d)]. The similarity
of differential charge radii in the Cd and Sn isotopic chains
is reproduced in all functionals. Note that the ground states
of all Sn isotopes are predicted to be spherical (see Figs. 4
and 12 in the Supplemental Material [69]). On the contrary,
the N = 56–62 Cd isotopes are predicted to be slightly pro-
late with β2 ≈ 0.15 (see Fig. 4 in the Supplemental Material
[69]), but the PECs of many of them are soft in quadrupole
deformation (see Fig. 13 in the Supplemental Material [69])
so that the effects beyond mean field could play a role in the
definition of the exact ground-state deformation. The relative
properties of differential charge radii of the Te (Z = 52) and
Sn isotopes are reproduced rather well in all functionals. Note
that the calculations predict that many of the Te nuclei are
soft in their ground states (see Fig. 11 in the Supplemental
Material [69]).

The evolution of differential charge radii in the Xe (Z =
54) isotopes and the kink at N = 82 are reasonably well
described by all functionals [see Fig. 16(d)]. However, some
functionals slightly underestimate the experimental data in
the N < 82 nuclei. The relative properties of differential radii
of the Xe and Te isotopic chains are somewhat better de-
scribed by the DD-MEδ functional (compare Figs. 17(c) and
17(a)). Note that in this functional the N = 64–68 isotopes are
predicted to be oblate with β2 ≈ −0.2, while other isotopes

are prolate with β2 ≈ 0.2 (see Fig. 4(b) in the Supplemental
Material [69]). In contrast, in other functionals the calcu-
lated ground-state deformation is prolate at N = 64–68, and it
reaches a maximum value at N ≈ 66 (see Figs. 4(a), 4(c), 4(d),
and 4(e) in the Supplemental Material [69]). As a result, the
differential radii show a small peak at these neutron numbers
[see Figs. 17(b) and 17(d)–17(f)]. However, the excited oblate
minimum in those functionals is only slightly higher in energy
than the prolate one (see Fig. 10 in the Supplemental Material
[69]). If one associates this oblate minimum with the ground
state in the N = 64–68 nuclei, then the experimental differen-
tial charge radii will be well reproduced by model calculations
[see dashed green lines in Figs. 17(b) and 17(d)–17(f)].

Experimental data on differential charge radii of the Ba
(Z = 56) isotopes extends down to N = 64 with δ〈r2〉N,82

values being nearly constant but slightly decreasing with de-
creasing neutron number [see Fig. 16(e)]. Similar trends are
observed in the calculations with all CEDFs which reasonably
well reproduce the evolution of experimental δ〈r2〉N,82 curve
as well as the kink at N = 82. However, the calculated curves
are disturbed by a small peak at N = 68 in the calculations
with DD-ME2, NL3*, DD-PC1, and PC-PK1 [see Figs. 17(b)
and 17(d)–17(f)] and a substantial downslope of the δ〈r2〉N,82

curve with decreasing neutron number which starts at N = 64
in the calculations with DD-MEδ [see Figs. 16(e) and 17(c)].
This peak takes place at neutron numbers where the rate of
the increase of prolate deformation with decreasing neutron
number is enhanced (see Fig. 4 in the Supplemental Material
[69]).

In the N < 82 nuclei, the experimental data for even-even
Ce (Z = 58) isotopes are available only for N = 78 and
80. It is reasonably well described in all model calculations
[see Fig. 16(f)]. The experimental δ〈r2〉N,82 values of the Nd
(Z = 60) isotopes are close to zero for N = 72–82 and this
feature is described by all functionals [see Fig. 16(g)]. The
only exception is 132Nd in the calculations with the CEDFs
DD-ME2 and DD-PC1 for which a substantial increase of
differential charge radii is predicted [see Figs. 16(g), 17(b),
and 17(e)]. This is caused by the drift of the prolate minimum
from β2 ≈ 0.2 to β2 ≈ 0.4 (see Fig. 7 in the Supplemental
Material [69]). The experimental δ〈r2〉N,82 values of the Sm
(Z = 62) isotopes are slightly higher than those of the Nd
ones and are decreasing with increasing neutron number in
the N = 76–80 range [see Fig. 16(h)]. These two features are
reasonably well described in the model calculations. The only
exception is the DD-MEδ functional which does not predict
this decreasing trend [see Fig. 17(c)].

Let us consider the evolution of differential charge radii
in the N > 82 nuclei. Note that experimental data for the
Cd isotopes stops at N = 82 and the one for the Sn and Te
isotopic chains at N = 84. The isotopic Ce and Nd chains
extend up to N = 90, those of Xe, Ba, and Sm up to N = 92,
and the Gd isotopic chain up to N = 96. The substantial
kink in charge radii at N = 82 is present in all these isotopic
chains; the δ〈r2〉84,82 values range from 0.226 fm2 in Sn up to
0.297 fm2 in Gd. These kinks are reasonably well described in
the majority of the calculations (see Fig. 16). Note also that the
calculations reasonably well reproduce the N > 82 branches
of differential charge radii.
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The experimental differential charge radii of the indicated
isotopic chains cluster in the N > 82 nuclei [see Fig. 17(a)]
and this feature is reproduced well only in the calculations
with DD-MEδ [compare Figs. 17(c) and 17(a)]. The spread
of the δ〈r2〉90,82 values obtained in the calculations with DD-
ME2, NL3*, DD-PC1, and PC-PK1 for the isotopic chains
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FIG. 15. The occupation probabilities v2/(2 j + 1) of the neutron
orbitals of 134Sn located above the N = 82 shell closure.

under study is larger by a factor of approximately two than
that seen in the experiment [compare Figs. 17(b) and 17(d)–
17(f) with Fig. 17(a)]. Note that theoretical results for the
Cd, Sn, and Te isotopic chains have to be ignored in such a
comparison since experimental data in these chains extends
only up to either N = 82 or 84.

The calculations indicate that only the N = 82 and 84
Xe, Ba, Ce, Nd, Sm, and Gd isotopes are spherical in their
ground states, while higher N isotopes are prolate [with a pair
of exceptions for DD-MEδ] (see Fig. 4 in the Supplemental
Material [69]). This suggests that the clustering of differential
charge radii of these isotopic chains has to be, in part, traced
back to the similarity of calculated deformations. Indeed, in
the neutron number range of 82–92, the smallest spread of cal-
culated deformations is seen in the calculations with DD-MEδ

(see Fig. 4(b) in the Supplemental Material [69]), and this
functional provides the best description of the clustering (see
Fig. 17). However, this is probably not the complete picture
since the spread of calculated deformations for DD-PC1 is
only slightly higher than in the calculations with DD-MEδ

(compare Figs. 4(b) and 4(d) of the Supplemental Material
[69]), but it does not produce a good description of clustering.
As a result, alternative sources of the clustering of differential
charge radii for the nuclei above shell closures may be pos-
sible. One possibility is that it is related to the lowering of
the energy of the 1h9/2 neutron subshell to the vicinity of the
N = 82 shell closure, which is present only for the DD-MEδ

functional (see Fig. 14).
It is interesting to compare the situation with the clustering

of differential charge radii above the neutron shell closure in
the Pb and Sn regions. This clustering in the Pb region for
N > 126 is defined by only three isotopic chains, namely, Pb,
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Po, and Rn (see Fig. 12). Moreover, the calculations suggest
that the nuclei in the N = 126–130 range are spherical, and
that only a weak deformation (|β2 ≈ 0.1|) develops for N =
132, 134, and 136 (see Fig. 8), the highest neutron numbers
in the experimentally observed isotopic chains of Pb, Po, and
Rn, respectively. So, the latter nuclei remain quasispherical.
All these factors explain why it is easier to reproduce the clus-
tering of differential charge radii in the Pb region as compared
with the Sn/Gd one.

VII. THE CHARGE RADII IN THE ISOTOPIC CHAINS
OF THE SR REGION

The isotopic chains of Kr, Sr, and Mo allow us to test
how the differential radii are modified when the N = 50 shell
closure is crossed. In Fig. 18 the experimental data for these
chains are compared with the results of the calculations.

Let us first consider the differential radii for the N > 50
isotopes. In the Kr isotopes, the calculations reproduce rather
well the experimental data for N = 52 and 54, but start to
overestimate it for N = 56, 58, and 60 with the biggest over-
estimate given by the DD* functionals [see Fig. 18(a)]. All
functionals rather well reproduce the experimental differential
radii of the Sr isotopes for N = 50–58 [see Fig. 18(b)]. Note
that in both isotopic chains, the ground states have moder-
ately oblate deformation with β2 ≈ −0.18 above N = 52 (see
Figs. 14 and 16 in the Supplemental Material [69]). Except for
PC-PK1, the differential charge radii of the Mo isotopes are

also rather well reproduced for N = 50–58 [see Fig. 18(c)].
Note that the calculations show a competition of prolate and
oblate shapes in this neutron number range (see Fig. 14 in the
Supplemental Material [69]).

The differential charge radii drastically increase for N =
60 and 62 in the Sr isotopes and N = 60, 62, and 64 in the Mo
isotopes [see Figs. 18(b) and 18(c)]. This increase is related
to the transition of the ground states to a prolate minimum
with β2 ≈ 0.4. Such a minimum is excited by 100–200 keV
in the Sr N = 60 and 62 isotopes in the calculations with
DD-ME2, DD-PC1, and NL3* (see Figs. 16(n) and 16(o)
in the Supplemental Material [69]), and by approximately 1
MeV as compared with the oblate ground-state minimum in
the N = 60, 62, and 64 Mo isotopes (see Figs. 15(l), 15(m),
and 15(n) in the Supplemental Material [69]). Note that for
some functionals and some neutron numbers such a minimum
is either nonexistent (appears as shoulder in the PEC) or
separated by a very small barrier from the minima with lower
deformation. Figures 18(b) and 18(c) illustrate that experi-
mental δ〈r2〉N,50 values for these neutron numbers are rather
well reproduced if the calculated charge radii in this minimum
are used for comparison.

It is interesting to compare the performance of relativistic
and nonrelativistic functionals in the description of differ-
ential charge radii in the N > 50 nuclei of the Sr region.
The results of the calculations with nonrelativistic Skyrme
functionals for the Sr isotopes are presented in Fig. 19. The
best reproduction of experimental data in the N = 50–58
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range is provided by the SLy4 functional, but in general,
the Skyrme functionals provide a less accurate description
of the δ〈r2〉N,50 values in this neutron number range as
compared with the CEDFs. At higher neutron number, ex-
cept for the SkP functional, the prolate minimum with β2 ≈
0.37 is the lowest in energy in the Skyrme DFT calcu-
lations, and this allows explaining the experimental data
at N = 60 and 62.

Similar results have also been obtained in Ref. [31] in
calculations with Gogny D1S for the Sr, Mo, and Zr isotopic
chains. They underestimate experimental δ〈r2〉N,50 values for
N = 52–58 but correctly predict the existence of a highly
deformed prolate minimum above N = 58. This minimum
is the lowest in energy in the Sr isotopes but an excited
configuration in Mo. Moreover, similar to our results for
these shapes, they overestimate δ〈r2〉N,50 values for the Sr
isotopes but correctly reproduce them for Mo. Despite all
these differences, both relativistic and nonrelativistic func-
tionals predict a similar trend of the evolution of charge
radii with increasing neutron numbers above N = 50 provided
that the correct minimum is associated with the experimental
data.

Both covariant and nonrelativistic DFTs fail to reproduce
the evolution of experimental δ〈r2〉N,50 curve in the N =
40–50 Kr and Sr isotopes (see Figs. 18 and 19 in the present
paper and Fig. 7 in Ref. [73]). This is because in the absolute
majority of the cases, these models predict spherical ground
states for these isotopes (see Figs. 14, 15, 16, and 17 in
the Supplemental Material for CDFT results [69], Fig. 19
and Mass Explorer at FRIB [36] for Skyrme DFT results,
and Ref. [74] for Gogny DFT results). However, the PECs
obtained in the CDFT calculations indicate the presence of a
prolate minimum with β2 ≈ 0.5 in the N = 36–42 Sr isotopes
(see Figs. 16(b), 16(c) 16(d), and 16(e) in the Supplemental
Material [69]) which (with the exception of the calculations
with a few functionals in the N = 38 isotope) is the excited
one. The calculated charge radii in this minimum somewhat
overestimate experimental data [see the lines without symbols
in Fig. 18(b)]. The existence of similar prolate minima is seen
also in the Skyrme DFT calculations: it becomes the low-
est in energy in the calculations with SkM* for N = 34–44,

with UNEDF1 and SLy4 at N = 38 and with UNEDF0 at
N = 38–40 (see Fig. 19). Similar to our results, the Skyrme
calculations for this minimum somewhat overestimate exper-
imental δ〈r2〉N,50 values. An excited prolate minimum exists
also in PECs of the Kr isotopes in the CDFT calculations: its
deformation drifts from β2 ≈ 0.45 for N = 40 and 42 down to
β2 ≈ 0.25 for N = 34 and 36 (see Fig. 17 in the Supplemental
Material [69]). This drift explains the experimentally observed
decrease of δ〈r2〉N,50 on going from N = 40 to N = 36 [see
Fig. 18(b)].

Note that the PECs obtained for the Kr and Sr isotopes
in the Gogny DFT calculations with the D1S force (see
Ref. [74]) are very similar to those obtained in our cal-
culations. The inclusion of the correlations beyond mean
field within the framework of a five-dimensional collective
quadrupole Hamiltonian based on the Gogny DFT allows us
to improve the description of charge radii in the N < 50 Sr
isotopes (see the discussion of Fig. 7 in Ref. [73]). Consider-
ing the similarity of mean-field PECs obtained in the CDFT
and Gogny DFT calculations, it is reasonable to expect that
the inclusion of the correlations beyond mean field will also
improve the description of charge radii in the N < 50 nuclei
of the Sr region in the CDFT framework.

Finally, Fig. 20 compares the relative properties of dif-
ferential charge radii of the Kr, Sr, and Mo isotopic chains
obtained in the calculations with the employed functionals.
One can see that the clustering of these radii seen for N =
50–58 in the experiment is reasonably well reproduced in the
model calculations.

VIII. THE CHARGE RADII IN THE ISOTOPIC CHAINS
OF THE CA REGION

The Ca isotopes have been in the focus of extensive exper-
imental and theoretical studies over the years. In the context
of the studies of charge radii, there are two puzzling features
of these isotopes, namely, (i) almost exactly the same charge
radii of the 40,48Ca isotopes and (ii) a large and unexpected
increase of charge radii in neutron-rich beyond N = 28 nuclei
(see Ref. [10]).

First, let us consider the similarity of the charge radii in
the 40,48Ca nuclei. These two nuclei are doubly magic with a
proton shell closure at Z = 20 and the neutron shell closures at
N = 20 and 28, respectively (see Fig. 21). As a consequence,
proton and neutron pairings are expected either to collapse
or to be extremely weak and thus, these two nuclei are ideal
candidates for testing of the particle-hole channel of DFTs,
underlying EDFs and their isovector dependencies. This is
because the theoretical results will not be polluted by the
uncertainties in the treatment of pairing. In addition, the PECs
presented in Figs. 22(e) and 22(i) of the Supplemental Mate-
rial [69] indicate extreme localization of the ground states of
these two nuclei at spherical shape with little or no expected
impact from beyond mean-field effects; these features also do
not depend on the CEDF.

Table IV and Fig. 22 present the summary of published and
newly calculated δ〈r2〉20,28 values for the Ca isotopes and their
connections with nuclear matter properties of the functionals.
One can see that δ〈r2〉20,28 ≈ 0 is produced by the functionals
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TABLE IV. The experimental and calculated δ〈r2〉20,28 values [in
fm2] of the Ca (Z = 20) isotopes and their connection to the nuclear
matter properties (such as symmetry energy J and its slope L0) for
the employed CEDFs. “N/A” means that the data are either not
applicable or not available. The functionals are arranged in such a
way that the calculated δ〈r2〉20,28 values decrease. References for
either the functionals or for related results are shown in the first
column.

CEDF δ〈r2〉20,28 [fm2] J [MeV] L0 [MeV]

exper. [10] −0.001 N/A N/A
NL-IT [4] ≈0.06 39.4 N/A
NL-SH [75] 0.040 36.13 113.68
NL5(E) [76] 0.031 38.93 124.96
NL5(D) [76] 0.003 38.87 123.98
NL1 [77] −0.006 43.46 140.07
NL-I [4] ≈ −0.01 39.7 N/A
NL3 [78] −0.014 37.40 118.53
NL-Z [4] −0.015 41.72 133.91
NL3* [43] −0.028 38.68 122.60
DD-MEX [79] −0.056 32.87 47.81
NL5(A) [76] −0.088 34.92 108.85
NL5(C) [76] −0.092 35.925 112.31
NL5(B) [76] −0.094 34.92 108.33
PCPK1 [47] −0.098 35.60 113.00
DDME2 [45] −0.111 32.40 49.40
DD-PCX [38] −0.178 31.12 46.32
DD-PC1 [44] −0.229 33.00 68.40
DDMEδ [46] −0.296 32.35 52.90

(such as NL3) characterized by large values of the symmetry
energy J ≈ 40 MeV and its slope L0 ≈ 110 MeV while the
large negative values of δ〈r2〉20,28 are produced by the CEDFs
with low values of J and L0. The latter feature is also seen for
traditional nonrelativistic Skyrme EDFs such as SkM*, SkP,
SLy4, SV-min, UNEDF0, and UNEDF1 which are charac-
terized by low values of the symmetry energy J ≈ 32 MeV
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FIG. 22. The relations between the calculated δ〈r2〉20,28, values
in the Ca isotopes and the symmetry energy J and its slope L0 of
employed functionals. See Table IV for additional details.

and its slope L0 ≈ 50 MeV (see Fig. 24).10 It is not likely
that the fact that δ〈r2〉20,28 ≈ 0 in the Ca isotopes can be
related to the details of the single-particle spectra since they
are very similar (especially for the proton subsystem) for the
functionals which provide different predictions for δ〈r2〉20,28

(see Fig. 21).
Although there are the correlations between nuclear matter

properties and the δ〈r2〉20,28 values in the Ca isotopes, other
factors contribute to experimental δ〈r2〉20,28 ≈ 0 value.

First, nonrelativistic HFB calculations of Ref. [26] with the
semi-realistic M3Y-P6a interaction can reproduce δ〈r2〉20,28

and δ〈r2〉32,28 values in the Ca isotopes: this is attributed to the
density dependence of the three-nucleon spin-orbit interaction
and its impact on the density distributions of specific single-
particle orbitals. However, these calculations fail to reproduce
the inverted parabolalike behavior of differential charge radii
for N = 22–26.

Second, it is necessary to recognize that the functionals
used in the present paper have been fitted in a time when
the importance of the fine structure in the charge radii and
alternative mechanisms contributing to them have not been
completely recognized. As a result, an approximate Eq. (5)
has been used for charge radii in the absolute majority of the
publications within the CDFT framework. However, a more
general expression for a charge radius in the CDFT is given
by [81,82]

r2
ch = 〈

r2
p

〉 + r2
p + 〈

r2
p

〉
SO

+ N

Z

(
r2

n + 〈
r2

n

〉
SO

)
, (10)

where 〈r2
p〉 stands for proton mean-square point radius, rp and

rn for single proton and neutron radii, respectively, and 〈r2
p〉SO

and 〈r2
n〉SO for proton and neutron spin-orbit contributions to

the charge radius. So, Eq. (5) takes into account only the first
two terms of this general expression.

It turns out that Eq. (5) is a quite reasonable approximation
to Eq. (10) for medium and heavy mass nuclei especially
for differential charge radii. This is because the spin-orbit
contribution to charge radii decreases with increasing the mass
of nuclei and it almost does not depend on the CEDF. These
features are illustrated in Table II of Ref. [81]. Since the
calculations of this reference are restricted to spherical shape
and neglect pairing correlations, the values quoted for spin-
orbit contribution to charge radii in this table for nondoubly
magic nuclei have to be considered as an upper limit. This is
because deformation and pairing give rise to the fragmentation
of the spin-orbit strength which results in a smoothing of the
spin-orbit correction to charge radii as a function of particle
number [83]. In addition, for existing experimental data the
range of the variation of the N

Z r2
n term is significantly smaller

in medium and heavy mass nuclei as compared with light
nuclei and its contribution to the differential charge radii is
canceled to a large degree.

However, the last two terms of Eq. (10) are important
in light nuclei (see Refs. [81,82]). For example, when these

10The Fayans functionals of Ref. [30] are also able to describe
δ〈r2〉20,28 ≈ 0 but they are specifically designed for that by the use
of experimental value of δ〈r2〉20,28 in the fitting protocol.
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FIG. 24. The δ〈r2〉N,28 values of the Ca (Z = 20) isotopes relative
to the N = 28 isotope. The experimental data for the Ca isotopes are
mostly taken from Ref. [10] while that for the 39,41Ca isotopes from
Ref. [80] and for 36,37,38Ca from Ref. [11]. The results of the Skyrme
DFT calculations are taken from Mass Explorer at FRIB [36]. The
results of the Fayans Fy(�r, HFB) functional are taken from Fig. 4
of Ref. [30].

terms are taken into account the differential charge radius
δ〈r2〉20,28 for the Ca isotopes changes from −0.013 fm2 to
+0.164 fm2 in the NL3 CEDF and from −0.07 fm2 to
+0.108 fm2 in the NLSH one (see Table 1 in Ref. [82])
moving away from experimental value of −0.001 fm2. Let
us assume a similar range of corrections by these two terms
of Eq. (10) for other functionals. Then the accuracy of the de-
scription of experimental δ〈r2〉20,28 ≈ 0 value after inclusion
of these corrections would degrade for the functionals listed in
upper part (down to NL3*) of Table IV, would remain similar
for DD-MEX and would improve for the functionals located
in the bottom part of Table IV.

An analysis of the contributions of spin-orbit densities and
other terms to charge radii has also been performed in the
nonrelativistic framework (see Refs. [83–85]). There are some
differences between relativistic and nonrelativistic treatments
of these terms (see detailed discussion in Ref. [82]), how-
ever, in general a comparable modification of charge radii is
generated by such terms in nonrelativistic DFTs. For example,
these contributions change δ〈r2〉20,28 of the Ca isotopes from
−0.198 fm2 to −0.048 fm2 (see Table 1 in Ref. [82] and
Fig. 1 in Ref. [85] in the Skyrme DFT calculations with the
SLy4 functional bringing them closer to experimental data.
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Similar results are obtained for the Skyrme SV-bas and Fayans
Fy(�r, HFB) functionals in Ref. [83] with spin-orbit density
and N

Z r2
n term providing approximately 0.1 fm2 and 0.04 fm2

contributions to the δ〈r2〉20,28 value, respectively. Assuming
that similar corrections appear for other nonrelativistic func-
tionals shown in Fig. 24, it is clear that their addition will
improve the description of experimental δ〈r2〉20,28 value in
these functionals. However, their addition do not allow either
to reproduce the inverted parabolalike behavior of differential
charge radii for N = 22–26 or improve the description of the
large δ〈r2〉32,28 experimental value in the Ca isotopes (see
Fig. 1 in Ref. [85]). The latter is because spin-orbit densities
do not modify substantially the calculated δ〈r2〉32,28 value.

Since the experimental data on charge radii is included in
the fitting protocols [which rely on Eq. (5) for the definition
of charge radii] of the CEDFs employed in the present paper,
they partially include the corrections provided by additional
terms of Eq. (10). Thus, to avoid double counting of these
corrections, new fits of CEDFs with charge radii defined by
Eq. (10) are needed. They will provide a more consistent
(and, hopefully, more accurate) description of charge radii.
However, in the context of the present study with the em-
ployed functionals one can conclude that for a given isotopic
chain the relative properties of charge radii and differential
charge radii provided by two CEDFs should not be very much
affected by these corrections. This is because existing studies
indicate their weak dependence on the functional. On the other
hand, the calculated absolute values of these radii are expected
to be partially affected by these corrections and this fact is
taken into account in further discussion. However, this effect
is expected to be reasonably small for the calculated differ-
ential charge radii of isotopic chains in the experimentally
available range in neutron number if this range is rather short
(see Ref. [83]). These are Ti, Cr, and Fe isotopic chains (see,
for example, Fig. 23).

These new functionals are also needed to answer the ques-
tion on whether δ〈r2〉20,28 ≈ 0 of the Ca isotopes can provide
a meaningful constraint on nuclear matter properties. The
discussion provided above on that issue is not conclusive. The
analysis of proton density distributions determined by electron
scattering and the neutron density distributions determined by
proton elastic scattering in the 40,48Ca nuclei supplemented
by the studies within Skyrme DFT and CDFT support low
values of J ≈ 28 MeV and L = 28–50 MeV [86]. In contrast,
the recent PREX-II measurements of the neutron skin in 208Pb
[61] imply a stiff equation of state with large J = 38.1 ± 4.7
and L0 = 106 ± 37 MeV values [87].

The calculated and experimental differential charge radii
are compared in Figs. 23 and 25. One can see that all
employed CEDFs fail to describe the evolution of differen-
tial charge radii in the Ca isotopes in the neutron number
range N = 16–28 and especially the peak at N = 24 [see
Fig. 23(b)]. However, the same problem exists also in all non-
relativistic Skyrme EDFs (see Fig. 24). As discussed above,
the accounting of spin-orbit densities and the N

Z 〈r2
n〉 term in

Eq. (10) can somewhat modify this situation but in no way will
it correct the problem with the description of the peak at N =
24. The analysis of the occupation probabilities indicates that
mostly neutron 1 f7/2 states are occupied in the transition from

TABLE V. The experimental and calculated δ〈r2〉32,28 values [in
fm2] of the Ca (Z = 20) and Fe (Z = 26) isotopes.

CEDF Ca Fe

Exper. 0.530 0.606
DDME2 0.407 0.670
DDMEδ 0.377 0.633
DD-PC1 0.302 0.591
NL3* 0.336 0.645
PCPK1 0.317 0.697

40Ca to 48Ca, and this leads either to a linear increase or nearly
constant differential charge radii in conventional functionals.
This figure also indicates that the inverted parabolalike behav-
ior of differential charge radii in the N = 20–28 isotopes is
reproduced on average only in the Fayans Fy(�r) functional
which includes gradients both in surface and pairing terms
and was fitted to experimental (absolute and relative) data on
charge radii in 40,44,48Ca in Ref. [30].

The rise in the differential charge radii above the N =
28 shell closure is underestimated in the model calculations
(see Fig. 23(b) and Table V). The nonrelativistic results of
Ref. [85] indicate that the δ〈r2〉32,28 value is only moderately
affected by spin-orbit densities. If that result holds also in the
CDFT, then the best reproduction of experimental δ〈r2〉32,28

values is achieved by the DD-ME2 functional which underes-
timates it only by 23% (see Table V). Note that the problem
with the description of the rise in charge radii in the Ca iso-
topes above N = 28 also exist in nonrelativistic Skyrme and
Gogny calculations and in nonrelativistic ab initio calculations
(see, for example, Fig. 24 in the present paper and Fig. 3 in
Ref. [10]).

The slope of the experimental δ〈r2〉N,28 curve for the Ar
(Z = 18) isotopes is best reproduced in the calculations with
the DD-PC1 and PC-PK1 functionals [see Fig. 23(a)]. How-
ever, even these functionals underestimate the experimental
data by ≈0.2 fm2. Based on available estimates in this mass
region (see Refs. [81–83,85]), the contribution of spin-orbit
densities to the differential charge is below this value. Note
that in the calculations, many of the Ar isotopes are oblate in
their ground states (see Fig. 18 in the Supplemental Material
[69]) and that the PECs of almost all Ar isotopes are extremely
soft in quadrupole deformation (see Fig. 23 in the Supplemen-
tal Material [69]). In such a situation, the correlations beyond
mean field are expected to play an important role.

The differential charge radii in the Ti (Z = 22) isotopes
are gradually decreasing from δ〈r2〉N,28 ≈ 0.3 fm2 at N = 22
down to zero at N = 28 [see Fig. 23(c)]. This trend is reason-
ably well reproduced for N = 24−28 by the NL3*, PC-PK1,
and DD-ME2 functionals. This is due to two facts. First, the
N = 24 and 26 isotopes are prolate in the calculations with
β2 ≈ 0.15 (see Fig. 18 in the Supplemental Material [69]), so
their charge radii are larger than those at the spherical shape.
Second, these are two functionals that reproduce reasonably
well the near equality of charge radii in 40,48Ca (see Table IV).
Other functionals (DD-PC1 and DD-MEδ), which cannot re-
produce this feature, also fail to describe the evolution of
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FIG. 25. The same as Fig. 12 but for the δ〈r2〉N,28 values of the Ar (Z = 18), Ca (Z = 20), Ti (Z = 22), and Fe (Z = 26) isotopic chains.
Thin blue solid line connecting N = 22 and N = 24 illustrates the situation which would emerge if the N = 22 Ti nucleus would be deformed
with β2 = 0.2 instead of being spherical.

charge radii in the Ti isotopes. Note that in the calculations,
the PEC of the N = 22, 24, and 26 isotopes are soft in
quadrupole deformation, which suggests that beyond mean-
field effects could play an important role in the reproduction
of experimental data. Assuming that these effects could lead
to the creation of a prolate minimum with β2 ≈ 0.2 in the
N = 22 isotope, this would also allow explaining the charge
radius of this isotope in the calculations with PC-PK1, DD-
ME2, and NL3* [see results presented by thin solid magenta,
black, and blue lines in Fig. 23(c)].

The experimental differential charge radii of the Cr (Z =
24) isotopes show asymmetric parabolalike features at N =
26–30 with the minimum at N = 28 [see Fig. 23(d)]. The
experimental δ〈r2〉26,28 value is overestimated by a factor of
approximately 1.5 in all calculations. Note that in the model
calculations, the N = 26 and N = 30 isotopes are prolate
with β2 ≈ 0.22, while the N = 28 isotope is spherical (see
Fig. 18 in the Supplemental Material [69]). The PECs of these
isotopes are soft in quadrupole deformation (see Fig. 19 in the
Supplemental Material [69]), so the ground-state properties

of these nuclei could be affected somewhat by beyond mean-
field correlations.

The experimental differential charge radii of the Fe (Z =
26) isotopes are available for N = 28–32 [see Fig. 23(e)]. The
large increase in δ〈r2〉N,28 observed in the experiment above
N = 28 is rather well reproduced in model calculations (see
above mentioned figure and Table V). The N = 28 isotope is
spherical or quasispherical in model calculations, while the
N = 30 and 32 isotopes are prolate with a quadrupole defor-
mation of β2 ≈ 0.23 (see Figs. 18 and 19 in the Supplemental
Material [69]).

It is clear that the description of differential charge radii
in the Ca region represents a case of the “hit-or-miss” situ-
ation when some data are rather well described while others
are difficult to reproduce. This is especially the case for the
relative properties of differential charge radii of different
isotopic chains. Figure 25 shows that it is more difficult to
reproduce them in the Ca region as compared with other
regions. It is expected that this conclusion will not be affected
by the inclusion of the spin-orbit densities or the N

Z 〈r2
n〉 term.
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It is interesting that the N = 22–28 Ca and Ti isotopes
show very similar trends in differential charge radii [see
Fig. 25(a)]. It is also likely that the Cr isotopes will follow
the same trend if experimental data are extended to lower
neutron numbers. The challenge here lies in the fact that in
the model calculations, the N = 22–26 isotopes are prolate
and spherical in the Ti and Ca isotopic chains, respectively
(see Fig. 18 in the Supplemental Material [69]). In contrast
to the experiment, this suggests a quite substantial difference
in charge radii. Indeed, the model calculations with some
functionals can reproduce the data in the Ti isotopes but fail
to do that in the Ca ones.

One possible exit from this contradiction is the possibility
that the N = 22–26 Ca isotopes are much softer in quadrupole
deformation as compared with the suggestion provided by
PECs obtained at the mean-field level (see Fig. 22 of the
Supplemental Material [69]). The low excitation energy of the
superdeformed (SD) band in 40Ca (see Ref. [88]), which is the
lowest amongst all SD bands in the nuclear chart, may point
to a substantial softness of the Ca isotopes. To our knowledge,
mean-field calculations substantially overestimate the excita-
tion energy of this SD band and thus, quite likely, predict
stiffer Ca isotopes. The enhanced influence of the correlations
beyond mean field on the charge radii of the Ca isotopes
as compared with the Sn and Pb isotopes has already been
pointed in Refs. [4,29]. However, its magnitude and neutron
number dependence are not sufficient to reproduce the peak in
the differential charge radii at N = 24. If the mean-field PECs
are softened (especially for the N �= 20, 28 isotopes), then the
correlations beyond mean field could be enhanced and maybe
the experimental peak in δ〈r2〉N,28 at N = 24 could be repro-
duced. In contrast, the analysis of Ref. [89] partially based on
the QRPA calculations indicates that the ground-state corre-
lations associated with the surface modes of the Ca isotopes
are important and that they qualitatively explain the observed
inverted parabolalike behavior of differential charge radii with
neutron number for N = 20–28. However, these calculations
rely on a number assumptions which have to be verified in
more microscopic calculations. All these calculations point to
potential limitations of the mean-field approximation in the
description of the ground-state properties of light nuclei such
as the Ca isotopes and the need to include correlations beyond
mean field.

IX. ODD-EVEN STAGGERING IN CHARGE RADII

The compilation of all available experimental data on OES
in charge radii is presented in Figs. 26 and 27. In most of the
cases, the charge radius of an odd-N nucleus is smaller than
the average of its even-N neighbors. This corresponds to pos-
itive and negative values of the �〈r2〉(3)(N ) indicators at odd-
and even-N values, respectively. However, in approximately
25% of the cases (indicated by dashed circles in Figs. 26 and
27), this order is inverted. Then we speak about inverted OES
in charge radii. The origin of this inversion depends on the
neutron number.

The full or near-complete collapse of neutron pairing at
magic neutron shell closures at N = 28 in the Ca isotopes
[Fig. 26(c)], at N = 50 in the Kr, Sr [Figs. 26(e) and 26(f)]

and Rb [Fig. 27(c)], at N = 82 in the Sn, Ba, Nd, and Sm
[Figs. 26(h) and 26(j)–26(l)], Cs and Eu [Figs. 27(e) and 27(f)]
isotopes, at N = 126 in the Pb [Fig. 26(r)] and Bi [Fig. 27(n)]
is one of such sources of the inversion of OES in charge radii.
Note that this kind of inversion is mostly localized at neutron
numbers corresponding to the shell closures in these isotopic
chains.

The transition from spherical or quasispherical nuclei to
deformed ones taking place with increasing neutron number
at N ≈ 88 triggers the inversion of OES in charge radii of
the Dy, Tb, Eu, and Tm isotopic chains [see Fig. 26(m) and
Figs. 27(g), 27(f), and 27(i)]. A similar transition at N ≈ 58 is
responsible for the inversion of OES in the Rb isotopic chain
[see Fig. 27(c)]. Note that not in all cases this kind of transi-
tion triggers the inversion of OES: the magnitude of OES in
charge radii is simply increased in the vicinity of these neutron
numbers as compared with the ones for lower/higher N values
in isotopic chains of the Kr, Sr, Sm, and Ho [Figs. 26(e), 26(f),
26(m), and 27(g)].

In addition, several other mechanisms of OES in charge
radii and its inversion have been suggested earlier. They will
be discussed below using the results obtained in the CDFT
framework. However, the mechanism presented in Sec. IX C
is completely new.

A. Shape coexistence as a source of OES in charge
radii and its inversion

Significant odd-even staggering in the Hg charge radii ex-
ists at N = 100–106 [see Figs. 7(a) and 28]. Several scenarios
have been suggested for an explanation of this OES (see
overviews in Sec. 4.7 of Ref. [70] and in Ref. [90]), but the one
which agrees most with experimental data on OES in charge
radii was first suggested in Ref. [96]. This paper, together
with the analysis in the Skyrme DFT (Ref. [90]) and CDFT
(present paper) suggest the following scenario: the even-N
isotopes should have a weakly deformed oblate minimum
(quasispherical in the language of Ref. [70]) while the odd-N
nuclei in the region should have large prolate deformations.
Two such minima (oblate with β2 ≈ −0.15 and prolate with
β2 ≈ 0.3) coexists in the isotopes of interest (see Fig. 11).
Note that the latter values are close to experimental estimates
of the deformations in 181,183,185Hg (see Ref. [70]). Under such
a scenario the evolution of the δ〈r2〉N,126 values for even-N
numbers is reasonably well described, especially with the
NL3* and PC-PK1 functionals (see Fig. 28). In addition, the
magnitude of OES (as the difference of the charge radii in
prolate and oblate minima) is not far away from experimental
values.

The only caveat in this CDFT interpretation is the fact that
the prolate minimum is the lowest in energy in the nuclei
for which OES in charge radii is observed (see Fig. 11).
However, the oblate minimum is only by approximately
1 MeV higher in energy than the prolate one for most
functionals. The only exception is the DD-MEδ functional,
for which this difference is more significant. One should note
that this energy difference between the minima is extremely
sensitive to the fine details of the functional and that most
nonrelativistic models also fail to reproduce this difference
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FIG. 26. Experimental OES of charge radii of even-Z nuclei. The data points are encircled by blue dashed circles when they deviate from
the regular pattern [regular OES], namely, from �〈r2〉(3)(N ) > 0 for odd values of N and from �〈r2〉(3)(N ) < 0 for even values of N . These
encircled points correspond to inverted OESs. The experimental data are taken from Ref. [1]. Note that, with the exception of the Ca isotopes,
we use the same range of �〈r2〉(3) on the vertical axis of all panels. Until specified otherwise, the experimental data are taken from Ref. [1].
Only for the Ca isotopes they are mostly taken from Ref. [10], from Ref. [80] for 39,41Ca and from Ref. [11] for 36,37,38Ca. The experimental
data for the radii are taken from Ref. [90] for the Hg isotopes with N < 106 and from [91,92] for the Po isotopes.
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FIG. 27. The same as Fig. 26 but for odd-Z nuclei. The experimental data are taken from Refs. [1] (compilation), [93] (Fr isotopes), [18,94]
(At isotopes), and [19,95] (Ac isotopes).

(see review in Sec. IV D of Refs. [90] and [97]). Note also that
the PECs in Hg nuclei with N � 100 show that the oblate min-
imum becomes the lowest in energy, and the prolate minimum
starts to disappear. This is consistent with the disappearance
of OES in charge radii seen in the experiment at low N
(see Fig. 28).

Since the deformation and thus the charge radii are larger
in odd-N isotopes as compared with even-N ones, the OES
of charge radii in the light Hg isotopes is inverted11 [see

11One can easily imagine a situation where the absolute values of
deformation (and thus charge radii) are smaller in odd-N isotopes as

Fig. 26(q)]. Note that this is the largest OES of charge radii
in the whole nuclear chart. A similar, but somewhat smaller,
inverted OES is observed in the neighboring Pt (for N =
101–110) [see Fig. 26(p)] and Au (for N = 105–108) [see
Fig. 27(l)] isotopic chains. Considering the magnitude of OES
as well as its localization in neutron number, it is quite likely

compared with even-N ones. This will lead to a regular OES. Thus, a
sensitive energy balance between two local minima with different
deformations and deformation driving properties of the unpaired
orbital in the odd-N nucleus will define whether OES is regular or
inverted.
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that it has the same origin as in the Hg isotopes. It may be
that the small inverted OES seen at N = 101–104 in the Pb
isotopes [see Fig. 26(r)] has a similar origin.

B. Pairing as a source of OES in charge radii

As illustrated in previous examples, the charge radii are
increasing nearly linearly with increasing neutron number
when the single-particle states of the same spherical neutron
subshell (let us call it a j-shell) are occupied. This trend
is schematically illustrated as a dashed line in Fig. 29. In
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FIG. 29. Schematic illustration of the impact of pairing and
particle-vibration coupling on charge radii in odd-N nuclei. The
dashed straight line corresponds to a linear increase of charge radii
due to a sequential occupation of the single-particle subshell in the
calculations without pairing. �(rch)qp

MF corresponds to an increase
of the charge radii in odd-N as compared with the one given in
the system with even-N neutrons when one neutron is added in the
calculations with pairing. S1

k �(rch)qp
MF provides a similar quantity for

the case when the depletion of the single-particle content due to
fragmentation is additionally taken into account (see text for details).

the calculations with pairing, the blocking effect in odd-N
nuclei leads to an additional redistribution of the occupation
of the single-particle orbitals and typically to a decrease of the
charge radius of the odd-N nucleus below the average given
by two even-even neighbors. As a consequence, the increase
in charge radii �(rch)qp

MF on going from even-N to odd-A is
typically smaller as compared both with the increase corre-
sponding to a linear increase defined by rch1 and rch3 and that
obtained in the calculations without pairing (see Fig. 29). This
leads to a regular OES in charge radii and, so far, the pairing
has been considered to be its dominant source in isotopic
chains which do not undergo significant shape changes like
those discussed in Sec. IX A (see Refs. [29,30,70]).

Let us consider an example of realistic calculations in the
Sn isotopes. In the RHB calculations, two different proce-
dures labeled as LES (lowest in energy solution) and EGS
(experimental ground state) are used for the blocking in odd-
A nuclei,12 and these abbreviations label the results of the
respective calculations. In the LES procedure, the lowest in
energy configuration is used. It has been applied in all earlier
calculations of OES with nonrelativistic DFTs [29,30]. In the
EGS procedure, the configuration with the spin and parity of
the blocked state corresponding to those of the experimental
ground state is employed, although it is not necessarily the
lowest in energy.

In Fig. 30 the results of calculations with different func-
tionals are compared with experimental data. One can see that
the results of the RHB calculations with the LES procedure
significantly underestimate the magnitude of experimental
OES and occasionally provide a wrong phase of the OES. The
use of the EGS procedure significantly improves the descrip-
tion of both the phases and the magnitude of OES, especially
for DD-MEδ. However, even in that case, the magnitude of
OES is underestimated by a factor of approximately two. This
suggests that an important part of physics is still missing;
it is addressed in Sec. IX C. Note that the analysis of the
Pb and Hg isotopic chains performed both in relativistic and
nonrelativistic frameworks indicates that the EGS procedure
is needed for a proper description of OES in charge radii (see
Ref. [16]).

A significant underestimate of OES in charge radii is also
observed in Skyrme DFT calculations with conventional func-
tionals. The suggested resolution of this problem lies in the
use of Fayans functionals which include gradient terms in both
surface term and pairing [28,29]. The latest functional of this
type is Fy(�r) [30]. However, it overestimates the magnitude
of OES in the Sn [13] and other isotopic chains [30].

C. Particle-vibration coupling as a source of OES in charge radii

There is a principal difference between the ground states
in even-even and odd nuclei which is schematically illus-
trated in Fig. 31 and which has been ignored in the studies
of differential charge radii before. It is related to a sub-
stantial fragmentation of the wave function of the ground

12They were first employed in the studies of OES of differential
radii in the Pb and Hg isotopic chains in Ref. [16].

064313-27



U. C. PERERA, A. V. AFANASJEV, AND P. RING PHYSICAL REVIEW C 104, 064313 (2021)

-0.04

-0.02

0

0.02

0.04

expt
LES
EGS

56 64 72 80

56 64 72 80
-0.04

-0.02

0

0.02

0.04

56 64 72 80
Neutron number  N

DD-ME2 DD-MEδ DD-PC1

NL3*

Δ<
r2 >

(3
) (N

) 
 [

fm
2 ]

PC-PK1

FIG. 30. The OES in charge radii of the Sn isotopes. The experimental data are taken from Ref. [1].

j, V
j

2
(N+1)

i, V
i

2
(N+1)

V
j

2
(N+2)

j

i

j

i

M
F M
F

M
F

M
F

+
P

V
C

ε
i

2
,  S

i

2

ε
j

1
,  S

j

1

ε
i

3
,  S

i

3

even N

V
j

2
(N)

V
i

2
(N) V

i

2
(N+2)

M
F

+
P

V
C

odd N+1

ε
i

1
,  S

i

1

ε
j

3
,  S

j

3

ε
j

2
,  S

j

2

ε
j

n
,  S

j

n
ε

i

m
,  S

i

m

even N+2

E
ne

rg
y

FIG. 31. Schematic illustration of the difference of the approximations (MF and MF+PVC) used in the description of even-even and
odd mass nuclei (see text for details). “MF” and “MF+PVC” stands for “mean-field” and “mean-field + particle vibration coupling”
approximations, respectively. The thickness of the horizontal lines is proportional to spectroscopic factors Sm

k in the MF+PVC columns.

064313-28



CHARGE RADII IN COVARIANT DENSITY FUNCTIONAL … PHYSICAL REVIEW C 104, 064313 (2021)

states in odd-A nuclei (especially in spherical nuclei) due
to the coupling of single-particle motion with phonons
[particle-vibration coupling (PVC)]. In even-even nuclei, the
correlations beyond mean field can affect the binding ener-
gies and equilibrium deformations [and thus the charge radii]
of the ground states, but they do not lead to a significant
fragmentation of their wave functions in the nuclei with stiff
parabolalike PECs [such as Pb and Sn isotopes (see, for ex-
ample, Fig. 12 in the Supplemental Material [69])]. Indeed,
such correlations are rather small in the ground states of the
even-even spherical Pb and Sn nuclei [4,29,98] and do not
modify their charge radii substantially [4,29]. Thus, the treat-
ment of the ground states of such nuclei at the mean-field level
represents a reasonable approximation. In this approximation
the physical observables of interest are defined by the single-
particle properties and the occupation probabilities v2

state(N )
of these states (see left and right columns of Fig. 31).

In contrast, PVC in odd-A nuclei leads to a substantial frag-
mentation of many single-particle states (including the ground
state) which is experimentally observed (see Refs. [66–68,99–
103] and references quote therein). As schematically shown
in the middle part of Fig. 31, each mean-field state k (k = i
or j in this figure) with energy εk is split into many levels
due to PVC, so the single-particle strength is fragmented over
many levels. In the diagonal approximation for the nucleonic
self-energy, these levels have the same quantum numbers as
the original mean-field state k, but different energies εν

k and
spectroscopic factors Sν

k . In the PVC model, the spectroscopic
factors, which are the real numbers between zero and one,
play a role of the occupation probabilities of these fragmented
states satisfying the sum rule

∑
ν Sν

k =1. For the states in
the vicinity of the Fermi surface, one dominant level with
0.5 � Sν

k � 1.0 and many other levels with small Sν
k are usu-

ally obtained. Both in experiment and in the calculations, the
dominant single-particle state is typically the lowest in en-
ergy among the set of fragmented states originating from the
mean-field state k. However, for the mean-field states located
far away from the Fermi surface, one observes a very strong
splitting over many levels with much smaller and comparable
spectroscopic factors.

The detailed global analysis of the impact of the occupation
of neutron single-particle orbitals in the vicinity of spherical
neutron shell closures presented in Fig. 32 reveals a strong
correlation between the principal quantum number n of the
single neutron orbital occupied above the neutron shell closure
and the impact of the occupation of this orbital on differential
charge radii. One can see that in a given isotopic chain the
largest impact on δ〈r2〉N,N ′

is provided by the occupation of
the orbital with the lowest n. This feature has already been
revealed for the Pb isotopes in Ref. [5] but the present study
generalizes it to a larger set of the nuclei and exposes new fea-
tures. For example, it uncovers that for the n = 1 orbitals this
feature is strictly speaking true only for the occupation of the
orbitals located above the shell closure the spin-orbit partner
orbitals of which are fully occupied below this shell closure.
Indeed, this is the case for the “ j = l − 1/2” type 1i11/2, 1h9/2,
1g7/2, and 1 f5/2 orbitals the “ j = l + 1/2” spin-orbit partners
of which, namely, 1i13/2, 1h11/2, 1g9/2, and 1 f7/2, are fully
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FIG. 32. The correlations between the differential charge radii
δ〈r2〉N,N ′

(N = N ′ + 1) generated by the occupation of a given single
neutron orbital above the neutron shell closure located at N ′ and the
rms neutron radius rsp

neu =
√

〈r2〉sp of this orbital. The results pre-
sented for the 48,49Ca (N ′ = 28), 88,89Sr (N ′ = 50), 132,133Sn (N ′ =
82), and 208,209Pb (N ′ = 126) are based on the calculations with-
out pairing and the NL3* CEDF. The calculations are restricted to
spherical shapes. Circles, squares, triangles and diamonds are used
for the orbitals with principal quantum numbers n = 1, 2, 3, and
4, respectively. If spin-orbit partner orbitals appear above the shell
closure, then solid (open) symbols of the same type are used for
the j = l + 1/2 ( j = l − 1/2) ones. The following neutron orbitals
are considered: 1i11/2, 1 j15/2, 2g9/2, 2g7/2, 3d5/2, 3d3/2, and 4s1/2

in 208,209Pb [see Fig. 1(b)], 1h9/2, 2 f7/2, 2 f5/2, 3p3/2, and 3p1/2 in
132,133Sn [see Fig. 14(b)], 1g7/2, 2d5/2, 2d3/2, and 3s1/2 in 88,89Sr and
1 f5/2, 2p3/2, and 2p1/2 in 48,49Ca [see Fig. 21(b)]. Dashed lines show
average trends for different values of n.

occupied below the N ′ = 126, 82, 50, and 28 neutron shell
closures in the Pb, Sn, Sr, and Ca nuclei under study. However,
the differential charge radius in the Pb isotopes provided by
the occupation of the n = 1 1 j15/2 orbital located above the
N ′ = 126 shell closure [see Fig. 1(b)] is only approximately
half of that provided by the 1i11/2 one and it is not far away
from differential charge radii generated by occupation of the
n = 2 orbitals (see Fig. 32). In addition, Fig. 32 shows that
there are no clear correlations between δ〈r2〉N,N ′

and rsp
neu. It

is also interesting that the differential charge radii for a given
n only weakly depend both on the mass of the nucleus and
rsp

neu. In addition, within the spin-orbit doublet the occupation
of the lower lying partner orbital with j = l + 1/2 provides
smaller differential charge radii than the occupation of the
higher lying partner orbital with j = l − 1/2 (see Fig. 32).
This is because the latter ones have large neutron radii as
compared with former ones.

As a consequence, the single-particle content of unpaired
neutron states in odd-A nuclei plays an important role in our
understanding of OES in charge radii since it defines the pull
on charge densities (see also the discussion in the introduc-
tion). One of the ways to modify this content is via the pairing
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interaction (see Sec. IX B). Another is via the fragmentation of
the single-particle states by means of PVC. Indeed it reduces
substantially (down to 60–90% [67,68,102]) their full single-
particle content and this fact is experimentally confirmed. A
strict way to calculate the OES effect in charge radii in the
presence of beyond mean-field effects would be to perform
quasiparticle random phase approximation (QRPA) calcula-
tions in even-even (Z, N ) nucleus and then PVC calculations
in odd-A (Z, N + 1) nucleus and then to define the differential
charge radius. Note that the PVC calculations in the latter
nucleus use the (Z, N ) core with QRPA correlations included
and then adds particle-vibration coupling [67,68,102]. Exist-
ing calculations show that away from the vicinity of doubly
magic shell closures even-even cores supplemented by QRPA
correlations behave smoothly as a function of neutron number
(see Ref. [29]) and their contributions to charge radii are rather
modest. Because of these reasons, the addition of the neutron
is not expected to modify the proton part of the core in the
PVC calculations. The detailed investigation of OES in differ-
ential charge radii requires a fully fledged PVC calculations
which will be undertaken in a future.

At this point, we want to estimate whether the depletion
of the single-particle content of the wave function in odd-N
nuclei due to fragmentation could lead to a right phase (de-
fined as a the sign of �〈r2〉(3)(N ) at given N) and magnitude
of OES in charge radii. The basic assumptions behind the
discussion below are the following. First, we use the fact
that beyond mean-field ground-state correlations in even-even
spherical nuclei and their impact on charge radii are rather
small and that they behave smoothly as a function of neutron
number (see Refs. [4,29,98]). Second, the wave function of the
odd-neutron ground state in the odd-N nucleus represents a
superposition of single-particle and vibrational contributions.
The pull on proton densities is provided predominantly by the
former while the latter is not expected to provide a significant
contribution to the differential charge radii. This is because
these vibrational contributions (i) are the superposition of
two-quasiparticle states the wave functions of which have only
a small overlap with that of the ground states of even-even
cores and (ii) even-even cores are very similar in neighboring
even-even and odd-A nuclei.

In this kind of situation it is reasonable to expect that (i)
the average behavior of charge radii as a function of neutron
number can be reasonably well approximated by the mean
field [since anyway it does not provide a contribution to OES
of charge radii] and (ii) only the part of the single neutron in
the odd-N nucleus defined by the spectroscopic factor S1

k of
the dominant single-particle level provides a pull on proton
densities and thus the leading contribution to the oscillating
part of �〈r2〉(3)(N ). The latter leads to a reduction of the
increase of charge radii in going from the even-N to the odd-N
nucleus from �(rch)qp

MF at the mean-field level to approxi-
mately S1

k �(rch)qp
MF when the fragmentation of the dominant

single-particle level is taken into account (see Fig. 31).
The impact of this modification for representative values of

the spectroscopic factors S1
k = 0.9, 0.8, and 0.7 is illustrated

in Fig. 33. One can see that additional fragmentation of the
structure of the unpaired neutron in odd-N nuclei leads to an
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FIG. 33. OES in charge radii of the Sn isotopes corrected for the
fragmentation of the single-particle content of the dominant single-
particle state in odd-N nuclei by PVC coupling within the framework
of a schematic model discussed in the text for different values of the
spectroscopic factor S = S1

k .

increase of the magnitudes of OES in charge radii and correct
phases of the OES both in the LES and EGS procedures. With
the spectroscopic factors S1

k being in the vicinity of those
calculated in Refs. [67,68,98,102], the calculated OES are
close to experimental ones in the Sn isotopes (see Fig. 33).

Note that in some cases, PVC leads to a change of the
relative order of the single-particle states obtained at the
mean-field level. Such a possibility is illustrated in Fig. 31. In
the odd-N nucleus, the state i is lower in energy than the j state
at the MF level, and both states have single-particle nature. In
contrast, in the MF+PVC case, the fragmented level with a
dominant single-particle j state component and the energy ε1

j
is lower in energy than the fragmented level with the dominant
single-particle component i and the energy ε1

i . This feature has
been used in Ref. [16] for a simultaneous explanation of the
kink in charge radii at N = 126 and the OES in charge radii
of the Pb and Hg isotopes with N > 126.
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D. Other sources of the inversion of OES

The inverted OES is also observed in the At (for N =
133), Rn (for N = 133–135), Fr (for N = 135–138), Ra (for
N = 133–138 and 140), and Ac (for N = 137) isotopic chains
[see Figs. 26(t) and 26(u) and Figs. 27(o), 27(p), and 27(s)].
It is frequently attributed to the effect of octupole deforma-
tion (see Refs. [18,19,70]). For example, it was suggested in
Refs. [104,105] that the OES inversion originates from the fact
that octupole deformation should be more pronounced in odd
than in even nuclei. This leads to a charge radius of the odd-N
nucleus being larger than the average charge radius of the two
even-even neighbors. However, nonrelativistic Skyrme DFT
calculations for the Ac isotopes presented in Ref. [19] show
that this is not necessary the case since such an inversion
appears at some neutron numbers even in the calculations
without octupole deformation. Theoretical models also differ
in the prediction of static octupole deformation in the Rn
isotopes (see Table I in Ref. [106] and Ref. [107]). How-
ever, experimental data presented in Refs. [108,109] strongly
suggests that 218−222Rn nuclei behave like octupole vibrators
and not like the nuclei with static octupole deformation. We
also have to keep in mind that the picture of a static octupole
deformation and the coupling to dynamic octupole vibrations
has much in common. Both models describe in many ways,
but not completely, the same physics of static and dynamic
polarization effects (see, for instance, Ref. [110], where the
same problem has been discussed in detail for static pairing
correlations and pairing vibrations).

In addition, there are other isotopic chains in which the
OES is inverted either locally (for a few neutron numbers
only) or over a substantial range of neutron numbers. These
are isotopic chains of Kr, Sr, Rb, Ba, Sm, Cs, Yb, Hf, Eu,
Lu, and Ir [see Figs. 26(e), 26(f), 26(j), 26(l), 26(n), and 26(o)
and Figs. 27(c), 27(e), 27(f), 27(j), and 27(k)]. The octupole
deformation is not present in the ground states of these nuclei,
so there should be other sources of the OES inversion different
from octupole deformation. For example, it was speculated in
Ref. [111] that OES in charge radii of light Kr, Rb, and Sr nu-
clei is due to a polarization effect of the even-even core by the
unpaired neutron, driving the odd-N nuclei toward stronger
quadrupole deformation [as compared with the average given
by even-N neighbors]. However, this was not supported by
any model calculation.

Note that all above discussed cases involve deformed nu-
clei, and these isotopic chains include both odd and odd-odd
nuclei. Because of the complexity of the description of such
nuclei (see Refs. [64,112]) a detailed investigation of OES and
its inversion in these isotopic chains goes beyond the scope of
the present paper, but it is planned for the future.

X. CONCLUSIONS

A systematic global investigation of differential charge
radii has been performed within the CDFT framework for
the first time. Theoretical results obtained with conventional
covariant energy density functionals and the separable pairing
interaction of Ref. [49] are compared with experimental dif-
ferential charge radii in the regions of the nuclear chart where

available experimental data crosses neutron shell closures at
N = 28, 50, 82, and 126. The main results can be summarized
as follows:

(i) In spherical nuclei, the appearance of the kinks in
the δ〈r2〉N,N ′

curves at neutron shell closures is de-
fined predominantly in the particle-hole channel of
the CDFT with details of the single-particle struc-
ture above shell closures playing an important role.
This conclusion is different from the one obtained in
nonrelativistic Skyrme and Fayans DFTs in Ref. [14]
which indicates that pairing is the dominant contribu-
tor to the kink. In the RHB approach, the kinks are
already present in the calculations without pairing.
Pairing acts only as an additional tool that mixes
different configurations and somewhat softens the
evolution of charge radii as a function of neutron
number.

(ii) The relative energies of the single-particle states and
the patterns of their occupation with increasing neu-
tron number have a significant impact on the evolution
of the δ〈r2〉N,N ′

values even in the calculations with
pairing included. Considering existing inaccuracies in
the description of the energies of the single-particle
states in the DFT calculations, the predictive power
of such models for δ〈r2〉N,N ′

is expected to decrease
in the regions of high densities of the single-particle
states of different origin.

(iii) The analysis of absolute differential radii of different
isotopic chains and their relative properties clearly
indicate that such properties are reasonably well de-
scribed in model calculations in cases where the
mean-field approximation is justified. The analysis of
potential energy curves provides the latter justifica-
tion. However, it turns out that it is more difficult to
describe the clusterization of the differential charge
radii in the Sn and Ca regions for neutron numbers
above shell closures at N = 82 and 28 since it de-
pends on the details of the underlying single-particle
structure.

(iv) There are regions of the nuclear chart where the de-
scription at the mean-field level faces difficulties in
reproducing experimental data. In the CDFT calcu-
lations, these are the Ca isotopes, the N < 50 and
N > 58 nuclei in the Sr region and the neutron-poor
nuclei in the Pb region. The latter two regions are
characterized by shape coexistence, and, in many
cases, the assignment of the calculated excited pro-
late minimum to the experimental ground state allows
understanding the trends of the evolution of differen-
tial charge radii with neutron number. The inclusion
of beyond mean-field effects could possibly improve
the description of charge radii is these systems.
As follows from the comparison of the calculated
and experimental masses in Ref. [3] and from in-
creased [as compared with heavy nuclei] OES in
charge radii of very light nuclei [see Figs. 26(a)–
26(c) and 27(a)], such effects are expected to play
a significant role in the properties of the ground
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states of light nuclei. That was a reason why light
nuclei have been excluded from the analysis in the
present paper.

(v) It is usually assumed that pairing is the dominant
contributor to OES in charge radii. Our analysis paints
a more complicated picture and suggests a new ad-
ditional mechanism where the fragmentation of the
single-particle content of the ground state in odd-mass
nuclei due to particle-vibration coupling provides a
significant contribution to OES in charge radii. Note
that similarly, the pairing indicators, which depend
on OES of binding energies, are also expected to be
affected by particle-vibration coupling with its impact
to be especially pronounced in spherical nuclei (see
Ref. [113]).

(vi) The PECs curves obtained in the calculations with
the CEDF DD-MEδ13 quite frequently deviate from
those obtained with DD-ME2, DD-PC1, NL3*, and
PC-PK1. This could also affect the results of beyond
mean-field calculations making them in some nu-
clei significantly dissimilar for DD-MEδ as compared
with above mentioned functionals.

This difference could be due to two factors, making
DD-MEδ substantially different from the other conventional
CDFTs:

First, DD-MEδ has less fit parameters, and therefore the
adjustment of this CEDF could be less successful: DD-MEδ

is the most microscopic CEDF. Only four parameters at the
saturation density are fitted to finite nuclei and the full density
dependence of the parameters is derived from ab initio calcu-
lations [46]. On the contrary, the other interactions contain an
additional 2 (NL3*), 4 (DD-ME2), 5 (PC-PK1), and 6 (DD-

13Note that the DD-MEδ CEDF provides a reasonable global de-
scription of the ground-state properties (see Ref. [3]), but it fails
to predict octupole deformed actinides [106] and generates fission
barriers in superheavy nuclei which are too small to make them
relatively stable [114]. Thus, it is not recommended for applications
to nuclei heavier than lead.

PC1) phenomenological parameters for the fine-tuning of dif-
ferent channels of CEDFs and their density dependence. Note
that not all of these additional parameters are independent
(see Refs. [76,79]).

Second, in addition to the three spin-isospin channels
represented by the σ -, ω-, and ρ-meson, DD-MEδ also con-
tains, as the only parameter set considered here, an isovector
scalar channel represented by the δ-meson. This influences
the isospin dependence of the spin-orbit field and, therefore,
that of the single-particle energies. However, it is practically
impossible to adjust the parameters of the δ-meson to ex-
perimental data because (i) there is very little data on the
isospin dependence of single-particle energies and the largely
unknown influence of tensor forces and of particle vibra-
tional coupling [68] forbids the fitting to single-particle levels
anyhow, and (ii) it has been shown in Ref. [46], that the pa-
rameters of the δ-meson cannot be determined by fitting to the
usual bulk properties of finite nuclei, because here the changes
in the parameters of the δ-meson are completely compensated
by corresponding changes in the remaining isovector channel,
i.e., by the ρ-meson [46]. Therefore for the CEDF DD-MEδ,
in Ref. [46], the strength and the density dependence of the
δ-nucleon vertex have been adjusted to ab initio results, i.e., to
the isovector effective mass m∗

p − m∗
n , derived from relativistic

Brueckner theory in Ref. [115]. These relativistic Brueckner-
Hartree-Fock (RBHF) calculations suffer from the fact that
the Thompson equation has not been treated in full Dirac
space, and the coupling to negative energy solutions is only
treated approximately. Only recently the RBHF calculations
for symmetric nuclear matter have been carried out in full
Dirac space [116], but corresponding solutions for asymmet-
ric nuclear matter are still missing.
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N. Frömmgen, G. Georgiev, C. Geppert, M. Kowalska, K.
Kreim, A. Krieger, W. Nazarewicz, R. Neugart, G. Neyens, J.
Papuga, P.-G. Reinhard, M. M. Rajabali, S. Schmidt, and D. T.
Yordanov, From Calcium to Cadmium: Testing the Pairing
Functional through Charge Radii Measurements of 100−130Cd,
Phys. Rev. Lett. 121, 102501 (2018).

[14] C. Gorges, L. V. Rodríguez, D. L. Balabanski, M. L. Bissell,
K. Blaum, B. Cheal, R. F. Garcia Ruiz, G. Georgiev, W. Gins,
H. Heylen, A. Kanellakopoulos, S. Kaufmann, M. Kowalska,
V. Lagaki, S. Lechner, B. Maaß, S. Malbrunot-Ettenauer, W.
Nazarewicz, R. Neugart, G. Neyens, W. Nörtershäuser, P.-G.
Reinhard, S. Sailer, R. Sánchez, S. Schmidt, L. Wehner, C.
Wraith, L. Xie, Z. Y. Xu, X. F. Yang, and D. T. Yordanov,
Laser Spectroscopy of Neutron-Rich Tin Isotopes: A Discon-
tinuity in Charge Radii Across the n = 82 Shell Closure, Phys.
Rev. Lett. 122, 192502 (2019).

[15] D. T. Yordanov, L. V. Rodríguez, D. L. Balabanski, J.
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