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Overview of symmetric nuclear matter properties from chiral interactions
up to fourth order of the chiral expansion
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We present and discuss predictions for a cross section of bulk and single-particle properties in symmetric
nuclear matter based on recent high-quality nucleon-nucleon potentials at N3LO and including all subleading
three-nucleon forces. We begin with the equation of state and its saturation properties and proceed to the single-
nucleon potential. We also explore short-range correlations as seen through the defect function. The various
predictions which we present have a common foundation in an internally consistent ab initio approach.
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I. INTRODUCTION

Constructing the equation of state (EoS) of infinite nuclear
matter microscopically from state-of-the-art few-body inter-
actions remains an important theoretical challenge in nuclear
physics. The EoS gives fundamental insight into effective nu-
clear forces in the medium, and is a crucial input in a variety of
fields, ranging from heavy-ion (HI) reactions to astrophysical
processes.

High-precision meson-theoretic or phenomenological in-
teractions [1–3] are still frequently employed in contemporary
calculations of nuclear matter, structure, and reactions. How-
ever, in those models of the past, three-nucleon forces (3NFs),
or more generally A-nucleon forces with A > 2, have only a
loose connection with the associated two-nucleon force (2NF)
[4]. Furthermore, there exists no clear scheme to quantify
and control the theoretical uncertainties. Chiral effective field
theory (EFT) [5–7], on the other hand, provides a systematic
approach for constructing nuclear many-body forces, which
emerge on an equal footing [8] with two-body forces, and
for assessing theoretical uncertainties through an expansion
controlled by the “power counting” [9] method. Furthermore,
chiral EFT maintains consistency with the symmetries and
of the underlying fundamental theory of strong interactions,
quantum chromodynamics (QCD), and the breaking of those
symmetries.

For the reasons described above, chiral EFT has evolved
into the authoritative approach for developing nuclear forces,
and modern applications have focused on few-nucleon re-
actions [10–15], the structure of light- and medium-mass
nuclei [16–32], infinite matter at zero temperature [7,30,33–
42], and finite temperature [43,44], and nuclear dynamics and
response functions [45–51]. Although satisfactory predictions
have been obtained in many cases, specific problems persist.
These include the description of bulk properties of medium-
mass nuclei, which typically exhibit charge radii that are too
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small [52] and binding energies that are highly sensitive to
the choice of nuclear force and often turn out to be too large
[53]. More recently, it has been observed that chiral two- and
three-nucleon interactions (at N2LO and at N3LO) which have
been found to predict realistic binding energies and radii for
a wide range of finite nuclei (from p-shell nuclei up to nickel
isotopes) are unable to saturate infinite nuclear matter [54].
On the other hand, it has been shown that, when the fits of the
cD and cE couplings of the chiral three-nucleon interactions
include the constraint of nuclear matter saturation in addition
to, as is typically the case, the triton binding energy, medium-
mass nuclei are underbound and their radii are systematically
too large [55]. Local chiral interactions employed within the
auxiliary field diffusion Monte Carlo method have provided
good descriptions of nuclei in the mass range between A = 3
and A = 16 [56,57].

This has led some groups to fit the low-energy constants
that parametrize unresolved short-distance physics in chiral
nuclear forces directly to the properties of medium-mass nu-
clei [58] and, indeed, better predictions for other isotopes are
then obtained. However, in the ab initio spirit, one would
prefer a genuine microscopic approach in which the 2NF
is fixed by two-nucleon data and the 3NF by three-nucleon
data, with no further fine tuning. Applications to systems with
A > 3 would then be true predictions, though possibly with
large uncertainties.

In Ref. [59], high-quality soft chiral NN potentials from
leading order to fifth order in the chiral expansion were
constructed. These interactions are more consistent than
those constructed earlier [5,60,61], in the sense that the
same power counting scheme and cutoff procedures are used
at all orders. For these potentials, the very accurate πN
low-energy constants (LECs) determined in the Roy-Steiner
analysis of Ref. [62] are applied. The uncertainties asso-
ciated with these LECs are so small that variations within
the errors have negligible impact on the construction of
the potentials. These potentials are soft and have good per-
turbative behavior, as demonstrated in the investigations of
Refs. [63,64].
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In a recent work [65], we concentrated on the neutron
matter (NM) EoS and the density dependence of the symmetry
energy with chiral 2NFs and 3NFs up to N3LO, order-by-
order and with proper chiral uncertainty quantification. Our
main focal point was the symmetry energy, which we dis-
cussed in relation to recent empirical constraints [66]. In the
present work, we wish to address several aspects related to
the EoS of symmetric nuclear matter (SNM), from bulk to
single-particle properties. First, we will show order-by-order
predictions for the EoS and quantify the truncation error. In
this way, we will be able to assess the level of agreement with
previous work based on the same 2NF [64], where a different
many-body method is utilized.

Having addressed bulk properties, we will study the impact
of 3NFs on the single-particle potential. Single-particle ener-
gies, often parametrized in terms of effective masses, provide
insight into both density and momentum dependence of the
in-medium interaction, and are an important part of the input
for transport calculations.

Single-particle properties are impacted by short-range cor-
relations (SRC), which we will address next. We will explore
SRC in nuclear matter as seen through the correlated vs.
the uncorrelated wave functions. In particular, we will in-
vestigate the impact of complete 3NFs at N3LO on central
and tensor correlations. Short-range correlations have been at
the forefront of recent discussions. Claims that momentum
distributions in nuclei, with particularly emphasis on SRC,
can be measured have stimulated considerable interest in the
subject. These are not new discussions, but they have recently
resurfaced in conjunction with inclusive or exclusive high-
momentum transfer electron scattering experiments [67–77].
We will include a brief discussion of the issue.

The paper is organized as follows. In Sec. II we briefly
summarize the main features of the 2NFs and 3NFs employed
in this work. The reader is referred to Ref. [59] for a complete
and detailed description of the 2NF. In Sec. III we present
and discuss a variety SNM properties. Our conclusions are
summarized in Sec. IV, along with near-future plans.

II. FEW-NUCLEON FORCES

A. The two-nucleon force

The NN potentials employed in this work are part of a
set that spans five orders in the chiral EFT expansion, from
leading order (LO) to fifth order (N4LO) with the same
power counting scheme and regularization procedures applied
through all orders. Another novel and important aspect in the
construction of these improved potentials is the fact that the
long-range part of the interaction is fixed by the πN LECs as
determined in the very accurate analysis of Ref. [62]—in prac-
tice, errors in the πN LECs are no longer an issue with regard
to uncertainty quantification. Furthermore, at the fifth (and
highest) order, the NN data below pion production threshold
are reproduced with high precision (χ2/datum = 1.15).

Iteration of the potential in the Lippmann-Schwinger equa-
tion, and the fact that we are building a low-momentum
expansion, require cutting off high-momentum components.
This is accomplished through the application of a regulator

(a) (b) (c)

FIG. 1. Diagrams of the leading 3NF: (a) the long-range 2PE,
depending on the LECs c1,3,4; (b) the medium-range 1PE, depend-
ing on the LEC cD; (c) the short-range contact, depending on the
LEC cE .

function, which, for the bare NN potentials we use [59], have
the nonlocal form

f (p′, p) = exp[−(p′/�)2n − (p/�)2n]. (1)

In building 3NFs in terms of medium-dependent 2NFs—see
next section—we adopt the same choice for consistency. Fur-
thermore, the momentum-space expressions for the density-
dependent 2NF are simpler and cutoff artifacts have been
shown to be relatively small [78].

For the reasons mentioned in Sec. I, we will employ the
softer version of these potentials, with cutoff � = 450 MeV.

B. The three-nucleon force

Three-nucleon forces first appear at N2LO of the �-
less theory, which we apply in this work. At this order,
the 3NF consists of three contributions [10]: the long-range
two-pion-exchange (2PE) graph, the medium-range one-pion-
exchange (1PE) diagram, and a short-range contact term.
We show the topologies in Fig. 1. In infinite matter, these
3NFs can be expressed in the form of density-dependent ef-
fective two-nucleon interactions as derived in Refs. [79,80].
They are represented in terms of the well-known nonrel-
ativistic two-body nuclear force operators and, therefore,
can be conveniently incorporated in the usual NN partial
wave formalism and the particle-particle ladder approxima-
tion for computing the EoS. The effective density-dependent
two-nucleon interactions at N2LO consist of six one-loop
topologies. Three of them are generated from the 2PE graph
of the chiral 3NF and depend on the LECs c1,3,4, which are
already present in the 2PE part of the NN interaction. Two
one-loop diagrams are generated from the 1PE diagram, and
depend on the low-energy constant cD. Finally, there is the
one-loop diagram that involves the 3NF contact diagram, with
LEC cE .

The 3NF at N3LO has been derived [81,82] and applied
in some nuclear many-body systems [41,64,83,84]. The long-
range part of the subleading chiral 3NF consists of (cf. Fig. 2):
the 2PE topology, which is the longest-range component of
the subleading 3NF, the two-pion-one-pion exchange (2P1PE)
topology, and the ring topology, generated by a circulating
pion which is absorbed and re-emitted from each of the
three nucleons. The in-medium NN potentials corresponding
to these long-range subleading 3NFs in SNM are given in
Ref. [85]. The short-range subleading 3NF consists of (cf.
Fig. 2): the one-pion-exchange-contact topology (1P-contact),
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FIG. 2. Some diagrams of the subleading 3NF, each being representative of a particular topology: (a) 2PE; (b) 2P1PE; (c) ring; (d) 1P-
contact; (e): 2P-contact. Note that the 1P-contact topology makes a vanishing contribution.

which gives no net contribution, the two-pion-exchange-
contact topology (2P-contact), and relativistic corrections,
which depend on the CS and the CT LECs of the 2NF and
are proportional to 1/M, where M is the nucleon mass. The
in-medium NN potentials corresponding to the short-range
subleading 3NFs in SNM can be found in Ref. [86].

The LECs we use in this work, displayed in Table I, are
from Ref. [64]. A technical remark is in place: when the
subleading 3NFs are included, the c1 and c3 LECs are replaced
by −1.20 GeV−1 and −4.43 GeV−1, respectively. This is
because most of the subleading two-pion-exchange 3NF has
the same mathematical structure as the leading one [87] and
thus, in practice, a large part of the subleading two-pion-
exchange 3NF can be accounted for with a shift of the LECs
equal to −0.13 GeV−1 (for c1), 0.89 GeV−1 (for c3), and
−0.89 GeV−1 (for c4) [81].

III. SYMMETRIC NUCLEAR MATTER

We perform microscopic calculations of nuclear matter
with the interactions described above. We compute the EoS
using the nonperturbative particle-particle ladder approxima-
tion, which generates the leading-order contributions in the
traditional hole-line expansion. The next set of diagrams is
comprised of the three hole-line contributions, which in-
cludes the third-order particle-hole (ph) diagram considered
in Ref. [39]. The third-order hole-hole (hh) diagram (fourth
order in the hole-line expansion) was found to give a very
small contribution to the energy per particle at normal density
(see Tables II and III of Ref. [39]). The ph diagram is relatively
larger, bringing in an uncertainty of about 1 MeV on the po-
tential energy per particle at normal density. We compute the
single-particle spectrum for the intermediate-state energies
self-consistently, keeping the real part.

A. Order by order predictions for the EoS

We begin with the study displayed in Fig. 3. The curves are
obtained with � = 450 MeV and the different sets of cD, cE

LECs displayed in Table I, of which set (c) produces the best
saturating behavior. In Fig. 4, we show the energy per particle
from leading to fourth order. While the EoS has already a re-
alistic behavior at the first order where 3NFs appear (N2LO),
there is a definite improvement when moving to N3LO, for
both saturation density and energy. This is an important val-
idation of the predictive power of the chiral EFT—of course,
NN data and the three-nucleon system must be described
accurately for any subsequent many-body predictions to be
meaningful.

Next, we discuss chiral uncertainties. As pointed out in
Sec. II A, errors in the πN LECs are no longer an issue with
regard to uncertainty quantification. On the other hand, crucial
to chiral EFT is the truncation error. If observable X is known
at order n and at order n + 1, a reasonable estimate of the
truncation error at order n can be expressed as the difference
between the value at order n and the one at the next order:

�Xn = |Xn+1 − Xn|, (2)

since this is a measure for what has been neglected at order
n. To estimate the uncertainty at the highest order that we
consider, we follow the prescription of Ref. [88]. For an
observable X that depends on the typical momentum of the
system under consideration, p, one defines Q as the largest
between p

�b
and mπ

�b
, where �b is the breakdown scale of

the chiral EFT, for which we assume 600 MeV [88]. The
uncertainty of the value of X at N3LO is then given by

�X = max{Q5|XLO|, Q3|XLO − XNLO|, Q2|XNLO − XN2LO|,
× Q|XN2LO − XN3LO|}, (3)

where p could be identified with the Fermi momentum at
the density under consideration. To evaluate the truncation

TABLE I. Values of the LECs c1,3,4, cD, and cE for different orders in the chiral EFT expansion. The momentum-space cutoff � is equal to
450 MeV. The LECs c1,3,4 are given in units of GeV−1, while cD and cE are dimensionless.

� (MeV) c1 c3 c4 cD cE CS CT

N2LO 450 –0.74 –3.61 2.44 (a) 2.25 0.07 −0.013000 −0.000283
(b) 2.50 0.1
(c) 2.75 0.13

N3LO 450 –1.07 –5.32 3.56 (a) 0.00 −1.32 −0.011828 −0.000010
(b) 0.25 −1.28
(c) 0.50 −1.25
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FIG. 3. Energy per particle as a function of density at N3LO and
cutoff equal to 450 MeV. The labels a, b, and c refer to the different
sets of cD, cE values given in Table I.

error for saturation parameters using Eq. (3), one might de-
fine a nominal “saturation” density, say ρ0 = 0.16 fm−3, for
all orders. On the other hand, the EoS at LO and NLO
do not exhibit a saturating behavior, thus, it may be more
meaningful to consider the actual saturation densities for the
EoS which do saturate (namely, those including 3NFs), es-
pecially for the purpose of evaluating the incompressibility,
which measures the curvature of the EoS at the minimum.
Estimating (pessimistically) the truncation error at N3LO as
|XN3LO − XN2LO|, we find, for the saturation density at N3LO,
ρ0 = (0.161 ± 0.015) fm−3. Proceeding in the same way for
the saturation energy and the incompressibility, we find, at
N3LO, e(ρ0) = (−14.98 ± 0.85) MeV, and K0 = (216 ± 33)
MeV. Adopting, instead, the prescription |XN3LO − XN2LO| Q

�
,
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FIG. 4. Energy per particle as a function of density from lead-
ing to fourth order of the chiral expansion. The cutoff is fixed at
450 MeV.
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FIG. 5. Energy per particle as a function of density at fourth
order of chiral expansion. The band shows the uncertainty calculated
from Eq. (3).

where Q is identified with the Fermi momentum at saturation
density, the errors would be reduced by about 44%.

Figure 5 displays the predictions at N3LO with the un-
certainty band calculated from Eq. (3). We note that our
N3LO(450) results for the energy per particle at saturation
agree with those from Ref. [64] within uncertainties.

B. The single-particle potential

Bulk properties of nuclear matter are very insightful for
testing theories as well as providing a connection with bulk
properties of nuclei. On the other hand, momentum- and
density-dependent single-particle potentials (SPP) in nuclear
matter provide complementary, and more detailed, informa-
tion which is needed for HI transport simulations.

Together with the SPP in NM, one can construct the mo-
mentum and density dependent SPP in isospin-asymmetric
matter—and thus the symmetry potential—to be used, for in-
stance, in Boltzmann-Uehling-Uhlenbeck (BUU) calculations
of collective nuclear dynamics. A number of HI collision
observables have been found to be sensitive to the symmetry
potential, such as the neutron/proton ratio of pre-equilibrium
nucleon emission, neutron-proton differential flow, and the
proton elliptic flow at high transverse momenta.

Next, we will take a look at the underlying Brueckner
SPP, derived self-consistently with the G matrix and, thus,
the EoS, to learn about its momentum dependence and how
that changes with density and chiral order. First, for two
selected densities (saturation density and about 2/3 of it,
corresponding approximately to kF = 1.0 fm−3), we show the
single-particle potential at third and fourth order, Fig. 6.

Single-particle potentials derived from chiral interactions
are generally deep and grow monotonically from the bottom
of the Fermi sea. The impact of moving to fourth order is
much larger at the higher density.

The impact of including the complete 3NF up to N3LO is
demonstrated in Fig. 7. The effect is to decrease the depth
of the potential, and is strongly density dependent. This is a
precursor of the repulsive and density dependent effect of the
full 3NF on the average energy per nucleon.

Analyses of HI collision measurements are used to extract
empirical constraints for the EoS. For instance, the elliptic
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FIG. 6. Predictions for the SPP at N2LO and N3LO. The cutoff is fixed at 450 MeV. For the left (right) frame, the Fermi momentum is
equal to kF = 1.0 (1.333) fm−1.

flow in midperipheral to peripheral collisions was found to
be particularly sensitive to the momentum dependence of the
nucleon mean field [89].

More specifically, the connection between the quantities
displayed in Fig. 6 and 7 and reaction data is through the nu-
cleon isoscalar and isovector potentials, defined, respectively,
as

U0(k, ρ) = Un + Up

2
(4)

and

Usym(k, ρ, α) = Un − Up

2α
, (5)

where α = ρn−ρp

ρn+ρp
. Naturally, the isovector potential, also

known as the symmetry potential, is relevant for reactions
with neutron-rich nuclei. Of particular interest are rare iso-
topes, being studied with radioactive isotope beams (RIB).

Isospin and momentum dependent transport models for
nuclear reactions are computed with accurately calibrated
codes [90,91]. Sensitivities of specific observables are care-
fully probed in different regions of the reaction phase space
[92,93]. For instance, charge exchange reactions to isobaric
analog states (IAS) were found to be dominated by the
isovector nucleon potential [94]. On the other hand, for the
purpose of extracting constraints on the nucleon field and
the symmetry energy, reaction data are often analyzed us-
ing phenomenological models. For the isovector potential,
in particular, constraints are determined using families of
Skyrme or Gogni parametrizations [95,96], and discussed in
terms of the “mass splitting”—that is, whether the effective
mass of a proton is smaller or larger than the effective mass
of the neutron in isospin asymmetric matter, with different
parametrizations yielding one conclusion or the other. We
submit that extraction of reliable constraints through analyses
of reaction observables at RIB facilities should be guided by
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FIG. 7. Impact of including the 3NF up to N3LO (solid curves) at two different densities. Left: kF = 1.0 fm−1; right: kF = 1.333 fm−1.
The cutoff is fixed at 450 MeV.
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TABLE II. Contributions to the wound integral, Eq. (11), from J = 0 and J = 1 states with different interactions and changing densities.
The last column shows the contribution from all partial waves.

kF (fm−1) Model 1S0 Total from J = 0 3S1-3S1
3S1 - 3D1 Total from J = 1 All partial waves

1.1 N2LO 0.0081 0.0086 0.027 0.047 0.087 0.093
N2LO + 3NF 0.0028 0.0033 0.015 0.079 0.1064 0.1141

N3LO 0.011 0.011 0.038 0.062 0.1146 0.1203
N3LO + 3NF 0.0088 0.0092 0.0351 0.095 0.1479 0.1555

1.3 N2LO 0.0033 0.0039 0.011 0.033 0.053 0.059
N2LO + 3NF 0.0054 0.0059 0.0040 0.082 0.109 0.1185

N3LO 0.0085 0.0088 0.019 0.046 0.079 0.085
N3LO + 3NF 0.016 0.016 0.015 0.096 0.141 0.151

1.4 N2LO 0.0023 0.0031 0.0070 0.027 0.042 0.048
N2LO + 3NF 0.0095 0.010 0.0047 0.084 0.1194 0.1303

N3LO 0.0090 0.0093 0.014 0.038 0.067 0.073
N3LO + 3NF 0.022 0.023 0.0094 0.097 0.1484 0.1599

state-of-the-art theories of nuclear forces and self-consistent
nucleon potentials.

C. Short-range correlations

Correlations in nuclear matter and nuclei carry important
information about the underlying nuclear forces and their
behavior in the medium. Since the early Brueckner nuclear
matter calculations [97], it has been customary to associate
the correlated two-body wave functions to the strength of
the nucleon-nucleon NN potential in specific channels. For
instance, the 3S1 - 3D1 channel will reveal tensor correlations,
which is of particular interest, since the model depen-
dence among predictions from different NN potentials—those
which cannot be constrained by NN data—resides mostly in
the strength of their respective (off-shell) tensor force. The
most popular example is the deuteron D-state probability.

Here, we wish to look at some well-established concepts
through a contemporary lens. First, a brief review of useful
definitions.

In terms of relative and center-of-mass momenta, the
Bethe-Goldstone equation can be written as

G(k0, k, Pc.m., E0, kF )

= V (k0, k) +
∫

d3k′V (k0, k′)
Q(kF , k′, Pc.m.)

E − E0

× G(k′, k, Pc.m., E0, kF ), (6)

where k, k0, and k′ are the final, initial, and intermedi-
ate momenta of the two nucleons relative to their center of
mass, respectively, and P is the total momentum. V is the
NN potential, Q is the Pauli operator, E = E (k′, Pc.m.), and
E0 = E (k0, Pc.m.) with the function E the total energy of the
two-nucleon pair.

The second term of Eq. (6) builds SRC into the wave
function through the infinite ladder sum. In operator notation,
the correlated (ψ) and the uncorrelated (φ) wave functions are
related through

Gφ = V ψ, (7)

from which it follows that

ψ − φ = V
Q

E − E0
Gφ. (8)

Equation (8) defines the difference between the correlated and
the uncorrelated wave functions, f = ψ − φ, referred to as
the defect function. The defect function has the attribute of
being different from zero over the (finite) range where SRC
correlations are effective.

It is convenient to consider the momentum-dependent
Bessel transform of the defect function for each angular
momentum state [and average center-of-mass momentum
Pc.m.

avg (k0, kF )]:

f JST
LL′ (k, k0, kF ) = k Q̄

(
kF , k, Pc.m.

avg

)
GJST

LL′
(
Pc.m.

avg , k, k0
)

E0 − E
, (9)

where the angle-averaged Pauli operator has been employed.
Also, following a well-established procedure [97] to angle-
average the center-of-mass momentum, we obtain

Pavg = 3

5
k2

F

(
1 − k0

kF

)(
1 + k2

0/k2
F

3(2 + k0/kF )

)
. (10)

The magnitude squared of f JST
LL′ (k, k0, kF ) is the probability of

exciting two nucleons with relative momentum k0 and relative
orbital angular momentum L to a state with relative momen-
tum k and relative orbital angular momentum L′. (Following
an earlier work [98], we take the initial momentum equal to
0.55kF .) These components of the correlated wave function
are the basis for the definition of the “wound integral”, which,
for each partial wave at some density ρ, is given by

κJST
LL′ (k0, kF ) = ρ

∫ ∞

0

∣∣ f JST
LL′ (k, k0, kF )

∣∣2
dk. (11)

Thus, f and κ provide a clear measure of the strength of cor-
relations present in each channel. The wound integral was first
introduced by Brandow [99] in the context of the Brueckner-
Bethe-Goldstone theory of nuclear matter.

In Table II, we present the contributions to the integral,
Eq. (11), from selected states or groups of states for different
choices of the interaction and three densities. For all densities
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TABLE III. The wound integral, Eq. (11), from three different
interactions around saturation density. In each case, only 2NFs are
included.

kF (fm−1) Model Contribution to κ from all partial waves

1.3 N3LO(450) 0.085
CD-Bonn 0.114

AV18 0.157

and models, it is apparent that SRC in nuclear matter are
mainly due to coupled S waves. At both the third and the
fourth orders, the impact of 3NFs is largest in 3S1 - 3D1—more
so at the fourth order—indicating additional tensor force from
the 3NF. With regard to density dependence, several mech-
anisms play competing roles in the density dependence of
κ , such as weaker Pauli blocking at lower density, enhanced
impact of the repulsive core with increasing density (for par-
tial waves dominated by the central force), increased strength
of the tensor force from the 3NFs. Overall, looking at the
values of κ from all partial waves, we conclude that SRC
generally decrease as density increases for the cases with
only 2NFs, whereas the opposite is true in the presence of
3NFs—possibly the result of competing effects from the 3NF
(enhancing correlations) and Pauli blocking.

In Table III, we show the values of κ (from all partial
waves) obtained with three very different 2NFs: a state-of-
the-art chiral potential, a high-precision momentum-space
potential from the 1990s [1], and the local AV18 [3]. In
Fig. 8, the probability amplitudes—magnitude squared of
Eq. (9) for the J = 1 coupled states—are displayed for the
three cases considered in Table III. The impact of the cutoff
in chiral EFT is apparent, with the local AV18 extending the
farthest, and both AV18 and CD-Bonn extending much farther
than N3LO.

These quantities, which can be dramatically different from
model to model—as has been known for decades—are not
observable. The SRC probabilities and high-momentum dis-
tributions in nuclei, which have been and are being extracted
from hard electron scattering experiments [67–77] are equally
nonobservable, although high-momentum information can be
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FIG. 8. Magnitude squared of the defect function in the 3S1 - 3D1

channel as a function of momentum. Solid red: N3LO(450); dashed
blue: CD-Bonn; dotted black: AV18. All curves are obtained with
2NFs only.

extracted from data in a scale and scheme dependent way
[100]. The recent comprehensive analysis from Ref. [100]
describes the situation very clearly: the SRC knock-out exper-
iments do have merit, but their value “...is not new insight into
the interaction, but to demonstrate that short-range physics can
be isolated and to a certain extent controlled.” Results of these
experiments cannot be used to to select the “best” off-shell
behavior, a concept that can be proven to be fundamentally
impossible [101–103]. For instance, the momentum distribu-
tion of AV18 extends past 4 fm−1, meaning that strong SRC
are built into the wave function. On the other hand of the spec-
trum are SRG-evolved interactions, with no high-momentum
components. If predictions with a particular potential are clos-
est to the knock-out measurements, in no way that implies that
the “measured” off-shell behavior has selected that particular
interaction—it means that the latter is more suitable for the
assumptions made in the data analyses, for instance, impulse
approximation. Ultimately, predictions from observables must
agree for any realistic model, whether SRC are built into the
wave function or in the operators [100].

IV. SUMMARY, CONCLUSIONS, AND FUTURE PLANS

We calculated the EoS of SNM from leading to fourth
order. At N3LO, we include all subleading 3NFs. An EoS with
good saturation properties (density, energy, and curvature) can
be obtained from chiral EFT and a softer cutoff (smaller than
500 MeV).

We have also shown a representative sample of SPP results,
which we obtain self-consistently from the G matrix. We find
the effect of 3NFs on the SPP to be large at normal densities.
Microscopically calculated SPP provide useful information
to guide parametrizations of the nucleon potential for use in
transport simulations.

We then moved to a discussion of SRC in nuclear matter,
as seen through the momentum-space defect function and the
integral of its magnitude squared. Central and tensor correla-
tions are seen mostly in uncoupled and coupled S waves. We
took the opportunity to comment on the model dependence
and the nonobservable nature of SRC.

Having the EoS for SNM and NM [65] consistently at
N3LO, we are in the position to revisit neutron skins and
neutron stars. Our work in progress includes another form of
correlations, namely pairing in nuclear and neutron matter.
Pairing is a two-body correlation near the Fermi surface—
hence, it has features common to any quantum system of
fermions. The appearance of superfluidity in neutron stars
suppresses standard neutrino cooling processes, and thus pair-
ing effects can have a remarkable role on the evolution of a
neutron star.
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