
PHYSICAL REVIEW C 104, 064311 (2021)

Effective field theory approach to rotational bands in odd-mass nuclei
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We extend an effective field theory developed to describe rotational bands in even-even nuclei to the odd-mass
case. This organizes Bohr and Mottelson’s treatment of a particle coupled to a rotor as a model-independent
expansion in powers of the angular velocity of the overall system. We carry out this expansion up to fourth order
in the angular velocity and present results for 99Tc, 159Dy, 167,169Er, 167,169Tm, 183W, 235U, and 239Pu. In each case,
the accuracy and breakdown scale of the effective field theory can be understood based on the single-particle and
vibrational energy scales in that nucleus.
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I. INTRODUCTION

For many even-even nuclei, the rotor model provides a
good description of the energies of their low-lying states and
of the transitions between them [1]. In this model, the nucleus
is pictured as an axially symmetric quantum-mechanical rotor,
whose eigenenergies are proportional to I (I + 1), with I the
spin of the nuclear state. This picture can be extended to
neighboring odd-mass nuclei by coupling a fermion to the
rotor. This “particle-rotor” approach can be quite successful
in describing the low-lying spectra and transitions. However,
it also works markedly better in some nuclei than in others.
The classic text by Bohr and Mottelson provided an extensive
summary of the successes and challenges of such a picture
already fifty years ago [1].

In this paper we recast the particle-rotor model as a system-
atic effective field theory (EFT), building on the successful
and systematic description of even-even systems as rotors by
Coello Pérez and Papenbrock [2,3]. In that EFT the rotor de-
gree of freedom is its angular velocity, �v, and the Lagrangian
is organized in powers of this quantity. Here we develop an
EFT that also includes the fermion’s position and total angular
momentum as degrees of freedom. There is similar recent
work on a particle-rotor EFT by Papenbrock and Weiden-
müller [4]. EFTs are systematic expansions for observables
as they are organized in powers of a small parameter. In our
particle-rotor EFT the small parameter is the angular velocity
of the overall system. The EFT will thus be suitable for nu-
clei in which the energy associated with the rotor degree of
freedom, Erot, is smaller than the energy required to excite the
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fermion to a new quantum state, Esp, or the energy at which
the rotor ceases to be rigid, Evib. The EFT can then also be
understood as an expansion in powers of εvib ≡ Erot/Evib and
εsp ≡ Erot/Esp.

At leading order (LO) in this expansion the rotor is rigid
and the fermion attached to it is in a specific quantum state [5].
The corresponding Lagrangian is the sum of that of a classical,
axially symmetric, rotor, parametrized by two Euler angles,
and that for a fermion whose interaction with the rotor is
governed by a specific potential, V , in the corotating or intrin-
sic frame. This is the starting point of Bohr and Mottelson’s
particle-rotor model too. It yields a LO Hamiltonian

H (0) = Hrot + Hferm, (1)

where

Hrot = �R2

2I0
, Hferm = T + V (�r, �s), (2)

with �R = I0�v the rotor angular momentum and I0 its moment
of inertia, while �r is the single-particle coordinate, T the cor-
responding kinetic energy, and �s the spin of the fermion. The
eigenstates of Ĥ (0) are direct products of eigenstates of Ĥrot

and eigenstates of Ĥferm, i.e., the single-particle orbitals [5].
The spectrum of the odd-mass system is then a sequence
of rotational bands, each built on a single-particle orbital. A
particular band is labeled by the projection of the fermion’s
total angular momentum, �j, on the axis of the rotor, i.e., the
component of �j/h̄ in the 3-direction in the intrinsic frame,
typically denoted K .

Since the rotor is axially symmetric, K continues to be
a good quantum number even when corrections to the LO
Lagrangian are considered, i.e., when the fermion’s degrees of
freedom become coupled to �v. Indeed, since V is the potential
energy of the fermion in a rotating frame, rotational invariance
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requires that it contains a term proportional to �v: the Coriolis
force. In this work we allocate all such couplings between �v
and the fermionic degrees of freedom to an additional piece of
H , Hcoup:

H = Hrot (�v) + Hferm(�r, �s) + Hcoup(�v, �r, �s). (3)

EFTs are also model independent. To achieve that we make
no assumption about V (�r, �s) or about Hcoup, other than that
both are axially symmetric and the latter can be expanded in
powers of �v. This is in contrast to the recent Ref. [6], which
also tackled the rotor-plus-fermion problem, but assumed
that V was a deformed harmonic oscillator potential, thereby
adopting a model in which the fermion’s single-particle states
are Nillson-model orbitals.

Corrections induced by “cranking” the general fermion
potential V (�r, �s), i.e., effects resulting from the fermion’s
interaction with a rotating core, then appear in Hcoup. The
corresponding terms involve undetermined coefficients that
are not related to V (�r, �s) by rotational symmetry. The leading
piece of Hcoup has the form of the Coriolis force and can be
derived by defining a covariant derivative of the fermionic
field [4]. This would appear to fix the coefficient of this
O(v) part of Hcoup—as happens in the textbook treatment in
Ref. [1]. However, in an EFT all operators consistent with
the symmetries are permitted, and the same operator can also
be induced by effects at the high scale Esp. Therefore, the
coupling in this NLO piece of the Hamlitonian, which we
denote H (1)

coup, is not fixed. The impact of H (1)
coup on the system’s

energy levels can be computed in first-order perturbation the-
ory. As is well-known, in first order the effect is nonzero only
for K = 1/2 bands, and represents the first correction to the
“adiabatic limit” in which the fermion orbits are aligned with
the symmetry axis of the deformed core. The high-energy
dynamics is then summarized in the resulting formula for the
energy levels of the odd-mass rotor by a matrix element of a
fermionic operator.

At next-to-next-to-leading order (N2LO), both Hrot and
Hcoup receive further corrections of order O(v2). Corrections
to the former are due to the nonrigidity of the rotor. This also
affects Hcoup, as interaction with the spinning core can produce
excitation to single-particle states with energies of order Esp.
Such effects must be parametrized by an effective operator
of order O(v2) or higher (see Sec. II). These pieces of H (2)

coup
renormalize the energy shift obtained from two insertions of
H (1)

coup, i.e., it gives the high-energy part of the second-order
corrections to the adiabatic limit. While the even-even system
is a straightforward expansion in εvib the odd-mass system’s
energy levels show an interplay of expansions in εvib and in
εsp.

In this paper we carry out this joint expansion up to fourth
order in the expansion parameter, thus computing the energy
levels of a rotational band in the odd-even system up to ac-
curacy (Erot/Ehigh )3, with Ehigh of order either Esp or Evib. The
Hamiltonian’s expansion yields an expansion for energy levels
in powers of the total angular momentum quantum number I .
At each order in the expansion, new parameters appear and
must be fit to data.

A common criticism of such a calculation is that it lacks
predictive power. But our EFT for rotational bands is system-

atic: at nth order it yields a correction to the energy of the
states in a nuclear rotational band that scales in a definite way
with the expansion parameter and with I:

(�E )NnLO ∼ Erotε
n−1
sp In. (4)

The error in the resulting nth-order EFT energy-level formula
then scales as In+1. By analyzing the residuals of the EFT’s
prediction at each order with respect to data we will show
that such systematic improvement is indeed present in our
description [7]. Moreover, we will show that the residuals
encode information on the breakdown scale of the EFT. In
general the convergence of the EFT is at least as good as is
expected according to Eq. (4) and an a priori estimate of the
energy scales Erot, Esp, and Evib in the even-even and odd-mass
nuclei under consideration.

The EFT is intrinsically limited to energy levels that lie
below the energy scales Evib and Esp. In most nuclei these
scales are below the energy at which pairing effects become
dynamical. Pairing correlations are thus not explicitly treated
in the EFT: effects associated with them are subsumed into
the low-energy constants that multiply the terms of different
degree in I in the EFT’s energy-level formula. We are not
attempting to predict the moment of inertia of the nucleus,
and so are agnostic about the microscopic effect that pairing
(see, e.g., Refs. [8,9]) has on it and other coefficients in
our energy formula. That formula is essentially a polynomial
in I for a particular rotational band; our rotor + fermion
EFT has nothing to say about phenomena such as back-
bending and upbending. Backbending, upbending, and many
other interesting phenomena can be addressed in DFT-based
(e.g., [10–13]), shell-model (e.g., Refs. [13–16]), and ab initio
(e.g., Refs. [17–21]) models of rotating nuclei. But these occur
at high enough energies that the EFT is no longer a valid
description of the rotational band there. We explicitly sacrifice
the ability to describe these effects to obtain a description of
the low-energy E < Evib, Esp part of the band that is model
independent and systematically improvable.

One example of the EFT’s model independence is that in
the traditional rotor-model literature the Coriolis force that
represents the n = 1 correction in Eq. (4) results in a “decou-
pling parameter” appearing in the formula for the energies of
states in the band. In the particle-rotor EFT the decoupling
parameter is not computed from single-particle matrix ele-
ments (cf. Ref. [6]). Our goal is not a microscopic description
of the rotor-fermion system. Instead we seek a description
that captures the long-distance features of this system, and
parametrizes its short-distance details in terms of coefficients
that are fit to data. EFT helps us obtain this organized phe-
nomenology because it is agnostic about the short-distance
details and organizes the energies of levels in the band in terms
of an expansion in a small parameter.

We do not expand observables in powers of the fermion
angular momentum �j or its projection on the rotor axis, K .
This means that in our approach there is not just a single low-
energy constant in H (1)

coup, instead there is a string of fermion
operators that can multiply the Coriolis operator structure,
each having its own coefficient. This interpretation of the
“Coriolis operator” differs from that of Ref. [4], although
the interpretational difference has no practical consequences
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for the energy-level formula. The lack of power counting for
operators built solely from the fermion’s degrees of freedom
means that although in principle it should be possible to
connect our EFT to shell-model [14–16] or ab initio calcula-
tions [17–21] of rotational bands, this task will be complicated
in practice because the parameters in the formula for the
band energies actually represent matrix elements of arbitrary
functions of j3, �j, and �r, as explained further in Sec. IV below.

The rest of the paper is structured as follows. In Sec. II we
make some general remarks about the “integrating out” pro-
cess that leads to the EFT of rotational bands developed here.
This justifies the statements regarding operator suppression
above. In Sec. III we specify the degrees of freedom, write
down the leading-order Lagrangian, Lrot + Lferm, and obtain
the constants of the motion. Section IV discusses the allowed
operators that can appear in Lrot and Lcoup and the quantities by
which each operator is suppressed, i.e., it develops the power
counting for our EFT. Section V then uses the resulting expan-
sion to derive the rotational band formula order-by-order in I ,
see Eq. (4). Section VI studies the extent to which the EFT
describes rotational bands in 167,169Er, 167,169Tm, 239Pu, 235U,
159Dy, 99Tc, and 183W. In each case we show that the accuracy
of the band formula, and the number of levels for which it
gives a systematic treatment of the spectrum, can be tied to
the scales Erot, Esp, and Evib for that particular nucleus. Finally,
Sec. VII offers a summary and avenues for future work.

II. FROM A NUCLEONS TO AN EFT OF FERMION
ROTATIONAL BANDS

Ab initio calculations that solve the quantum-mechanical
many-body problem for a given nuclear Hamiltonian are now
feasible for nuclei up to 100Sn and beyond [22,23]. Recent no-
core configuration interaction calculations of the Be isotope
chain have shown the emergence of rotational and shell-model
degrees of freedom in these systems [17,18,20]. In this section
we elucidate the relationship between a calculation with A + 1
nucleonic degrees of freedom and the rotor-plus-fermion EFT
developed in this paper.

To get from one to the other we first imagine that we can
solve the A-body problem and determine the spectrum of the
corresponding Hamiltonian HA. The solutions of

HA|φR;n〉 = ER;n|φR;n〉 (5)

form a complete set of states for the A particles that make
up the rotor. We label them by their total angular momentum
and by another index n that allows us to enumerate states of
the same R. We divide those states into two groups: ones in
the lowest-lying rotational band and states involving excita-
tions that are predominantly of vibrational or single-particle
character. The rotational band then forms a space P , that
will be included in our EFT, while the higher-energy states
form a complementary space Q. The gap between P and Q is
assumed to be of order Evib.

We now want to consider the interaction of the A + 1th
nucleon with the other A nucleons. This can be done by
computing the optical potential if the nucleon has positive
energy [24] or via a state-dependent effective potential. We

take

− h̄2∇2

2m
δR′R + Veff;R′R(�r, �s) = 〈φR′;1|Heff;A+1(E )|φR;1〉 (6)

to define the effective single-particle Hamiltonian in the situa-
tion where the rotor transitions from a state with total angular
momentum R to one with angular momentum R′ in the P part
of the space. The Heff;A+1(E ) whose matrix element appears
on the right-hand side is the effective Hamiltonian that results
from integrating out the effects of rotor states in the Q space.
It is equal to HA+1 plus corrections suppressed by powers of
E/Evib.

The hypothesis of the rotor-fermion picture is that in the
intrinsic frame of the rotor the effective potential is the same
for all states in the subspace P , since those states are related to
one another by rotations. Under this hypothesis the Hamilto-
nian defined by Eq. (6) can be taken to be Hsp(�r, �s): it depends
only on the last nucleon’s spin and position. However this is
only true to the extent that the rotor is rigid, i.e., all the states
in the space P are generated by rotations of the ground state
of the rotor. Corrections to the picture then appears as a series
in εvib.

In the intrinsic frame Hsp generates a set of single-particle
states

Hsp|ψK〉 = EK |ψK〉 (7)

that are labeled by their spin projection on the intrinsic 3-axis,
K . Since in that frame the rotor is not moving this spectrum
has a ground state that is separated from all other states in the
spectrum by an energy ∼Esp.

We now focus on just that lowest state, sometimes called
“the bandhead.” The particle-rotor EFT is based on the picture
that the low-energy eigenstates of the A + 1-body problem
are, at LO in the EFT expansion, product states

|ψK〉|φA〉, (8)

where |φA〉 ∈ P . These states form a rotational band, all built
on the bandhead K , where the fermion is to be thought of as
in a particular single-particle state, while the core occupies
one—or a superposition of several—of the rotational states
that make up its ground-state band.

The EFT Hamiltonian for this rotational band is obtained
from the single-particle Hamiltonian by integrating out all the
single-particle states other than K . It therefore differs from Hsp

by operators that are suppressed by E/Esp. In the rest of this
section we determine the operators that can appear in this EFT
Hamiltonian.

A. Allowed operators

In Ref. [3] the Lagrangian, and hence the Hamiltonian,
could not depend on ê3, the rotor axis (the 3-axis in the
body-fixed/intrinsic frame), because of spontaneous symme-
try breaking. However, here the rotor is interacting with the
fermion and dependence on ê3 is permitted in Hcoup. The
rotational operators that can appear in Hcoup in the EFT then
have the parity and time-reversal properties listed in Table I.
Meanwhile we take the fermionic operators appearing in Hcoup

to be its coordinate �r and its total angular momentum �j. Since
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TABLE I. Operators describing the rotational state of the system
(left block) and fermion (right block), together with their properties
under parity and time reversal. Note that �v is an angular velocity,
which explains the otherwise peculiar looking parity assignment.

Operator P T Operator P T

�v + − �j + −
ê3 − + �r − +

�r can be transformed to {r, �l} with �l the angular momentum
vector, and �j = �l + �s the two vectors �r and �j are sufficient
to completely describe the fermion’s state. Their discrete-
symmetry properties are then shown in Table I.

We can also build even-rank tensors of the parity-mixed dot
products, e.g.,

(ê3 · �j)2, (�v · �r)2 − 1
3 �v 2�r 2, �v 2�r 2. (9)

The first operator in this list can be absorbed into Lferm since
ê3 · �j = K , the projection of the fermion spin on the rotor
axis. The other operators listed cannot be eliminated in this
way, and will appear in L(2)

coup, the Lagrangian that produces
the piece of Hcoup that is second order in �v.

Note that ê3 can change the R quantum number of the
rotor. Symmetry under reflection in the rotor’s central plane
(R symmetry [1]) guarantees that only even powers of ê3 · �r
can appear. Such operators then only change the rotor R by 2,
i.e., move from one rotor state (0+, 2+, etc.) to another.

B. Suppression by powers of�v—and nothing else

Permitted operators that couple rotor and fermionic de-
grees of freedom, and are not already accounted for in the
fermionic potential are then, up to second order in v:

O1 = �v · �j;
O2a = �v2 �j2;

O2b = (�v · �j)2 − 1
3 �v2 �j2; (10)

O2c = �v2�r2;

O2d = (�v · �r)2 − 1
3 �v2�r2.

However, there is no reason for the expectation value of �j2

in the fermionic state to be small. Indeed, we expect it to be a
number of order one. Furthermore, the operator �r2 should gen-
erate an expectation value of order h̄2/(

√
2μEsp)2 since, by

the uncertainty principle, the fermionic wave function should
have this spatial extent. This means, then, that powers of �j2

and �r2 are not suppressed. The only expansion we have, then,
is the one in powers of the rotational velocity �v. This fact is
not apparent in the Lagrangians developed in Ref. [4].

In fact, each operator in the list above can be multiplied
by an arbitrary function of the scalar (and P- and T-even)
quantities �j2, (�j · ê3)2, �r2, (�r · ê3)2, and (�j · �r)2. As long as
we are concerned only with the fermionic matrix element for
a specific single-particle state |ψK〉 this does not matter: it
just means that the coefficient of the operator with a partic-
ular power of v and a particular tensor structure is a matrix

element of an arbitrary function of fermionic operators with
the appropriate symmetry properties. But, since we do not
know the fermionic wave function anyway, this additional
ignorance regarding the fermionic operator has no practical
consequence. Unlike Bohr and Mottelson or Ref. [6] we do
not try to compute the matrix elements of the fermionic op-
erators in Eq. (10) by assuming a particular description of
single-particle states. Instead we fit them to data.

III. DEGREES OF FREEDOM AND LEADING-ORDER
LAGRANGIAN

A. Parametrizing rotational motion

In this section we review the parametrization of the rotor
introduced in Ref. [2] and used in Ref. [3]. We start with the
transformation properties of the elements g ≡ g(α, β ) under
SO(3)/SO(2) rotations, as they parametrize the orientation of
the rotor. Indeed, the rotation

g−1 = eiβJ2 eiαJ3 , (11)

where �J is the generator of rotations, aligns the laboratory
or extrinsic reference frame with the co-rotating or intrinsic
reference frame. In the latter, the 3-axis coincides with the
symmetry axis of the rotor. The dynamics of the rotor are thus
determined by the time derivative of g. For simplicity we study
how g−1∂t g transforms under rotations. Being an element of
the Lie algebra of SO(3), it can be written as

g−1∂t g = iv1J1 + iv2J2 + iv3J3. (12)

Employing the Baker–Campbell–Hausdorff formula we write
the components of �v in terms of the rotor’s orientation angles
and their time derivatives

v1 = α̇ sin β, v2 = −β̇, v3 = −α̇ cos β. (13)

Under the rotation r ≡ r(ϕ, θ, γ ), the element g−1∂t g trans-
forms into [2]

g−1∂t g → g̃−1∂t g̃ = ĩv1J1 + ĩv2J2 + ĩv3J3, (14)

where g̃ ≡ g(̃α, β̃ ) and the angles α̃, β̃, and γ̃ are complicated
functions of both the orientation angles and those defining the
rotation r. The components of the transformed element �̃v are(̃

v1

ṽ2

)
=

(
cos γ̃ − sin γ̃

sin γ̃ cos γ̃

)(
v1

v2

)
, ṽ3 = v3 + ˙̃γ . (15)

These equations show that under an SO(3) rotation v1 and
v2 transform as the x and y components of a vector would
under the rotation h̃ ≡ h(γ̃ ) = e−iγ̃ J3 , allowing us to easily
write rotationally invariant objects from these components.

B. Fermion representation

The transformation properties of the fermion field were
discerned in Ref. [2]. Let  represent the fermion field in
the intrinsic reference frame. Then, the fermion field in the
extrinsic frame, �, can be written as

� = g. (16)
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From this expression, it can be shown that under rotations, the
intrinsic fermion field transforms as

 → ̃ = h̃, (17)

allowing us to write rotationally invariant objects from the
intrinsic fermion field with ease. Similarly, if the covariant
derivative is defined as

Dt ≡ ∂t + iv3J3 = ∂t − iα̇ cos βJ3, (18)

the covariant derivative of the intrinsic field, Dt, transforms
as

Dt → D̃t̃ = h̃Dt. (19)

We can parametrize  in terms of the angles γ and θ speci-
fying the orientation of the fermion’s total angular momentum
in the intrinsic frame. For example, a fermion in a spin-half
orbital would take the form

 = φe−iγ J3 e−iθJ2

(
1
0

)
, (20)

where φ is the solution to the part of the rotor’s potential that
does not change under rotations. This means that φ carries the
radial dependence, i.e., φ(r). We note that rotations around the
symmetry axis are arbitrary for an axially symmetric system.
So we choose to write the fermion in a different form that will
be useful in what follows. We write

 = e−iγ J3ξ, (21)

where ξ is the fermion state in the intrinsic frame with the
choice γ = 0, i.e.,

ξ = φe−iθJ2

(
1
0

)
. (22)

We then rewrite the fermion in the extrinsic frame as

� = r(α, β, γ )ξ . (23)

Even though we have shown the parametrization in Eqs. (20)
and (22) for a fermion in a spin-half orbital, Eq. (23) is gen-
eral. We also note that even though the choice of γ is arbitrary
γ̇ is not, since γ̇ could couple to other degrees of freedom and
we chose γ to be part of the rotational degrees of freedom.

Note that this intrinsic frame constitutes an additional
choice beyond that made at the start of this section: we exploit
the symmetry of the rotor around the 3-axis to choose an
intrinsic frame in which the fermion spin vector lies in the
1–3 plane. In this frame the components of the element �v are
obtained by studying the dynamics of the element r−1∂t r:

v1 = α̇ sin β cos γ − β̇ sin γ ,

v2 = −α̇ sin β sin γ − β̇ cos γ ,

v3 = −α̇ cos β − γ̇ .

C. Constructing the leading-order Lagrangian

We separate the Lagrangian into a term involving the ro-
tational degrees of freedom of the whole system (i.e., �v), a
term involving the fermionic degrees of freedom, �r and �s, and

a term encoding the coupling between the fermion and the
overall rotational motion

L = Lrot + Lferm + Lcoup. (24)

Here

Lferm = 1

2
m

(
d�r
dt

)2

− V (�r, �s), (25)

where V (�r, �s) is the aforementioned single-particle effective
potential. Meanwhile Lrot is as discussed in Ref. [3], and is
built out of powers of �v—or more specifically v+1v−1.

A Lagrangian consisting of v+1, v−1, ξ , and Dtξ that is
invariant under rotations of the subgroup SO(2) will be in-
variant under the full action of the group SO(3). We write the
LO Lagrangian in the intrinsic frame as

LLO = C0v+1v−1 + ξ †iDtξ − ξ †Hintξ

= C0

2
(α̇2 sin2 β + β̇2) + q|φ|2α̇ cos β cos θ

+ qγ̇ |φ|2 cos θ + iφ∗φ̇ − ξ †Hintξ, (26)

where q is the total angular momentum of the fermion in the
intrinsic frame.

The physics content of this Lagrangian is clearer if we
compute the matrix elements of the fermion’s angular momen-
tum. Defining jk ≡ ξ †Jkξ for k = 1, 2, 3 we have

j1 = q|φ|2 sin θ, j2 = 0, j3 = q|φ|2 cos θ. (27)

We also note that iξ †∂tξ = iφ∗φ̇. The conjugate momenta for
the coordinates φ, α, β, and γ are then

pφ = iφ∗, pα = C0α̇ sin2 β + cos β j3,

pβ = C0β̇, pγ = q|φ|2 cos θ. (28)

We note that pγ = ξ †J3ξ , so, as expected, the component
of the total angular momentum along the rotor symmetry
axis comes entirely from the fermion. The LO Hamiltonian
associated with the Lagrangian Eq. (26) then takes the more
transparent form

HLO = 1

2C0

[(
pα − cos βpγ

sin β

)2

+ p2
β

]
+ ξ †Hintξ . (29)

This Hamiltonian can be cast in an even simpler form
if we rewrite it in terms of the total angular momentum of
the system, �Q. The expressions for the components of this
constant of motion in the extrinsic frame are (see Appendix
D of Ref. [2] for details)

Qx = −pα cot β cos α − pβ sin α + pγ

cos α

sin β
,

Qy = −pα cot β sin α + pβ cos α + pγ

sin α

sin β
, (30)

Qz = pα.

The expression for the intrinsic components Q1, Q2, and Q3

can be obtained from the ones above by means of the rotation
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r−1. In terms of the square of the total angular momentum,

�Q2 = p2
β + 1

sin2 β
(pα − cos βpγ )2 + p2

γ , (31)

the LO Hamiltonian can be written as

HLO = 1

2C0

( �Q2 − p2
γ

) + ξ †Hintξ (32)

IV. HIGHER-ORDER TERMS

As discussed in Sec. II, the LO Lagrangian Eq. (26) can
be systematically improved by including permitted operators
coupling rotor and fermion degrees of freedom with increas-
ing powers of the low-energy operator v. These operators
effectively account for the interaction between the rotor and
the fermion and the nonrigidity of the former.

The order-by-order construction of the effective Hamil-
tonian is achieved employing Fukuda’s inversion method to
expand the generalized velocities of the system, ẋ ∈ {α̇, β̇}, in
power series of the dual expansion parameters εvib, εsp:

ẋ =
∑

m

ẋ(m), (33)

where ẋ(m) ∼ ẋ(0)εm. We remind the reader that in this work
we do not attempt an EFT expansion for the single-particle
potential Vsp(�r, �s). Furthermore, since we have no power
counting for fermionic operators any combination of them
permitted by symmetries can multiply an operator of a given
order in v.

Nevertheless, if we consider the leading-order Lagrangian
for the rotor then, if we write the generalized velocities as
expansions in powers of (εsp, εvib), it can be symbolically
written as

LLO = C0(v(0) + v(1) + · · · )+1(v(0) + v(1) + · · · )−1

= C0v
(0)
+1v

(0)
−1 + C0v

(0)
+1v

(1)
−1 + C0v

(1)
−1v

(0)
+1 + · · · . (34)

The second and third terms in the second line here are
(εsp, εvib) times smaller than the first one, and must be
accounted for when computing the O(v) piece of the Hamil-
tonian. The terms in . . . are suppressed by additional powers
of the small parameter and are included in corrections to H at
O(v2) and beyond.

A. Leading rotor-fermion coupling

At lowest order in �v, the only relevant term correcting the
LO Lagrangian is

�LNLO = C1(v+1 j−1 + v−1 j+1). (35)

The next-to-leading order (NLO) correction to the Hamilto-
nian can be written as

�HNLO =pαα̇(1) + pββ̇ (1) − L(1)
LO − �L(1)

NLO. (36)

Notice that this correction includes a contribution from the
LO part of the Lagrangian, as discussed above. Inserting the
expressions for the components of the generalized velocities

in the above equation yields

�HNLO = C1

C0
( j+1Q−1 + j−1Q+1), (37)

where we have defined j±1 = ξ †(J1 ± iJ2)ξ/
√

2 =
q|φ|2 sin θ/

√
2 and Q±1 = (Q1 ± iQ2)/

√
2, and used the

identity

j+1Q−1 + j−1Q+1

= q|φ|2 sin θ

(
pβ sin γ − pα

sin β
cos γ + cos β

sin β
pγ cos γ

)
.

(38)

The operator structure of this correction is identical to that
of the Coriolis term obtained by writing a rotationally invari-
ant Lagrangian for the particle-rotor system in the extrinsic
frame

Lext = C0v+1v−1 + �†i∂t� − �†H (f)
ext�, (39)

and rotating it to the intrinsic one by means of the rotation r,

Lint = C0v+1v−1 + ξ †r−1i∂t rξ − ξ †r−1H (f)
extrξ

= C0v+1v−1 − �v · �j + ξ †i∂tξ − ξ †H (f)
int ξ . (40)

This intrinsic Lagrangian yields a Hamiltonian

Hint = 1

2C0
( �Q − �j)2 + ξ †H (f)

int ξ

= 1

2C0
[ �Q2 − 2( j+1Q−1 + j−1Q+1)] + ξ †H̃ (f)

int ξ, (41)

with H̃ (f)
int ≡ H (f)

int + �j2 − 2 j2
3 . This is equivalent to the rotor-

fermion model Hamiltonian of Bohr and Mottelson [1], and
similar to our NLO effective Hamiltonian, HNLO = HLO +
�HNLO. Notice, however, that the coefficient accompanying
the “Coriolis” term stemming from Eq. (37) is undetermined.
In contrast the Coriolis term in the Bohr and Mottelson
Hamiltonian is determined by the requirement of rotational
invariance in the extrinsic frame—this is, after all, a classical-
mechanics argument to this point.

Papenbrock and Weidenmüller point out that the fact that
C1 is not determined by symmetries and so is = −1 can be
understood as a consequence of the presence of a gauge cou-
pling that modifies the interaction of the fermion with the rotor
velocity field that is generated by minimal subtitution [4].
In fact, the coefficient appearing in Eq. (37) should not be
understood as a number: any fermionic operator—�j2, (�j · ê3)2,
�r 2, (ê3 · �r) 2—can appear in it. Therefore, the full correction to
the Hamiltonian at NLO in our expansion in powers of εsp is

�HNLO = f (�j 2, (�j · ê3)2, �r 2, (ê3 · �r) 2)( j+1Q−1 + j−1Q+1),
(42)

where f encodes an arbitrary string of fermionic operators.
We will see below that the distinction between f and C1/C0

is irrelevant as far as practical application of this EFT is con-
cerned, since the matrix element of the quantum-mechanical
operator f (. . .)�j in the fermionic state on which the band is
built determines the size of the NLO effect in that band.
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B. Corrections to the rotor-fermion coupling

Operators involving more powers of v improve the rotor-
fermion interaction in Eq. (35). The O(v2) correction to this
“Coriolis” term is

�LN2LO = C2

2
(v+1 j−1 + v−1 j+1)2 + D2(v+1v−1)�j2. (43)

Including this contribution to the effective Lagrangian and the
second-order components of the generalized velocities in the
effective Hamiltonian yields an N2LO correction

�HN2LO = − C2

2C2
0

( j+1Q−1 + j−1Q+1)2 − D2

2C2
0

( �Q2 − j2
3

)�j 2

+ C2
1

C0

(
j2
1 + j2

2

)
. (44)

It is important to mention that our lack of knowledge of
the details of the single-particle states makes it impossible
to disentangle the matrix elements of the third term in this
correction from those of Hferm. The effects of this term are
thus taken into account already at LO.

In a similar way, including the N3LO contribution to the
Lagrangian

�LN3LO = C3

3
(v+1 j−1 + v−1 j+1)3

+ 2D3

3
(v+1v−1)(v+1 j−1 + v−1 j+1) (45)

and the third-order components of the generalized velocities,
yields the N3LO correction to the Hamiltonian

�HN3LO = C3

3C3
0

( j+1Q−1 + j−1Q+1)3

+ D3

3C3
0

( �Q 2 − j2
3

)
( j+1Q−1 + j−1Q+1)

− C1

C2
0

[ j+1Q−1 + j−1Q+1]
[
C2

(
j2
1 + j2

2

) + D2 �j 2].
(46)

Again, the matrix elements of the third term cannot be disen-
tangled from those of �HNLO, and thus those effects are taken
into account at that order.

This pattern is generic: the relevant terms in the order n cor-
rection to the Hamiltonian always come from −�LNnLO(ẋ(0) ).
Terms in the nth-order piece of the Lagrangian, �LNnLO, that
contain (v+1v−1)n and (v+1 j−1 + v−1 j+1)n therefore trans-
late into corrections to the Hamiltonian containing ( �Q2 −
j2
3 )n/2nC2n

0 and ( j+1Q−1 + j−1Q+1)n/Cn
0 , respectively.

It then follows that the fourth-order contribution to the
Lagrangian,

�LN4LO = C4

4
(v+1 j−1 + v−1 j+1)4

+ D4

2
(v+1v−1)(v+1 j−1 + v−1 j+1)2, (47)

yields the correction to the Hamiltonian

�HN4LO = C4

4C4
0

( j+1Q−1 + j−1Q+1)4

+ D4

4C4
0

( �Q 2 − j2
3

)
( j+1Q−1 + j−1Q+1)2

+ · · · , (48)

where the dots stand for terms whose matrix elements cannot
be disentangled from those of lower-order corrections.

C. Corrections to the rotor Lagrangian

Besides effectively accounting for the interaction between
the nucleons in the rotor and the fermion, higher-order contri-
butions to the Lagrangian account for other effects. As shown
in Ref. [3] adding a term of the form

�Lrotor subleading = E4(v+1v−1)2 (49)

to the effective Lagrangian improves the description of the
ground-state rotational bands in even-even nuclei. Including
this term in our Lagrangian yields the correction to the Hamil-
tonian

�Hrotor subleading = E4

4C4
0

( �Q 2 − j2
3

)2
. (50)

This correction, however, is not suppressed in the same way
as the operators discussed up until this point since it does
not arise from integrating out fermionic states. In Ref. [3]
the suppression of this correction was established to be
(Erot/Evib)2 = ε2

vib. For most of the systems considered in this
work (Erot/Evib)2 ∼< (Erot/Ehigh )3, and thus we can treat the
correction (50) as part of the N4LO correction to the Hamilto-
nian.

V. ENERGY FORMULA FOR ROTATIONAL BANDS

Now that we have an order-by-order expansion for the
Hamiltonian of the rotor-fermion system in hand, we will use
it to systematically compute the energies of states in rotational
bands with definite K , seeking an expansion for those energies
in powers of the same two expansion parameters used to
organize the Hamiltonian in the previous section, i.e., εsp and
εrot.

A. Leading order

Let us return to the expression for the LO Hamiltonian in
Eq. (32). In what follows we take this classical function of
the coordinates α, β, γ , θ , and φ, and treat it as a quantum-
mechanical operator with Q̂ and Ĵ acting on the rotational and
fermionic degrees of freedom, respectively. The eigenstates of
the intrinsic single-particle Hamiltonian Ĥint , simultaneously
eigenstates of Q̂3, are denoted by ξK ,

ĤintξK = EKξK . (51)

We note that since these states are eigenstates of Q̂3 they do
not correspond to a definite θ , i.e., the representation Eq. (22)
does not apply from this point on. For the rotational portion
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of the Hamiltonian we choose the Euler angle (α-β-γ ) repre-
sentation, for which the eigenstates of the rotor Hamiltonian
Ĥrot = (Q̂2 − p̂2

γ )/2C0 are Wigner D-functions, denoted by
D I

MK ≡ D I
MK (α, β, γ ),

ĤrotD
I
MK = h̄2I (I + 1) − h̄2K2

2C0
D I

MK . (52)

We focus on nuclei for which the band under study, defined
by its value for K , is well separated from bands with Q̂3 =
h̄(K ± 1). For these systems states in the band of interest can
be described in terms of only one single-particle state ξK :
mixing between it and ξK±1 is a perturbative effect. If the
splitting between EK and EK+1 (say) is “accidentally” smaller
than the typical single-particle energy scale Esp (instead it is of
order Erot), then both states must be considered as low-energy
degrees of freedom in the rotational EFT. Significant inter-
band mixing results. The consequences of this were discussed
by Rowe for the case of 183W (cf. also Sec. VI E below) [5]
and by Papenbrock and Weidenmüller for 187Os [4].

But, in nuclei for which |EK±1 − EK | � Erot product states(
2I + 1

8π2

)1/2

ξKD I
MK (53)

are eigenstates of ĤLO corresponding to eigenvalues

ELO(I, K ) = 〈KIM|ĤLO|KIM〉 = ArotI (I + 1) + ẼK . (54)

Here Arot is the constant h̄2/2C0 and ẼK is the energy of
the fermion in the intrinsic frame, EK , minus h̄2K2/2C0. It
is important to note that the Euler angles in the Wigner D-
function describe the motion of the system as a whole, and
not just that of the rotor to which the fermion is coupled.
Correspondingly, I , M, and K are the eigenvalues of Q̂2, Q̂z,
and Q̂3, where Q̂ is the total angular-momentum operator of
the rotor-plus-fermion system. This system is then described
by a wave function that is the product of the wave function of
the fermion in the intrinsic frame and the wave function of the
rotational motion of the system as a whole [1].

Equation (54) is the leading term in an adiabatic expansion
for the energy of states in the K rotational band. The adiabatic
expansion is useful when (h̄ times) the rotational frequency
of the system is small compared to the excitation energies of
the fermion in the rotor’s potential. That states of the form of
Eq. (53) represent the wave function of the rotor-plus-fermion
system at LO in such an expansion is emphasized by, e.g.,
Rowe in Ref. [5].

The R symmetry of the system results in the state propor-
tional to ξK̄D I

M−K having the same energy as the state Eq. (53).
[ξK̄ is obtained from ξK by applying the R-parity operator, see
Bohr and Mottelson, Eq. (4-17).] It follows that the LO wave
function of the rotor-fermion system is the one written in Bohr
and Mottelson Eq. (4A-5),

�KIM =
(

2I + 1

16π2

)1/2[
ξKD I

MK + (−1)I+KξK̄D I
M−K

]
. (55)

B. Next-to-leading order

The first-order correction to the adiabatic picture is gen-
erated by the NLO piece of the effective Hamiltonian. This

term is linear in v and couples the angular velocity of the
system to the fermion’s degrees of freedom. It has a sim-
ilar form to the well-known Coriolis coupling of classical
mechanics. The expectation value of the NLO Hamiltonian,
ĤNLO = ĤLO + �ĤNLO, for states in a K band is

ENLO(I, K ) = ArotI (I + 1) + ẼK

+ A1(−1)I+1/2
(
I + 1

2

)
δ

1/2
K . (56)

Here we have absorbed all corrections to the fermion’s energy
into ẼK , and defined the LEC A1 ≡ −ah̄C1/2C0, with a =
−〈K = 1/2|√2Ĵ+1|K = 1/2〉 being Bohr and Mottelson’s de-
coupling constant (notice the difference in the convention
for Ĵ+1). This yields the expectation that the LEC A1 is of
order Arot times the single-particle J . In this work we do not
calculate a since we are agnostic regarding the dynamics in
Hint . Instead we absorb this matrix element in the LEC A1 and
fit it to data.

The NLO correction to the energies is zero for all bands
with K = 1/2 since �ĤNLO changes K by one unit. The last
term in ENLO(I, K ) is sometimes called the signature term,
and it causes staggering between adjacent states in K = 1/2
bands. This staggering is clearly visible in experimental data.
Thus, the addition of the NLO correction to the energies
should improve the description of K = 1/2 bands.

We note that the Coriolis-like term in HNLO can be treated
in perturbation theory because we assume that the splitting
between the K = 1/2 and K = 3/2 band (say) is large com-
pared to the shift in energy induced by the NLO Hamiltonian.
This provides a criterion for when this NLO term should
be treated nonperturbatively. If the difference of bandhead
energies becomes of order �ENLO, then �HNLO must be di-
agonalized in the basis of states | ± K〉 and | ± (K + 1)〉. The
result of this diagnoalization is worked out by Papenbrock and
Weidenmüller in Ref. [4] and then employed in 187Os. Here
we restrict ourselves to situations were EK+1 − EK � �ENLO

and so perturbation theory is applicable.

C. Next-to-next-to-leading order

At next-to-next-to-leading order (N2LO) we should in prin-
ciple consider two insertions of the Coriolis-like operator
Eq. (42). This second-order correction accounts for virtual
excitations of the fermion from, for example, a K = 1/2 band
to a K = 3/2 band and back to the K = 1/2 band. The calcu-
lation of these effects is discussed in Ref. [1]. However, in an
EFT in which only one fermionic state is a low-energy degree
of freedom there are no states to sum over in the second-order
perturbation theory calculation. All such second-order effects
are “high-energy physics” and, as such, get subsumed into
the operators that appear in the N2LO Hamiltonian, ĤN2LO =
ĤNLO + �ĤN2LO. In particular, the first term in Eq. (44) has
the same operator structure as two insertions of the Coriolis-
like operator. We calculate its contribution and that of the
second term in Eq. (44) in Appendix B, and rewrite the re-
sulting N2LO shift in the energy as a K-band dependent shift
in the LEC Arot, i.e.,

�EN2LO(I, K ) = �AK I (I + 1), (57)
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TABLE II. In the first segment of the table we show the rotational bandhead energy, spin, and parity. In the second segment energy scales
for different nuclei are shown in units of keV. In the third segment we compare the relative correction to A at N2LO, �A/A, to its expected
size εsp, εvib. In the next segment, B1/A (or A3/A for 3/2 bands) is the relative correction to the energy at N3LO; its expected size is (εsp, εvib )2.
Finally, at N4LO the relative correction is B/A and this is expected to be of order (εsp )3 or (εvib )2. Multiple bands within the same nucleus are
grouped together.

Bandhead Energy scales [keV] N2LO N3LO N4LO

Nucleus E [keV] Jπ Erot Evib Esp �A/A εsp εvib (B1, A3)/A (εsp )2 (εvib )2 B/A (εsp )3 (εvib )2

99Tc 143 1/2− 539 1362 529 0.21 1.02 0.40 −0.1192 1.039 0.157 −0.0216 1.0590 0.157
159Dy 0 3/2− 99 990 310 0.31 0.32 0.10 −0.0003 0.102 0.010 −0.0003 0.032 0.010
167Er 208 1/2− 80 785 545 0.17 0.15 0.10 −0.0019 0.022 0.010 −0.0007 0.0032 0.010

347 5/2− 80 785 321 0.11 0.25 0.10 – – – −0.0009 0.0154 0.010
532 3/2+ 80 785 279 0.37 0.29 0.10 −0.0067 0.082 0.010 0.0008 0.0236 0.010
0.0 7/2+ 80 785 812 0.34 0.10 0.10 – – – 0.0009 0.0010 0.010

169Er 0 1/2− 80 821 562 0.12 0.14 0.10 −0.0013 0.020 0.009 −0.0004 0.0029 0.009
167Tm 0 1/2+ 80 785 470 0.08 0.17 0.10 0.0018 0.029 0.010 −0.0007 0.0049 0.010
169Tm 0 1/2+ 80 821 570 0.07 0.14 0.10 0.0013 0.020 0.009 −0.0004 0.0027 0.009
183W 0 1/2− 100 1221 209 0.22 0.48 0.08 −0.0006 0.230 0.007 0.0010 0.1102 0.007
235U 0.076 1/2+ 43 927 393 0.17 0.11 0.05 −0.0005 0.012 0.002 −0.0004 0.0014 0.002

129.3 5/2+ 43 927 204 0.17 0.21 0.05 – – – −0.0001 0.0098 0.002
0.0 7/2− 43 927 633 0.29 0.07 0.05 – – – 0.0014 0.0003 0.002

239Pu 0 1/2+ 44 605 752 0.15 0.06 0.07 0.0002 0.003 0.005 −0.0001 0.0002 0.005

where

�AK ≡ − h̄2

2C2
0

〈KIM|(C2Ĵ+1Ĵ−1 + D2Ĵ2)|KIM〉. (58)

Taking C2 and D2 to be of order E−1
sp or E−1

vib and h̄2/C0 of order
Erot gives us an estimate for �AK/A of order O(εsp, εvib).
Meanwhile, the contribution to the energy shift from the last
term in the operator version of Eq. (44) can be absorbed into a
redefinition of the energy ẼK of the fermion, since the operator
contributes only to Ĥint. Hence, the energy formula up to
N2LO is

EN2LO(I, K ) = AK I (I + 1) + ẼK

+ A1(−1)I+1/2(I + 1/2)δ1/2
K . (59)

This appears to be the same as ENLO. However, AK includes
�A, which depends on fermionic matrix elements. This means
we should fit AK to the odd-mass system. We find that AK

tends to be smaller than Arot for ground-state bands. This is
expected if �AK is dominated by the piece ∼C2, since second-
order perturbations to a ground-state energy will result in a
change in A in this direction [1].

D. N3LO

The pattern continues at N3LO. The first operator in
Eq. (46) has the operator structure of three insertions of the
Coriolis operator, but since no other states in the theory are
dynamical, the sum over other states is replaced by an overall
constant C3/3C3

0 . This operator permits the K = 3/2 band
to couple to itself thereby producing a signature term for
the energies of K = 3/2 states. Meanwhile, the Coriolis-like
operator that gave rise to the signature term in K = 1/2 bands
at NLO is itself modified through multiplication by a factor of

Q̂2. Thus, the energy formula at N3LO takes the form

EN3LO(I, K ) = AK I (I + 1) + ẼK

+ A1(−1)I+1/2(I + 1/2)δ1/2
K

+ B1(−1)I+1/2I (I + 1)
(
I + 1

2

)
δ

1/2
K

+ A3(−1)I+3/2
(
I − 1

2

)(
I + 1

2

)(
I + 3

2

)
δ

3/2
K .

(60)

Since these effects occur at N3LO, we expect B1/Arot and
A3/Arot to be of be of order (εsp, εvib)2.

E. N4LO

Including the operators in Eqs. (48) and (50) yields the
N4LO energy formula

EN4LO(I, K ) = AK I (I + 1) + ẼK

+ A1(−1)I+1/2(I + 1/2)δ1/2
K

+ B1(−1)I+1/2I (I + 1)
(
I + 1

2

)
δ

1/2
K

+ A3(−1)I+3/2
(
I − 1

2

)(
I + 1

2

)(
I + 3

2

)
δ

3/2
K

+ BK I2(I + 1)2, (61)

where we defined BK ≡ Brot + �BK , with Brot and �BK

resulting from the contributions in Eqs. (50) and (48), re-
spectively. We note that Brot ∼ Erotε

2
vib while �BK ∼ Erotε

3
sp.

As mentioned above, these two are of roughly the same size
for the nuclei studied in this work. We therefore assign both
effects to N4LO in our EFT. The difference between BK and
Brot tends to be much larger (in fractional terms) than that
between AK and Arot.
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TABLE III. The different LECs at each order for K = 1/2 bands. Note that going from NLO to N2LO we do not add a new LEC, however
at LO and NLO we fit A to the the rotational band in the rotor, while at N2LO and beyond we fit A to the band in the odd-mass nucleus.

A [keV] A1 [keV] B1 [keV] B [keV]

Nucleus LO NLO N2LO N3LO N4LO NLO N2LO N3LO N4LO N3LO N4LO N4LO

99Tc 89.92 89.92 71.40 57.65 79.02 32.22 50.74 83.39 60.31 −6.874 −3.454 −1.710
167Er 13.43 13.43 11.18 11.14 11.24 5.59 7.84 7.94 7.83 −0.021 −0.005 −0.008
169Er 13.30 13.30 11.76 11.73 11.78 8.22 9.75 9.83 9.77 −0.015 −0.007 −0.004
167Tm 13.43 13.43 12.35 12.40 12.50 −9.96 −8.88 −8.99 −9.10 0.023 0.039 −0.008
169Tm 13.30 13.30 12.38 12.41 12.47 −10.50 −9.58 −9.65 −9.72 0.016 0.026 −0.005
183W 16.68 16.68 13.01 12.99 12.84 −1.19 2.49 2.52 2.69 −0.008 −0.033 0.013
235U 7.25 7.25 6.03 6.02 6.05 −2.93 −1.71 −1.69 −1.73 −0.003 0.002 −0.003
239Pu 7.34 7.34 6.25 6.25 6.27 −4.72 −3.63 −3.64 −3.66 0.001 0.004 −0.002

Before closing this section we point out that the Eqs. (61)
and (59) can both be applied to bands with K = 5/2, K = 7/2,
etc. It is just that, up to the order we work here, staggering is
absent for bands with K � 5/2, and so the only terms that
are present are the ones with even powers of I . Note that the
assumption that matrix elements of the fermion angular mo-
mentum operator are ∼1 becomes increasingly questionable
as K increases.

VI. APPLICATION

We show the bandhead state properties, relevant energy
scales, and ratios of low-energy constants (LECs) for the sys-
tems 99Tc, 159Dy, 167,169Er, 167,169Tm, 183W, 235U, and 239Pu
in Table II. In the “energy scales” part of the table Erot is
taken to be the energy of the first 2+ state in the ground-state
rotational band of the rotor. The energy scale of vibration,
Evib, is the energy of the first vibrational energy level of the
rotor, and Esp is the difference in energy between the energy
of the specific band we are looking at and the next band that
couples with it with |�K| � 1. We see a clear trend that εvib

decreases with increasing mass. However, εsp does not seem
to have a clear trend. The results in the table for LEC ratios
are discussed below, in Sec. VI G.

Here we will, though, briefly describe the procedure we
used to fit the LECs in the energy formula for K = 1/2 bands.
At LO, the LECs Arot and ẼK are fitted to the energies of the
2+ state in the ground-state rotational band of the rotor and the
bandhead of the K = 1/2 rotational band under consideration,
respectively. At NLO, the LECs ẼK and A1 are fitted to the
energies of the first two states of the K = 1/2 band, while the
LEC Arot is still fitted to the rotor. Starting at N2LO, all the
LECs in the energy formula are fitted to the energies of the
lowest states of the K = 1/2 band.

For K = 3/2 bands, we employ the lowest states in the
considered band to fit the parameter ẼK in the energy formula
at LO. At NLO there is no correction to the energy of the
K = 3/2 band. At N2LO and beyond, K = 3/2 bands are de-
scribed in terms of the rotor’s effective moment of inertia and
the energy of the bandhead. At N2LO band-dependent terms
shift the LEC Arot, effectively changing the moment of inertia.
At N3LO the signature term proportional to I3 produces the
dominant energy staggering in these bands. That staggering

is typically less pronounced than that observed in K = 1/2
bands, in agreement with our power counting.

For bands with K � 5/2 staggering terms are absent up to
N4LO. This leaves us with only three coefficients to deter-
mine. At LO we fit the LEC A to the rotor’s spectrum and at
N2LO and N4LO we fit all our LECs to low-lying levels in
the odd nucleus. Tables III–V list the LECs employed at each
order to describe the bands considered in this work.

A. Poster children: K = 1/2 bands in 167Tm and 169Er

For the description of the 1/2− and 1/2+ ground-state
rotational bands of 169Er and 167Tm we use 168Er and 166Er as
rotors, respectively. Figures 1 and 2 show the calculated en-
ergies of these bands up to N4LO together with experimental
data. In Figs. 3 and 4 the absolute residuals between theory
and experiment, |Etheo − Eexp|, are plotted as a function of the
total angular momentum of the system, I , on a log-log plot.
To gain insight as to how the error in our calculations scales
with I , we remove the staggering of the absolute residuals,
clearly seen in the log-log plots, by averaging the residuals of
each pair of neighboring levels. This yields the solid lines in
Figs. 3 and 4. If the error scales with a definite power of I ,
as expected in our EFT, then these averaged residuals should
follow a straight line with a slope greater than or equal to that
power in the log-log plots. The slope of the line that best fits
the averaged residuals is given in these figures’ legends.

For 169Er and 167Tm, the log-log plots make evident the
systematic improvement of the calculated energies. Going
from LO to NLO removes the energy staggering seen at LO
(red triangles). Refitting the moment of inertia at N2LO yields
a clear improvement over NLO, as it permits the removal of

TABLE IV. The different LECs at each order for K = 3/2 bands.
Note that going from LO to N2LO we do not add a new LEC.
However at LO we fit A to the the rotational band in the rotor, while
at N2LO and beyond we fit A to the band in the odd-mass nucleus.

A [keV] A3 [keV] B [keV]

Nucleus LO N2LO N3LO N4LO N3LO N4LO N4LO

167Er 13.43 8.44 8.80 8.69 −0.059 −0.054 0.007
159Dy 16.48 11.32 11.35 11.44 −0.005 −0.009 −0.005
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TABLE V. The different LECs at each order for K = 5/2 and
K = 7/2 bands. Note that going from LO to N2LO we do not add a
new LEC. However at LO we fit A to the the rotational band in the
rotor, while at N2LO and beyond we fit A to the band in the odd-mass
nucleus.

A [keV] B [keV]

Nucleus Jπ LO N2LO N4LO N4LO

167Er 5/2− 13.43 11.92 11.92 −0.011
7/2+ 13.43 8.81 8.81 0.008

235U 5/2+ 7.25 6.01 6.01 −0.0004
7/2− 7.25 5.12 5.12 0.007

errors of order I2. This increases the slope of the averaged
residuals significantly and gives us better agreement with
experiment. However, N2LO calculations reveal that there is
staggering at higher orders which cannot be removed by the
(NLO) signature term, proportional to I . Adding the correc-
tion to this term proportional to I3 at N3LO, removes most
of this higher-order staggering. In 167Tm, the N3LO energy
formula gives us better qualitative agreement with experiment.
However, the averaged error increases slightly as signaled by
the decrease in the slope of the averaged residuals. For 169Er,
the staggering is not clearly removed at N3LO but the slope
of the average residuals increases. Finally adding the N4LO
correction to the energy formula, proportional to I4, improves
the agreement with experiment dramatically, increasing the
slope of the averaged residuals. We therefore see system-
atic order-by-order improvement across the known rotational
levels of the ground-state bands of 169Er and 167Tm. The
increasing slopes of the residuals make evident that the theory
will eventually break down at higher I . Indeed, we already
almost see this breakdown at the highest known levels.

There is similar systematic improvement for 169Tm but
fewer levels so we do not discuss this case in the main text.
Plots for that case which correspond to Figs. 2 and 4 are
provided in Appendix C. 167Er based on a 166Er core behaves
similarly to 169Er, but there is less staggering. We discuss

167Er below, in Section VI D, where we demonstrate that
our EFT can describe multiple rotational bands in the same
nucleus. The similarity of the results for 169Tm and 167Er to
the cases presented in this section is not surprising given that
the energy scales in all four systems are very similar.

B. More complicated, yet still successful cases:
K = 1/2 bands in 239Pu

The case of 239Pu is more complicated as there are more
single-particle levels close together. A variant of the EFT
presented in this work was already successfully applied to
239Pu in Ref. [4]. There 238Pu was chosen as the rotor, and
we make the same choice. We study the rotational band built
on the 1/2+ ground state, and carry out the analysis up to
N4LO. Figure 5 shows a clear systematic improvement in the
agreement with data as we go to higher orders. Moving to
the residuals, Fig. 6 shows good order-by-order improvement
both in the size of residuals and in removal of the energy
staggering. The slopes of the lines that best fit the averaged
residuals in this plot increase as expected going from NLO to
N2LO and from N3LO to N4LO.

Papenbrock and Weidenmüller [4] chose the energy of the
5/2+ bandhead at 300 keV as the breakdown scale in 239Pu.
We instead take Esp = 752 keV since this is the energy of the
first bandhead above the 1/2+ band with |�K| � 1 and so sets
the scale for mixing with the 1/2+ at N2LO. We find the scales
of the LECs are consistent with our power counting and this
choice of Esp. �A could be considered an exception to this
statement, but this somewhat large shift in A at N2LO can be
understood in terms of the Nilsson model. There we expect
the fermion to be in a large j orbital which increases the size
of the Coriolis coupling.

C. K = 3/2 bands too: 159Dy

To assess the EFT’s performance for K = 3/2 bands we
need a case where there is a significant amount of data on
the band’s energy levels, and where other bands for which
|�K| � 1 are separated by appreciable energy gaps from the

FIG. 1. Calculated energies for the 1/2− ground-state rotational band in 169Er. The black line shows experimental values taken from the
NNDC [25]. Red triangles, green squares, cyan diamonds, blue pentagons and magenta circles show calculated energies at LO, NLO, N2LO,
N3LO, and N4LO, respectively. The right panel is a continuation of the left panel with a different scale for the y axis.
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FIG. 2. Calculated energy for the 1/2+ ground-state rotational band in 167Tm. The black line shows the experimental values taken from
the NNDC [26]. The red triangles, green squares, cyan diamonds, blue pentagons and magenta circles are the calculated energies at LO, NLO,
N2LO, N3LO, and N4LO, respectively. The right panel is a continuation of the left panel with a different scale for the y axis.

band of interest. 159Dy, where the ground state has I = 3/2,
provides such a case. For this band there is clear systematic
improvement as shown in Figs. 7 and 8. From LO to N2LO
the slope of the residuals in the log-log plot increases by more
than two units. From N2LO to N3LO the energy staggering
(proportional to I3) is almost completely removed. Finally, at
N4LO the slope improves to 5–6, consistent with the idea that
it is I5 staggering and an I6 term that are the dominant omitted
effects.

D. Multiple well-separated bands: 167Er and 235U

Our EFT can be applied to multiple bands in the same
nucleus. The formulas we have derived apply simultaneously
to two bands if:

FIG. 3. Energy residuals for the 1/2− ground-state rotational
band in 169Er on a log-log scale. The red triangles, green squares,
cyan diamonds, blue pentagons and magenta circles are the residuals
from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO,

respectively. The dashed transparent lines are there to guide the
eye. The solid lines show the trend of the calculated residuals after
averaging out the signature staggering. The slope shown in the legend
is the slope of the solid lines.

(1) the interband spacing, which will typically be ∼Esp

is large compared to the intra-band spacing which is
∼Erot; or

(2) the bandhead states have different parity, and so do not
mix; or

(3) the bandheads have values of K that differ by 2 or more
and so do not mix up to N4LO.

If any of these conditions are satisfied, then interband mix-
ing can be neglected. The energy levels in the two bands then
are each governed by the Eqs. (59) and (61), with different co-
efficients in the formulas applying for the two different bands.
However, the assumption that matrix elements of the angular-
momentum operator between single-particle wave functions
is of order 1 is weakened when we consider rotational bands
built on bandhead states of larger K . This means that we

FIG. 4. Energy residuals for the 1/2+ ground-state rotational
band in 167Tm on a log-log scale. The red triangles, green squares,
cyan diamonds, blue pentagons and magenta circles are the residuals
from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO,

respectively. The dashed transparent lines are there to guide the
eye. The solid lines show the trend of the calculated residuals after
averaging out the signature staggering. The slope shown in the legend
is the slope of the solid lines.
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FIG. 5. Calculated energy for the 1/2+ ground-state rotational band in 239Pu. The black line shows the experimental values taken from the
NNDC [27]. The red triangles, green squares, cyan diamonds, blue pentagons and magenta circles are the calculated energies at LO, NLO,
N2LO, N3LO, and N4LO, respectively. The right panel is a continuation of the left panel with a different scale for the y axis.

expect more systematic order-by-order behavior in the EFT
for, e.g., the K = 1/2 bands.

For 235U we consider 234U to be our rotor. We study the
rotational bands built on top of the 7/2− ground state and the
1/2+ and 5/2+ excited states of 235U. The top-right panel of
Fig. 9 shows that the EFT works well for the 1/2+, perform-
ing similarly to the case of the 1/2+ band in 239Pu studied
above. The other two panels on the right-hand side of Fig. 9
demonstrate that there is also systematic improvement in the
5/2+ and 7/2− bands: the slope of the log-log residual plot
increases from LO to N2LO and again from N2LO to N4LO.
We note that the 7/2− and 1/2+ bands are only separated by
76 eV here, but although they are not well separated in energy
they are separated in the other senses defined above, and so the
EFT describes the energy levels well, i.e., there is no evidence

FIG. 6. Energy residuals for the 1/2+ ground-state rotational
band in 239Pu on a log-log scale. The red triangles, green squares,
cyan diamonds, blue pentagons, and magenta circles are the residuals
from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO,

respectively. The dashed transparent lines are there to guide the
eye. The solid lines show the trend of the calculated residuals after
averaging out the signature staggering. The slope shown in the legend
is the slope of the solid lines.

of inter-band mixing. On the left-hand side of the same figure
we also see the same systematic improvement for rotational
bands built on top of the 7/2+ ground state and the 1/2− and
5/2− excited states of 167Er. (Here we consider 166Er to be the
rotor.) The EFT predicts that staggering in these 5/2 and 7/2
bands occurs only at orders beyond those we’ve calculated
here. Indeed, we do not see clear staggering in three of the
four lower panels of Fig. 9. The exception is the 7/2+ band
of 167Er. There, we extracted the rate at which the staggering
grows with I in the N2LO fit and found it to be ∼I5. This
is reassuring as it says this staggering effect is indeed higher
order than N3LO.

For both nuclei, we notice that, in the 7/2 rotational bands,
the N2LO curve does better than the N4LO at low I . This
breakdown of the systematic improvement at low I may be
due to the violation of the assumption that matrix elements of
�j between single-fermion states are of order 1.

E. Two nearby bands: 183W

For 183W we study the 1/2− ground-state band and take the
LEC A from 182W as our rotor. We use the same procedure we
used previously to get our LECs at each order.

The bottom panels of Fig. 10 show the calculated energies
for the ground-state band of 183W at all orders together with
experimental data. We have to note that for 183W, there exists
a low-lying 3/2− state at 208.8 keV which makes εsp = 0.48.
This makes our expansion parameter larger than the usual
cases and we expect our EFT to break down relatively quickly.
This could be understood in terms of band mixing between
the 1/2− and 3/2− bands [5]. A way to fix this would be to
include the 3/2− band as an additional low-energy degree of
freedom in the Lagrangian. This would require us to fit the
two bands simultaneously and we would then expect to get
better agreement with data.

This kind of EFT treatment of the rotor-fermion prob-
lem was implemented by Papenbrock and Weidenmüller for
187Os [4]. They argued that this provides an EFT definition of
triaxiality. Conversely, for rotational states whose excitation
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FIG. 7. Calculated energies for states in the 3/2− ground-state rotational band in 159Dy. The black lines show the experimental values
taken from the NNDC [29]. The red triangles, cyan diamonds, blue pentagons and magenta circles are the calculated energies at LO, N2LO,
N3LO, and N4LO, respectively. The right panel is a continuation of the left panel with a different scale on the y axis.

energies are less than Esp one can can still perturb around the
axial limit.

The staggering in 183W is not clearly present in experimen-
tal data and therefore we do not see a clear improvement going
from LO to NLO. Going to N2LO we see a clear improvement
overall and at N4LO we only see improvement for the levels
with low I . This comes from the relatively large expansion
parameter and is consistent with our expectation that the EFT
breaks down relatively early.

The right panel of Fig. 11 shows the log-log plot of the
residuals where we clearly see the breakdown at around I =
15/2, where the N2LO and N3LO lines cross the N4LO line.
The very low residual at I ≈ 15 for N2LO is accidental: the
residuals shift from being negative to being positive there.
This accidental crossing also explains the bending of the
N2LO and N3LO lines for I > 10.

FIG. 8. Energy residuals for the 3/2− ground-state rotational
band in 159Dy on a log-log scale. The red triangles, cyan diamonds,
blue pentagons and magenta circles are the residuals from the cal-
culated energies at LO, N2LO, N3LO, and N4LO, respectively. The
dashed transparent lines are there to guide the eye. The solid lines
show the trend of the calculated residuals after averaging out the
signature staggering. The slope shown in the legend is the slope of
the solid lines.

F. What failure looks like: 99Tc

For 99Tc we look at the rotational band built on top of the
first 1/2− excited state. We consider 99Tc to be a proton hole
on top of 100Ru as the rotor. We expect the breakdown scale
for 99Tc to be very low since εsp is greater than 1. We clearly
see this in the top panels in Fig. 10 and the left panel in Fig. 11,
where going to higher order does not necessarily describe the
data better. In fact, at N4LO the theory prediction does worse
than the predictions at lower orders when we go beyond I =
17/2−. Indeed, apart from the levels used in the fit, we could
describe the energies of all levels better at lower orders. We
also do not see the expected increase in the slope going from
NLO to N2LO. The magenta line crossing all the other lines
in Fig. 11 at low energies is a quantitative measure of the low
breakdown energy of the fermion-rotor EFT in this case.

G. Values and order-by-order stability of LECs

We show the bandhead properties, relevant energy scales,
and the relative sizes of LECs for the systems studied in this
work in Table II. The third, fourth, and fifth segments of the
table show the relative size of the LEC that appears at that
order compared to the LO LEC A. Each block then compares
that relative size to the expectation based on energy-scale
ratios in the nucleus of interest. We note that it is sometimes
hard to decide whether εsp or εvib sets the size of the correction
at each order and indeed, one sometimes sees an interplay
between both. The ratios fall in the expected range except for
a few cases. For 239Pu (1/2+ band in 235U) we see that �A/A
is two times (1.5 times) larger than both εsp and εvib. This is
consistent with natural coefficients in the EFT expansion. It
could be related to the large Coriolis coupling associated with
high j orbitals for the fermion. 239Pu and 235U are large nuclei
and we expect the intrinsic wave functions for both nuclei to
have sizable intrinsic angular momentum for the last nucleon.
High j orbitals also cause the size of the corrections for the
5/2 and 7/2 bands to be larger than expected for the two
nuclei where we considered multiple bands. One interesting
observation in those nuclei is that we see similar sized correc-
tions for the bands with the same parity. This is consistent
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FIG. 9. Energy residuals for the 1/2−, 5/2−, and 7/2+ rotational bands in 167Er (left column) and for the 1/2+, 5/2+, and 7/2− rotational
bands in 235U (right column) on a log-log scale. Experimental values are taken from the NNDC [26,28]. The red triangles, green squares,
cyan diamonds, blue pentagons, and magenta circles are the residuals from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO,

respectively. The dashed transparent lines are there to guide the eye. The solid lines show the trend of the calculated residuals after averaging
out the signature staggering. The slope shown in the legend is the slope of the solid lines. For the 7/2− rotational band in 235U we see an
accidental decrease in the residuals beyond I = 29/2 at N2LO. Therefore, we do not include the points beyond I = 29/2 when calculating the
slope.

with the assumption that the odd fermion does not occupy
a single j orbital, but instead, multiple j orbitals with the
same parity and projection K contribute to the fermionic wave
function. We also notice two nuclei where Esp is comparable
to Erot, 99Tc, and 183W. In those two cases we expect the

breakdown scale to be very low and our EFT not to be very
useful.

In Table III we show, for each of the nuclei whose K = 1/2
bands we have studied in this work, the values of the LECs
obtained at each order. For the nuclei where we have a good
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FIG. 10. Calculated energy for states in the 1/2− excited-state rotational band in 99Tc (top panels) and in the 1/2− ground-state rotational
band in 183W (bottom panels). The black line shows the experimental values taken from the NNDC [30,31]. The red triangles, green squares,
cyan diamonds, blue pentagons and magenta circles are the calculated energies at LO, NLO, N2LO, N3LO, and N4LO, respectively. The right
panel is a continuation of the left panel with a different scale for the y axis.

separation of scales we see that the LECs are stable going
from order to order. Since we take A from the rotor at LO
and at NLO, it only changes at N2LO where we refit the

moment of inertia. The size of change for A is consistent
with the power counting, as shown in Table II and discussed
in the previous paragraph. The A1 parameter also changes

FIG. 11. Energy residuals for states in the 1/2− excited-state rotational band in 99Tc (left panel) and in the 1/2− ground-state rotational
band in 183W (right panel) on a log-log scale. The red triangles, green squares, cyan diamonds, blue pentagons and magenta circles are the
residuals from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO, respectively. The dashed transparent lines are there to guide the
eye. The solid lines show the trend of the calculated residuals after averaging out the signature staggering. The slope shown in the legend is
the slope of the solid lines.
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when going from NLO to N2LO and then stabilizes for nuclei
with good separation of scales. The sizable change is because
we remove the I2 dependence when we fit the A parameter
to the odd-mass system at N2LO. Until that happens A1 is
contaminated by ∼I2 effects. For 183W we see a large shift
in A1 going from NLO to N2LO, but this is because there is
no clear staggering in the experimental data for this nucleus.
99Tc has the largest fluctuations in all its LECs because of the
large expansion parameter εsp > 1.

We note that B is negative for most K = 1/2 bands. This
can be understood from the rigid rotor model where when we
allow for small fluctuations around rigidity the moment of in-
ertia increases with increasing I , due to centrifugal distortions.

Table IV provides the LECs for the nuclei where we ex-
amined data on a K = 3/2 band. As in the studied K = 1/2
bands, the change in A from LO to N2LO is consistent with
expectations from the power counting. The values for this
LEC at higher orders do not change drastically. The variation
of the LEC that enters at N3LO and accompanies the K = 3/2
signature term, A3, with the EFT order is similar to that of B1.

Table V provides the LECs for the two nuclei where we
examined 5/2 and 7/2 bands. Here only LECs associated
with even orders appear, since the EFT predicts there is no
staggering at N4LO for 5/2 and 7/2 bands.

H. Extracting the breakdown scale in different systems

We extract the breakdown scale by locating where the
N4LO line (magenta) crosses the lower-order lines in the log-
log plots. That is to say, we define the theory to have broken
down when the theory prediction at N3LO does better that the
prediction at N4LO. This occurs within the range of the plot
for 99Tc and 183W, where we identify the breakdown scale to
be at 1500 and 820 keV, respectively. We note that these num-
bers are higher than the naive breakdown scale associated with
other single-particle energies. We see a similar higher-than-
expected breakdown scale for the other nuclei considered.
For the 7/2 bands in 235U and 167Er we see the breakdown
happening at about 200 and 1000 keV, respectively. The lower
than expected breakdown scale for the 7/2 band in 235U is
puzzling. In fact, it is only for 99Tc, 183W, and the 7/2 bands in
235U and 167Er that the N4LO line even crosses the lower order
line. In other nuclei the N4LO line does not cross the N3LO
line within the domain of levels considered in this study, even
though we go well beyond the single-particle and vibrational
energy scales.

VII. SUMMARY AND OUTLOOK

In their 1969 book Bohr and Mottelson give a formula
for the energies of rotational bands in odd-mass nuclei and
explain how that formula arises from the particle-rotor model.
In this work we have shown how this description of rotational
bands in odd-mass nuclei that are built on a single fermion
level can be understood as an effective field theory (EFT). The
expansion parameter in the EFT is v, the rotational velocity of
the system. The expansion in v in the Lagrangian becomes a
dual expansion in powers of εsp and εvib in the Hamiltonian
and for the band’s energy levels. We worked out the energy-

level formula to fourth order in this expansion and fitted the
parameters therein for the systems 167,169Tm, 167,169Er, 239Pu,
235U, 159Dy, 99Tc, and 183W. The EFT gives a good descrip-
tion of rotational energy bands to surprisingly high spin in
the first seven cases, but fails in the last two. The results in
167Er and 235U show that the energy-level formula can be
successfully applied to multiple bands in a given nucleus as
long as those bands are well-separated in energy and/or K or
they are of opposite parity.

We showed that this EFT viewpoint on rotational bands
in odd-mass nuclei can help to explain why the particle-rotor
model works where it does and predict its accuracy in a
particular system. Through analysis of both the EFT’s low-
energy constants and its order-by-order residuals we showed
for these nine systems that the size of different effects in the
energy-level formula is in line with the power counting in the
EFT. The EFT’s accuracy in a particular nucleus is connected
to the underlying energy scales there.

Our study therefore goes beyond the related discussion of
an EFT for rotational bands in odd-mass nuclei by Papenbrock
and Weidenmüller in Ref. [4]. That work considered effects up
to N2LO in v, and discussed only two different nuclides, 239Pu
and 187Os. It also did not perform an order-by-order analysis
of residuals with respect to data to demonstrate systematic
improvement. Moreover, our EFT has a conceptual difference
to that of Ref. [4]. Papenbrock and Weidenmüller implicitly
assumed that operators in the EFT could also be organized in
powers of the fermionic degrees of freedom K , �j, and �r. Here
we make no such assumption.

That is because we want our results to be independent of
the model of the underlying nuclear dynamics. In a particular
model of fermionic orbitals, e.g., the Nillson model, some of
the low-energy constants appearing in our EFT’s Hamiltonian
could be predicted. While we agree that they can be estimated,
we argue that there are too many unknowns for any particular
single-particle model to give a reliable prediction for the EFT
coefficients. And indeed, there is a long and not particularly
successful string of efforts to explain in the particle-rotor
picture why the Coriolis coupling tends to be overestimated
once a specific model for the single-particle orbitals is adopted
(see, e.g., Ref. [36] for a summary). The most conservative
path forward is thus to fit the EFT’s formula to data. Con-
necting the coefficients in the rotational-band formula to the
underlying dynamics could be an interesting subject for future
work although it should be noted that an incredible amount of
effort has been spent in this direction in the past.

A straightforward next step now that we have an EFT
Lagrangian that is a good description of fermionic rota-
tional bands is to include electromagnetic fields and compute
intra-band transitions. In even-even nuclei that step generates
parameter-free predictions at leading-order accuracy [3]. An-
other avenue for future work is to use Bayesian parameter
estimation to obtain the parameters in the EFT at each or-
der [32–34]. In this work the EFT’s coefficients were obtained
using the lowest energy levels and assuming no theoretical un-
certainty. The Bayesian methodology of Refs. [32–34] ensures
that EFT parameters are stable as more orders are included in
the fit, because it includes the effects of higher-order terms
on those parameters. Finally, we point out that a longer-term
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FIG. 12. Calculated energy for states in the 1/2+ excited-state rotational band in 169Tm. The black line shows the experimental values
taken from the NNDC [25]. The red triangles, green squares, cyan diamonds, blue pentagons, and magenta circles are the calculated energies
at LO, NLO, N2LO, N3LO, and N4LO, respectively. The right panel is a continuation of the left panel with a different scale for the y axis.

goal is to apply this EFT to halo nuclei in which low-lying
rotational states of the core play a prominent role, such as 11Be
and 31Ne. In such an application the fermionic dynamics—
or at least part of it—could be explicitly calculated in Halo
EFT [35].
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APPENDIX A: EXPECTATION VALUE OF THE NLO
HAMILTONIAN

The expectation value of the shift in the Hamiltonian at
NLO is

〈KIM|�ĤNLO|KIM〉 = C1

C0
〈KIM|(Ĵ+1Q̂−1 + Ĵ−1Q̂+1)|KIM〉

= 2C1

C0
〈KIM|Ĵ+1Q̂−1|KIM〉. (A1)

Applying Q̂−1 to �KIM gives us

Q̂−1�KIM

= h̄√
2

√
2I + 1

16π2

[
ξK

√
I (I + 1) − K (K + 1)D I

M(K+1)

+ (−1)I+KξK̄

√
I (I + 1) + K (−K + 1)D I

M(−K+1)

]
.

(A2)

Then we have

〈KIM|�ĤNLO|KIM〉

= 2C1

C0

√
2I + 1

16π2

∫
d�

× [
ξ ∗

KD∗I
MK + (−1)I+Kξ ∗̄

KD∗I
M−K

]
Ĵ+1Q̂−1�KIM

= 2h̄C1√
2C0

(−1)I+K

(
2I + 1

16π2

)
ξ ∗

K Ĵ+1ξK̄

×
∫

dωD∗I
MK

√
I (I + 1) + K (−K + 1)D I

M(−K+1).

(A3)

The last line is nonzero only when K = 1/2 and this gives us

〈1/2IM|�ĤNLO|1/2IM〉

= h̄C1

2C0
(−1)I+1/2(I + 1/2)〈1/2|

√
2Ĵ+1|1/2〉. (A4)

APPENDIX B: N2LO Matrix Elements

We want to calculate

〈KIM|(Ĵ+1Q̂−1 + Ĵ−1Q̂+1)2|KIM〉
=

∑
ν

|〈νIM|(Ĵ+1Q̂−1 + Ĵ−1Q̂+1)|KIM〉|2. (B1)

From Eq. (A2) and integrating over the Wigner D-matrices we
have the following matrix elements

〈νIM|Ĵ+1Q̂−1|KIM〉

= h̄

4
[δν,K+1

√
I (I + 1) − K (K + 1)〈ν|

√
2Ĵ+1|K〉

+ (−1)I+Kδν,−K+1

√
I (I + 1) − K (K − 1)〈ν|

√
2Ĵ+1|K̄〉

+ (−1)I+νδν,−K−1

√
I (I + 1) − K (K + 1)〈ν̄|

√
2Ĵ+1|K〉

+ (−1)2I+K+νδν,K−1

√
I (I+1)−K (K−1)〈ν̄|

√
2Ĵ+1|K̄〉].

(B2)
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We also have

〈νIM|Ĵ−1Q̂+1|KIM〉

= h̄

4
[δν,K−1

√
I (I + 1) − K (K − 1)〈ν|

√
2Ĵ−1|K〉

+ (−1)I+Kδν,−K−1

√
I (I + 1) − K (K + 1)〈ν|

√
2Ĵ−1|K̄〉

+ (−1)I+νδν,−K+1

√
I (I + 1) − K (K − 1)〈ν̄|

√
2Ĵ−1|K〉

+ (−1)2I+K+νδν,K+1

√
I (I+1)−K (K+1)〈ν̄|

√
2Ĵ−1|K̄〉].

(B3)

This gives

〈KIM|(Ĵ+1Q̂−1+Ĵ−1Q̂+1)2|KIM〉 = aI (I + 1)+bK2+cK,

(B4)

where the coefficients a, b, and c are composed of the squares
of matrix elements of Ĵ±1 between the state |K〉 and states |ν〉
and |ν̄〉 with ν = |K ± 1|.

APPENDIX C: ADDITIONAL RESULTS: 169Tm

In Figs. 12 and 13 we provide energy spectra order-by-
order and log-log plots of residuals for 169Tm. These are to
be compared to the corresponding results in the main text for
167Tm.

FIG. 13. Energy residuals for the 1/2+ ground-state rotational
band in 169Tm on a log-log scale. The red triangles, green squares,
cyan diamonds, blue pentagons and magenta circles are the residuals
from the calculated energies at LO, NLO, N2LO, N3LO, and N4LO,

respectively. The dashed transparent lines are there to guide the
eye. The solid lines show the trend of the calculated residuals after
averaging out the signature staggering. The slope shown in the legend
is the slope of the solid lines.
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