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Effective shell-model interaction for nuclei “southeast” of 100Sn
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We construct an effective shell-model interaction for the valence space spanned by single-particle neutron
and single-hole proton states in 100Sn. Starting from chiral nucleon-nucleon and three-nucleon forces and
single-reference coupled-cluster theory for 100Sn we apply a second similarity transformation that decouples
the valence space. The particle-particle components of the resulting effective interaction can be used in shell
model calculations for neutron deficient tin isotopes. The hole-hole interaction can be used to calculate the
N = 50 isotones south of 100Sn, and the full particle-hole interaction describes nuclei in the region southeast of
100Sn. We compute low-lying excited states in selected nuclei southeast of 100Sn, and find reasonable agreement
with data. The presented techniques can also be applied to construct effective shell-model interactions for other
regions of the nuclear chart.
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I. INTRODUCTION

The shell model is the paradigm to understand the struc-
ture of atomic nuclei and to compute their properties [1–4].
In this model, valence nucleons move within the mean field
produced by the inert core and interact via a residual effective
interaction. For a recent review of the long and winding road
to effective shell-model interactions, we refer the reader to
Ref. [5] and briefly summarize some developments in what
follows. For a given model space, the matrix elements of
the effective interaction are often determined phenomeno-
logically by fit to data [6–8], or by tweaking the monopole
terms [9] of a microscopically derived G matrix [10]. More
microscopic approaches [11,12] are based on many-body per-
turbation theory which, however, poses its own challenges
[13,14] and requires resummations [15,16]. Recent extensions
of such approaches Coraggio et al. [17] sum up the irreducible
two-body diagrams to infinite order and subtract the one-body
components. The starting point typically are low-momentum
nucleon-nucleon potentials [18] with a suitably chosen cutoff
[19,20].

Effective interactions can also be derived without tuning
any adjustable parameters when starting from nucleon-
nucleon and three-nucleon potentials [21–27]. Several of these
approaches require one to decouple the two-body interaction
in a small shell-model space from the (infinite) Hilbert space.
Here, similarity transformations play a key role. These can be
based on the Lee-Suzuki approaches [28,29], coupled-cluster
theory [22,30,31], or the in-medium similarity renormaliza-
tion group (IMSRG) [32–34].

In this paper, we develop an effective shell-model in-
teraction for nuclei southeast of 100Sn based on similar-
ity transformations. This region of the nuclear chart is

interesting because its cornerstone—the doubly magic N =
Z = 50 nucleus 100Sn—is close to the proton dripline, the
endpoint of α decays [35,36], and exhibits one of the strongest
Gamow-Teller matrix elements [37–39]. Several recent ex-
periments studied the structure of nuclei in this part of the
nuclear chart [40–44]. Traditionally, shell-model computa-
tions of nuclei in this region start from a 88Sr or 90Zr core
[45,46]. In such an approach, the proton shell is almost full
once elements close to tin have been reached, in addition, the
computational cost quickly becomes a bottleneck (see, e.g.,
[46]), which makes it attractive to compute a particle-hole
shell-model interaction starting from 100Sn. We note that 100Sn
can be computed from scratch using coupled-cluster theory
[46], and this nucleus is predicted to be a “better,” i.e., more
strongly bound, core than 88Sr [45].

Recent nonperturbative approaches to effective interactions
include methods that are based on many-body wave functions
calculated with ab-initio methods such as no-core shell model
(NCSM) [25,47] and coupled-cluster theory [22,23]. Once the
wave functions of Acore + 1 and Acore + 2 are obtained, the
effective interaction can be extracted through a Lee-Suzuki
transformation [28,29,48,49]. Effective interactions derived
through these approaches decouple the model space from the
excluded space on the two- and three-body levels without
introducing additional parameters. In principle, these nonper-
turbative methods also work for multishell spaces. However,
it is challenging to obtain converged full-space wave func-
tions for all allowed quantum numbers defined by the valence
space, and for heavy nuclei. In the coupled-cluster implemen-
tation, for instance, some observables are sensitive to small
contributions from high-lying excited states.

This computational problem is, to some extent, overcome
by the valence-space IMSRG (VS-IMSRG) [34,50,51], and
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the shell-model coupled-cluster (SMCC) [26] approaches. In-
stead of employing the A-body wave functions in Hilbert
space, VS-IMSRG and SMCC are straightforward extensions
of IMSRG and coupled-cluster theory, respectively, to open-
shell nuclei. Similarity transformations are applied to the
normal-ordered Hamiltonian to decouple the model space
and these approaches are suitable to calculate medium-heavy
nuclei. Recently the VS-IMSRG was successfully applied to
compute nuclei in the island of inversion region by decoupling
a multishell valence space [52].

In this paper we select the core nearest to the target
nuclei and perform a shell model calculation with both par-
ticles and holes. The effective interaction is derived through
the particle-hole shell-model coupled-cluster approach (ph-
SMCC). In ph-SMCC we treat the three-body correlations
in a single-reference coupled-cluster approach instead of in
the shell-model effective interaction. This is an advantage
because the coupled-cluster method is more accurate than
SMCC in dealing with the induced three-body correlations.
The ph-SMCC is an extension of SMCC, in which a secondary
similarity transformation is applied to the coupled-cluster
effective Hamiltonian. The resulting Hamiltonian decouples
the excluded space and the valence space, and the latter is
spanned by particle and hole states. Once the Hamiltonian
is decoupled, the valence effective interaction consists of
particle-particle (pp), hole-hole (hh), and particle-hole (ph)
channels. The pp channel is a conventional shell model effec-
tive interaction, and particle-removed nuclei can be calculated
with the hh interaction. The ph channel can be used to cal-
culate nuclei located in the southeast and northwest of a
double magic nucleus, i.e., as protons removed, and neutrons
attached, or vice versa. The particle-hole decoupling is equiv-
alent to a conventional decoupling with the core in the valence
space, and this is similar to the ensemble normal-ordering
used in the VS-IMSRG [51]. The resulted effective particle-
hole interaction can be re-normal-ordered with respect to a
smaller core to obtain a more conventional pp interaction.

The paper is organized as follows. In Sec. II, we briefly
introduce the single-reference coupled-cluster method and
the resulting similarity-transformed Hamiltonian. This is fol-
lowed by the derivation of the particle-hole decoupling. In
Sec. III we apply the ph-SMCC method to the 100Sn region
using two different chiral nucleon-nucleon and three-nucleon
potentials. Finally, we summarize our results.

II. SHELL-MODEL COUPLED-CLUSTER PARTICLE
AND HOLE INTERACTION

A. Shell-model coupled cluster

The coupled-cluster method [30,31,53–56] is useful
for ab-initio calculations of medium-mass nuclei [46,57].
Our coupled-cluster calculations start from the intrinsic
Hamiltonian,

H =
(

1 − 1

A

) A∑
i=1

p2
i

2m
+

A∑
i< j=1

(
vi j −

−→pi
−→p j

mA

)
+

A∑
i< j<k

vi jk .

(1)

Here, m is the mass of the nucleon, pi and p j are the single-
particle momentum, A is the mass number, vi j is the nucleon-
nucleon potential, and vi jk is the three-body potential defined
in the laboratory coordinates. The Hamiltonian is henceforth
normal-ordered with respect to a reference state |�0〉, e.g., a
Hartree-Fock (HF) state or a product state of natural orbitals.
We denote the energy expectation value of the reference state
as E0 = 〈�0|H |�0〉. The normal-ordered Hamiltonian is

H = E0 +
∑

pq

fpq{p†q} + 1

4

∑
pqrs

Vpqrs{p†q†sr} (2)

+ 1

36

∑
pqrstu

Vpqr,stu{p†q†r†stu}. (3)

Here, we use p† as the particle or hole creation operator on
state |φp〉, and p is the annihilation operator. The one-body
Fock matrix has elements fpq, while Vpqrs and Vpqr,stu denote
the two-body and three-body matrix elements, respectively.
To avoid dealing with the three-body diagrams after normal-
ordering, Eq. (2) is usually truncated at the two-body level and
the residual three-body terms are discarded. This approxima-
tion is accurate in 4He [58], 16O [59], and nuclear matter [60]
(albeit only for three-nucleon forces with nonlocal regulators).

Coupled cluster theory is based on the exponential ansatz

|�〉 = eT |�0〉, (4)

where T is the cluster operator

T = T1 + T2 + T3 + · · · , (5)

that introduces one-particle–one-hole (1p–1h), 2p–2h, 3p–
3h,...,Ap–Ah excitations. The np–nh excitation operator is

Tn = 1

(n!)2

∑
i1,i2,...,in

a1,a2,...,an

t a1,a2,...,an
i1,i2,...,in

{a†
1a†

2 · · · a†
ni1i2 · · · in}. (6)

The Schrödinger equation is then written as

HeT |�0〉 = EeT |�0〉. (7)

Left multiplication with e−T on both sides of Eq. (7) yields

e−THeT |�0〉 = E |�0〉. (8)

Equation (8) indicates that the reference state |�0〉 is an eigen-
state of the similarity-transformed Hamiltonian

H ≡ e−THeT . (9)

In other words, H generates no ph excitations of the reference,
and

〈�a1a2···an
i1i2···in |H|�0〉 = 0. (10)

The T amplitudes fulfill Eq. (10) and thereby decouple the ref-
erence state from all excited states. The similarity transformed
Hamiltonian can be expanded as

H = ECC +
∑

pq

Hpq{p†q} +
∑
pqrs

Hpqrs{p†q†sr}

+
∑

pqrstu

Hpqrstu{p†q†r†uts} + · · · , (11)
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and contains—when T is not truncated—A-body operators,
even when the normal-ordered Hamiltonian H has lower rank.
Here, ECC = 〈�0|H|�0〉 is the correlation energy. In practice,
the cluster operator in Eq. (5) is truncated to avoid the expo-
nential computational expense of full configuration mixing.
Truncation to T = T1 + T2 yields the coupled-cluster singles
and doubles (CCSD) approximation.

Single-reference coupled-cluster theory is most efficient
to calculate closed-shell nuclei. Open-shell systems can be
computed by starting from a deformed, symmetry-breaking
reference state [61], and the broken symmetry needs to
be restored through angular momentum projection [62,63].
Another approach to open-shell nuclei employs equation-of-
motion methods (EOM-CC) [23,64–66]; these are restricted
to neighbors of closed-shell nuclei

The SMCC method is an alternative approach to treat the
open-shell problem with coupled-cluster methods by creating
an effective interaction to be used in shell-model calculations.
In such a calculation, the effective interaction is defined in
a model space spanned by one or two major shells, whereas
H is defined in the full space defined by several shells in the
harmonic-oscillator basis. To construct a shell-model effective
interaction, the Hilbert space is split into the model space P,
and its complement Q, where

P + Q = 1. (12)

The task is then to decouple the P space from the Q space for
the Hamiltonian. To accomplish this, a secondary similarity
transformation is applied to the coupled-cluster Hamiltonian,

H = e−SHeS, (13)

and the decoupling between P and Q space requires

QHP = 0. (14)

Equation (14) is an A-body equation and S is also an A-body
operator. In what follows, we use Spp to represent the S opera-
tor in particle-particle decoupling, Shh for that in the hole-hole
decoupling, Shp for particle and hole decoupling, and S with
no subscript for any combination of them. On the two-body
level, Spp has the form

Spp =
∑
av1

sa
v1

{a†v1} +
∑

abv1v2

sab
v1v2

{a†b†v1v2}

+
∑
abhv

sab
hv{a†b†hv} + · · · . (15)

Here, we used v to represent valence state, while a, b, c, . . .
and i, j, k, . . . denote particle and hole states, respectively.
The first term in Eq. (15) represents a valence particle v1

coupled to a state outside the model space a through a one-
body operator [see diagram (a) in Fig. 1], the second term
couples two particles inside the model space to a state which
has at least one particle outside the model space [see diagram
(b) in Fig. 1], and the third term couples the valence state to
particle-hole configurations [see diagram (c) in Fig. 1]. One
can write down three-body terms (and operators of higher
rank) in a similar manner.

(C)(B)(A)

FIG. 1. Diagrammatic representation of the decoupling genera-
tor Spp. The horizontal line is the Spp operator, with the particles
indicated by incoming and outgoing arrow lines. The model-space
particles indicated by incoming double lines

In this paper, we truncate Eqs. (14) and (15) at the two-
body level and refer to this as the SMCC(2) approximation.
The two-body level decoupling condition (14) becomes

〈a|H|v1〉 = 0, (16)

〈ab|H|v1v2〉 = 0, (17)

〈ab|H|iv1〉 = 0. (18)

Once decoupled, the effective Hamiltonian is

Heff = PHP, (19)

which is defined only inside the model space. In principle, the
Hamiltonian Heff reproduces a subset of the eigenvalues of H.
In practice, however, the truncation of many-body terms leads

to a discrepancy of eigenvalues between Heff and H, because
the truncation of many-body terms breaks the similarity of the
transformation. The quality of the effective interaction thus
depends on whether the neglected many-body terms are small
compared to the retained two-body matrix elements [26].

The evaluation of H via Eq. (13) is nontrivial due to the
properties of S. In single-reference coupled-cluster theory, the
operator T only consists of excitation operators, and we have

[Tm, Tn] = 0, (20)

i.e., different excitations commute. Thus, H can only contract
with T from the right side, and Eq. (8) terminates exactly
on the fourth nested commutator in CCSD for two-body
Hamiltonians. In contrast, the operator S in SMCC consists
of both excitation and de-excitation operators, and these do
not commute with each other, i.e.,

[Sm, Sn] �= 0. (21)

Consequently, H can contract with S from both the left and the

right side and the evaluation of H does not terminate within
the Baker-Campbell–Hausdorff (BCH) expansion,

H = H + [H, S] + 1

2!
[[H, S], S] + · · · . (22)

Equation (22) is a set of nonlinear coupled equations, mean-
while, the nonterminating BCH expansion complicates the

evaluation of H. We note that a truncation of Eq. (22) is not
accurate. In this present work we adopt an approach that is
similar to the Magnus method [67] from the IMSRG [68]. The
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idea is to make S dependent on a flow parameter t and then to
replace Eq. (13) by the differential equation

∂H(t )

∂t
=

[
H(t ),

∂S

∂t

]
. (23)

Using the initial condition H(0) = H and choosing S(0) as

the off-diagonal part of H then requires us to numerically

integrate Eq. (23). We obtain the operators S(t ) and H(t )
as solutions, and the corresponding matrix elements become
constant for sufficiently large values of the flow parameter

t . When performing the integration, H develops more than
two-body terms (even when H is of two-body rank), because
the commutator of two two-body operators is in general a
three-body operator. The induced three-body force can link
the valence space and the excluded space via an off-diagonal
three-body term S3b. The diagonal three-body terms also
contribute to the BCH expansion through [H3b, S2b]2b. The
explicit evaluation of the three-body terms is challenging and
numerically expensive [69]. We therefore follow the nonper-
turbative IMSRG(2) approximation of Ref. [34] and truncate
each commutator at the two-body level. This approximation is
motivated by the success of the coupled-cluster and IMSRG
computations when contributions from three-body operators
are truncated at the normal-ordered two-body level [34,58,59].
In the BCH expansion nested commutators are computed to
very high order until they become numerically very small; this
makes the expansion nonperturbative. The rank of operators
kept in the expansion, however, is truncated at two, i.e., only
normal-ordered two-body operators are kept. The solution of

Eq. (23) thus becomes H = H1b + H2b.
When solving Eq. (23) we compute nested commutators

recursively via

D(n) = [D(n−1), S]2b. (24)

Here, D(0) = H. This allows us to rewrite Eq. (22) as

H =
∑
n=0

1

n!
D(n). (25)

Let us discuss the contribution of the neglected higher-body
terms. To make estimates we turn to the BCH expansion
(22) and assume that any corrections of S are small. (We
note that S is dimensionless.) The leading contribution from
three-body terms to two-body terms are [[D, S2b]3b, S2b]2b.
Sun et al. [26] found that this commutator yielded a much

smaller contribution to H than the leading term [D, S3b]2b

from the three-body operator S3b. Thus, we approximate the
leading induced three-body force as

H3b = [H2b, S2b]3b. (26)

We note that this approximation, while well motivated, is in
the end a pragmatic choice. Below we gauge its accuracy by
comparison to more precise computations.

The main task is then to calculate the contraction [D(n), S].
We find

D(n+1)ia
bc = (1 − Pbc)

(∑
e

D(n)ia
beSe

c +
∑

je

D(n)i j
beSea

jc

)

−
∑

e

(
D(n)ie

bcSa
e − D(n)i

eSea
bc

)

+ 1

2

∑
e f

D(n)ia
e f Se f

bc , (27)

D(n+1)i j
ka = 1

2

∑
e f

D(n)i j
e f Se f

ka +
∑

e

D(n)i j
keSe

a, (28)

D(n+1)ia
jb =

∑
e

(
D(n)ia

jeSe
b − D(n)ie

jbSa
e + D(n)i

eSea
jb

)

+ 1

2

∑
e f

D(n)ia
e f Se f

jb +
∑

ke

D(n)ik
jeSea

kb, (29)

D(n+1)ab
cd = 1

2

∑
e f

(
D(n)ab

e f Se f
cd − Sab

e f D(n)e f
cd

)

+
∑

e

(1 − Pcd )
(
D(n)ab

ce Se
d − Sab

ce D(n)e
d

)
−

∑
e

(1 − Pab)
(
D(n)eb

cd Sa
e − Seb

cd D(n)a
e

)
−

∑
k

(1 − Pcd )D(n)k
cSab

kd

+
∑

je

(1 − Pab)(1 − Pcd )D(n) ja
ec Seb

jd , (30)

D(n+1)i j
kl = 0, (31)

and

D(n+1)ab
ic = 1

2

∑
e f

(
D(n)ab

e f Se f
ic − Sab

e f D(n)e f
ic

)

+
∑

e

(
D(n)ab

ie Se
c − D(n)e

cSab
ie

)
+

∑
e

(1 − Pab)
(
D(n)b

eSae
ic − Sb

e D(n)ae
ic

)
−

∑
k

Sab
kc D(n)k

i −
∑

je

(1 − Pab)D(n) ja
ie Seb

jc, (32)

D(n+1)ia
jk = −

∑
e

D(n)ie
jkSa

e , (33)

D(n+1)i j
ab = 1

2

∑
e f

D(n)i j
e f Se f

ab +
∑

e

(1 − Pab)D(n)i j
aeSe

b. (34)

We make an initial guess of the S operator, compute the

operator H and update S accordingly. By repeating this pro-
cedure we integrate out the off-diagonal pieces of H until the
decoupling condition is fulfilled.
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(A) (B) (C)

FIG. 2. Diagrammatic representation of Shh. The horizontal line
is the Shh operator, with the particles and holes indicated by incom-
ing and outgoing arrow lines. The model-space holes indicated by
outgoing double lines

B. Particle-hole shell model coupled cluster

Before moving to the particle-hole decoupling, we derive
the effective hole-hole interaction. A hole-hole decoupling
yields an effective interaction for valence holes. On the two-
body level, the operator S for hole-hole decoupling is

Shh =
∑
iv1

sv1
i {v†

1 i} +
∑
v1v2i j

sv1v2
i j {v†

1v
†
2 i j} +

∑
i jv1a

sv1a
i j {v†

1a†i j}.

(35)

Here, vi denotes a valence-hole state. The first two terms link
valence holes and holes outside the model space through a
one- and two-body operator, and the last term is the single
hole coupled to the particle-hole excitation configurations.
Diagrams representing Eq. (35) are shown in Fig. 2.

Similar to the particle-particle decoupling, Shh is deter-
mined through solving the decoupling equation (14). The
two-body level decoupling equation for the hole-hole effective
interaction is

〈v1|H|i〉 = 0, (36)

〈v1v2|H|i j〉 = 0, (37)

〈v1a|H|i j〉 = 0. (38)

Once decoupled, the hole-hole sector of H should reproduce
a subset of eigenvalues of particle removed systems.

Using the two-body level S for the hole-hole decoupling in
Eq. (35), the single commutator yields

D(n+1)ia
bc = 1

2

∑
kl

D(n)kl
bcSia

kl −
∑

k

D(n)ka
bcSi

k, (39)

D(n+1)i j
ka = −

∑
l

(1 − Pi j )D
(n)l j

kaSi
l +

∑
bl

(1 − Pi j )D
(n)l j

baSib
kl

+
∑

l

(
D(n)i j

laSl
k − Si j

kl D
(n)l

a

) + 1

2

∑
lm

D(n)lm
ka Si j

lm,

(40)

D(n+1)ia
jb =

∑
k

(−D(n)ka
jbSi

k + D(n)ia
kbSk

j − D(n)k
bSia

jk

)

+ 1

2

∑
kl

D(n)kl
jbSia

kl +
∑

ck

D(n)ka
cbSic

jk, (41)

D(n+1)ab
cd = 0, (42)

and

D(n+1)i j
kl = 1

2

∑
mn

(
D(n)mn

kl Si j
mn − Smn

kl D(n)i j
mn

)
+

∑
m

(1 − Pi j )
(−D(n)im

kl S j
m + Sim

kl D(n) j
m

)
+

∑
m

(1 − Pkl )
(
D(n)i j

kmSm
l − Si j

kmDm
l

)
+

∑
a

(1 − Pi j )D
(n) j

aSia
kl

+
∑
am

(1 − Pi j )(1 − Pkl )D
(n)im

kaS ja
lm, (43)

D(n+1)ab
ic =

∑
k

D(n)ab
kcSk

i , (44)

D(n+1)ia
jk = 1

2

∑
mn

(
D(n)mn

jk Sia
mn − Smn

jk D(n)ia
mn

)
+

∑
l

(−D(n)la
jkSi

l + Sla
jkD(n)i

l

)

+
∑

l

(1 − Pjk )
(
D(n)ia

lkSl
j − Sia

lkD(n)l
j

)

+
∑

b

D(n)a
bSib

jk

−
∑

cl

(1 − Pjk )D(n)la
kcSic

jl , (45)

D(n+1)i j
ab = 1

2

∑
kl

D(n)kl
abSi j

kl −
∑

k

(1 − Pi j )D
(n)ik

abS j
k . (46)

Equations (31) and (42) imply that the hole-hole in-
teraction is not affected by a particle-particle decoupling,
meanwhile the particle-particle interaction is not changed by
a hole-hole decoupling. This is true only in a single commu-
tator, and the interplay between the hh and pp decoupling
occurs in the nested commutator. This suggests that the pp
interaction is weakly affected by the hh decoupling, because
of the diminishing importance of increasingly nested commu-
tators. In practical calculations, the effective pp interaction
from a particle-hole decoupling is not identical to that from
a pp decoupling, but as expected they do reproduce the same
eigenvalues.

In the particle-hole decoupling, valence particles and holes
need to be treated on an equal footing. The possibility of
particle-hole de-excitation in the valence space complicates
the decoupling, as each sector of the Hamiltonian need to be
decoupled, see Fig. 3. In most shell-model calculations, we
do not usually need protons or neutrons to be particle and
hole states simultaneously. In the current work, we restrict
ourselves to a model space that contains only neutron particles
and proton hole states (or verse vice). The off-diagonal Hamil-
tonian contains no particle-hole de-excitations due to isospin
conservation, and only the last term in Fig. 3 contributes. The
S operator for the particle-hole decoupling is

S = Shh + Spp + Shp. (47)
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(A) (B) (C) (D) (E)

FIG. 3. Diagrammatic representation of Shp. The horizontal line
is the Shp operator, with the particles indicated by incoming and out-
going arrow lines. The valence space particles and holes are indicated
by incoming double lines. (A) represents a particle-hole de-excitation
in the valence space, (B) a valence space 2p–2h de-excitation, (C) a
valence-space 2h–1p coupled to one hole, (D) a valence-space 2p–1h
coupled to one particle, and (E) represent valence-space particle-hole
coupled to a particle-hole in the excluded space.

Here, Spp and Shh have already been discussed above and we
will focus on the additional terms. Diagram E in Fig. 3 is

Shp =
∑
ia jv

sv1a
jv2

{v†
1a† jv2}. (48)

Here, Shp couples the particle-hole states between the model
space and the excluded space.

Additional terms contributing to the single commutator
[D(n), Shp] are

D(n+1)ia
bc =

∑
kd

(1 − Pbc)
(
D(n)ka

cd Sid
kb − Ska

cd D(n)id
kb

)

−
∑

j

(1 − Pbc)D(n) j
bSia

jc, (49)

D(n+1)i j
ka =

∑
dl

(1 − Pi j )
(−D(n)il

kd S jd
la + Sil

kd D(n) jd
la

)

+
∑

b

(1 − Pi j )D
(n) j

bSib
ka, (50)

D(n+1)ia
jb =

∑
kc

(−D(n)ka
jcSic

kb + Ska
jc D(n)ic

kb

)

+
∑

c

(
D(n)a

cSic
jb − D(n)c

bSia
jc

)
+

∑
k

(−D(n)k
jS

ia
kb + D(n)i

kSka
jb

)
, (51)

D(n+1)i j
ab = −

∑
kc

(1 − Pi j )(1 − Pab)D(n)ik
acS jc

kb. (52)

Once decoupled, the effective interaction consists of three
sectors. The first sector is the typical pp interaction, for
which the low-lying excited states of particles attached to the
core can be calculated. The second sector is the hole-hole
interaction, which can be used in hole-hole shell model cal-
culations for particle removed systems. Another sector is the
particle-hole channel, which can be used to calculate nuclei
with protons removed and neutrons attached depending on the
model space selected.

For a hole-hole shell-model calculation, one can use
standard shell-model codes. The expectation values of the
one-body interaction are calculated via

〈i j| fpq{p†q}|kl〉 = − fkiδ jl − fl jδik + fliδ jk + fk jδil , (53)

and two-body expectation values are

〈i j| fpqrs{p†q†rs}|kl〉 = fkli j . (54)

The particle-hole interaction is more complicated. The one-
body operator is applied as

〈ai−1| fpq{p†q}|b j−1〉 = fabδi j − f jiδab. (55)

The two-body operator needs an explicit Pandya transforma-
tion [70]

〈ai−1|V |b j−1〉J = −
∑

J ′
J ′2

{
ja ji J
jb j j J ′

}
〈a j|V |bi〉J ′

. (56)

The interaction can also be re-normal-ordered with respect
to a lighter core where all single-particle orbitals are particle
states. The shell-model effective interaction from SMCC is
non-Hermitian. To be used in standard shell model codes, the
effective interaction can be made Hermitian [49] through

Hhm
eff = [ω†ω]1/2Hnhm

eff [ω†ω]−1/2. (57)

Here, ω is the matrix that diagonalizes the non-Hermitian
Hamiltonian Hnhm

eff . The Hermitian Hhm
eff contains one and

two-body terms and can be used in conventional shell-model
calculations.

The truncation at the two-body level is a reasonable first
approximation in SMCC and VS-IMSRG. However, The
off-diagonal three-body force Sod

3b induced by the similarity
transformation cannot be neglected for an accurate description
of nuclei. The full three-body decoupling is computation-
ally very expensive and challenging to implement. However,
the leading contribution from Sod

3b is accessible through a
linearized approximation in the BCH expansion (22) and cap-
tures the important parts of three-body correlations [26]. We
discuss this correction next.

The leading contributions from induced three-body terms
comes from Eq. (26), and that approximation neglects induced
three-body terms from any of the nested commutators. The

operator H3b can be split into diagonal H
da

3b and off-diagonal

H
od

3b contributions. Suppose H
od

3b is driven to zero in a third
similarity transformation

Qe−S3bHeS3bP = 0, (58)

where S3b couples the valence space and excluded space
at the three-body level. This operator would feed back to
the two-body decoupling equation, breaking the two-body

level decoupling condition QHP = 0. As an approximation,
we assume this feedback can be neglected, because in a

proper decoupling, the induced H3b should be small com-

pared to H2b. The left-hand side of Eq. (58) can therefore be
written as

Qe−S3bHeS3bP ≈ Q(1 − S3b)H(1 + S3b)P (59)

≈ QHP + Q[H, S3b]P. (60)

Substitution of Eq. (60) into Eq. (58) yields the decoupling
equation that determines S3b; these are

QH1bP + Q[H, S3b]1bP ≈ 0, (61)
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(A1) (B1)(A2)

(B2) (C)

FIG. 4. Diagrammatic representation of S3b. The horizontal line
is the S3b operator, with the particles indicated by incoming and
outgoing arrow lines. The model-space particles and holes are in-
dicated by incoming and outgoing double lines respectively. A1 and
A2 are used in particle-particle decoupling, B1 and B2 for hole-hole
decoupling, and all A, B, and C diagrams are used for particle-hole
decoupling.

QH2bP + Q[H, S3b]2bP ≈ 0, (62)

QH3bP + Q[H, S3b]3bP ≈ 0. (63)

As we have assumed that QHP = 0 is preserved on the two-
body level, Eqs. (61) and (62) are trivial, whereas S3b can be
determined by Eq. (63). If we keep only the diagonal one-

body part in H, the operator S3b has the simple form

〈pqu|S3b|rst〉 = 〈pqu|H3b|rst〉
Hpp + Hqq + Huu − Hrr − Hss − Htt

.

(64)

Figure 4 shows the diagrams included in S3b. The diagrams A1
and A2 couple the valence particles to the excluded space. Di-
agrams B1 and B2 couple the valence holes and the excluded
space, and diagram C couples the particle-hole states to the
excluded space in the isospin Tz = ±1 channels.

With S3b, the effective shell model interaction becomes

H eff
1b = PH1bP + P[H, S3b]1bP, (65)

H eff
2b = PH2bP + P[H, S3b]2bP. (66)

The final effective interaction is thereby decoupled at the
two-body level and three-body corrections are included in a
linearized approximation.

III. RESULTS

We use two chiral interactions to compute the corre-
sponding shell-model effective interactions. The first is the
1.8/2.0(EM) potential [71] which results from a similarity-
renormalization-group (SRG) transformation [72] at cutoff
λ = 1.8 fm−1 of the N3LO(EM) nucleon-nucleon potential
from [73], and the three-body potential is given at N2LO in
chiral EFT [74–76] with a cutoff 	NNN = 2.0 fm−1. The sec-
ond potential is the 
NNLOGO with a cutoff 	 = 394 MeV

TABLE I. Single-particle energies calculated with the
1.8/2.0(EM) and 
NNLOGO potentials. p3/2, p1/2, and g9/2

are hole states with respect to 100Sn, and the remaining states are
particle states.

s.p. energy (MeV) 1.8/2.0(EM) 
NNLOGO

p3/2 −6.502 −4.798
holes p1/2 −4.871 −3.159

g9/2 −3.106 −2.267

g7/2 −10.832 −10.072
d5/2 −10.548 −9.375

particles d3/2 −8.054 −6.811
s1/2 −7.789 −6.220
h11/2 −5.596 −5.012

[77]. This nucleon-nucleon and three-nucleon interaction in-
cludes 
 degrees of freedom. With both interactions we
perform a Hartree-Fock (HF) calculation in the harmonic os-
cillator basis with a frequency of h̄ω = 16 MeV. The model
space is spanned by 13 shells (Nmax = 12), and the three-body
matrix elements are truncated at E3max = 16h̄ω. The two-body
and three-body interaction is then normal ordered with respect
to the 100Sn core. The CC calculations are performed with the
normal-ordered two-body interaction.

We use 100Sn as the core, with the model space spanned
by neutron-particle and proton-hole states. Using the effective
shell-model interactions, we studied the nuclei southeast of
100Sn by removing protons and attaching neutrons. To de-
couple the core, we employed the CCSDT-1 approximation
[78] for both potentials. Using the highly optimized nuclear
tensor contraction library (NTCL) [79] we are able to perform
these calculations in the full space (without truncating the
number of triples amplitudes) on SUMMIT, the supercomputer
of the U.S. Department of Energy with a peak performance of
200 petaflops which is operated by the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory.

The resulting binding energy of 100Sn is −837 MeV and
−816 MeV for 1.8/2.0(EM) and 
NNLOGO, respectively,
compared to the datum of −825.3 MeV. The proton model
space includes the p3/2, p1/2, and g9/2 orbitals, and the neu-
tron space consists of g7/2, d5/2, d3/2, s1/2, and h11/2. We
decouple the Hamiltonian at the two-body level, and include
the off-diagonal three-body terms approximately according to
Eqs. (65) and (66).

Table I shows the calculated single-particle and single-hole
energies from the two chiral potentials. For 101Sn, the experi-
mental splitting is a 171 keV between the 5/2+ and the 7/2+
states [35,36]. In our calculation the 1.8/2.0(EM) yields the
E (g7/2) 284 keV lower than E (d5/2), which agrees with the
PA-EOM-CC and VS-IM-SRG calculations [46]. Meanwhile,
the splitting from 
NNLOGO is 700 keV, which is a bit larger
than the datum. Both potentials predict a 9/2+ ground state of
99In, which has a single-hole configuration. Matrix elements
of these interactions are available in the Supplemental Mate-
rial [80].

Figure 5 shows the calculated binding energies of two-
particle (102Sn), two-hole (98Cd), and one-particle–one-hole
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-25
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E
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]
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1.8/2.0(EM)

NNLO
GO

FIG. 5. Ground-state energies of 102Sn, 98Cd, and 100In relative
to 100Sn, calculated with 1.8/2.0(EM) and 
NNLOGO potential and
compared to experimental data. We used an arbitrary energy shift of
90 keV between the (6+) and (5+) levels.

(100In) nuclei with respect to the ground state of 100Sn. The
1.8/2.0(EM) potential is in agreement with the experimental
data. The 
NNLOGO somewhat underestimates 102Sn and
overbinds the two-proton system 98Cd. The two potentials
coincide in 100In. In a simple non-interacting shell-model
picture, the ground state of 100In depends on E (πg7/2) −
E (νg9/2), and the coincidence in 100In is indicated from our
calculated single-particle energies.

The spectra of the two-hole state nucleus 98Cd and the
particle-hole nucleus 100In are shown in Fig. 6. For cadmium,
the 1.8/2.0(EM) interaction yields an accurate spectrum
while the 
NNLOGO potential yields a spectrum that is too
compressed. The dominant configuration for 98Cd is two
holes in πg9/2. The 
NNLOGO generates a small matrix
element 〈πg9/2πg9/2|V |πg9/2πg9/2〉J , and this leads to the
compressed spectrum. The odd-odd nucleus 100In has a high
level density close to the ground state with quasidegenerate
Jπ = 2+ · · · 7+ states, stemming from the coupling of a πg9/2

hole to the almost degenerate νg7/2 and νd5/2 particle states.
While the experimental spectrum is unknown [37] regarding
spin assignments and the energy shift with respect to the
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FIG. 6. Low-energy spectra of 98Cd (right) and 100In (left) cal-
culated with 1.8/2.0(EM) and 
NNLOGO potentials, respectively,
and compared to experimental data. For 100In, the energies of the
experimentally known excited states (shown as dotted lines) have an
unknown shift with respect to the ground state [37].
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FIG. 7. Calculated low-lying excited states in Sn isotopes with
the 1.8/2.0(EM) (blue) and 
NNLOGO (red) potentials, and com-
pared to data (black).

ground state, the level density from the 1.8/2.0(EM) interac-
tion is more accurate than that from the 
NNLOGO potential.
We also note that the level density of the 1.8/2.0(EM) in-
teraction agrees with the coupled-cluster results shown in
Fig. 4 of the Supplementary Information of Ref. [38]. The
ground-state spin of 100In is not known experimentally [81],
and both interactions yield a 7+ ground state. However, our
estimated uncertainties of about 0.2 MeV are too large to
make a prediction here.

The tin isotopes depend only on the neutron-neutron in-
teraction, i.e., the particle-particle interaction constructed in
this work. Figure 7 shows the low-lying excited states calcu-
lated for 102–104Sn. The 1.8/2.0(EM) potential yields a near
constant 2+ energy, in agreement with the VS-IMSRG cal-
culation of Ref. [46]. The 
NNLOGO potential also gives a
near constant E (2+) energy (with the exception of 108Sn), but
generally lower in excitation energy than obtained using the
1.8/2.0(EM) potential. Data fall in-between the two employed
potentials for 102,104Sn, for 106Sn the results obtained with

NNLOGO agrees well with data, while for 108Sn both po-
tentials overestimate the E (2+) energy. The difference in the
E (2+) energies obtained from the two potentials stems mostly
from the associated single-particle energies given in Table I.

The cadmium isotopes are obtained by removing two pro-
tons from 100Sn core and adding neutrons. Our calculations,
shown in Fig. 8, indicate that the removed neutrons are
mainly from g9/2 and the spectra of cadmium isotopes are
mostly determined by the neutron configurations. Similar to
the tin isotopes, the 2+ states for even-even cadmium from
1.8/2.0(EM) are higher than the data, and the 
NNLOGO

shows a slight increase of E (2+) as the neutron number in-
creases.

The two potentials produce more differences in the indium
isotopes, which remove one proton and add neutrons to the
100Sn core. The odd-mass indium nuclei, shown in Fig. 9, have
9/2+ ground states and a first 1/2− low-lying excited state
(with the exception of 101In) according to the experimental
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FIG. 8. Calculated low-lying excited states in Cd isotopes with
the 1.8/2.0(EM) (blue) and 
NNLOGO (red) potentials, and com-
pared to data (black).

data. The 1.8/2.0(EM) potential reproduces the correct order
of the ground states and the 1/2− excited state in 101−107In.
The computed 1/2− state is generally higher than the data,
which may be due to a too large gap between the g9/2 and p1/2

orbitals. The 
NNLOGO reproduces the correct level ordering
in 101,103In, but fails to reproduce the correct ground state of
105,107In. In contrast to tin and cadmium isotopes, the indium
isotopes exhibit more proton and neutron correlations. Fi-
nally, we note that uncertainties stemming from model-space
truncations and the approximate treatment of normal-ordered
three-body forces away from the 100Sn core will impact the
results. In the recent work [44] we estimated that empirical
pairing gaps in this mass region computed with the SMCC
and employing the same Hamiltonians carried an uncertainty
of about ±0.2 MeV.

IV. SUMMARY

We presented a systematic derivation of the particle-hole
variant of the shell-model coupled-cluster method to com-
pute nuclei in the vicinity of 100Sn. The shell-model effective
interaction is defined in a model space consisting of both
particles and holes. The decoupling of the model space from
the excluded space is accomplished at the two-body level,
and the induced off-diagonal three-body terms are included
in a linearized approximation. For nuclei in the vicinity of
100Sn the particle-hole effective interaction benefits from a
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FIG. 9. Calculated low-lying excited states in In isotopes with
the 1.8/2.0(EM) (blue) and 
NNLOGO (red) potentials, and com-
pared to data (black).

more favorable reference state and more realistic mean-field
than, e.g., taking a 88Sr core. The computational resources
required for nuclei close to the core are also reduced by
introducing explicit hole states in the shell model. The method
is validated through cross-benchmark with the existing ab-
initio methods. We derived effective interactions from two
sets of chiral potentials that include nucleon-nucleon and
three-nucleon forces, and computed properties of tin, indium,
and cadmium isotopes. Binding energies and spectra exhibit a
good to fair agreement with data.
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