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Refining the nuclear mass model via the α decay energy
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Besides the direct comparison with the experimental mass values, the α decay energy (Qα), as one type of the
mass difference, can be considered as another factor to judge the accuracy and validity of modern nuclear mass
models. In the present study, the Duflo-Zuker (DZ) mass model is employed to match the measured Qα value
besides the mass data. This procedure can not only provide us a new way to evaluate and predict the α decay
energy, but also raise one more constraint on the theoretical mass scheme. It is found that all the experimental
α decay energies, from the ground state (g.s.) to g.s. transition of even-even nuclei above A = 100, can be well
reproduced in a quite improved accuracy. Moreover, the symmetry term, involved in the macroscopic part of
the DZ model, is refined further to regulate the behavior of the ambiguous symmetry energy coefficient in the
nuclear equation of state. Through the relationship between the slope parameter of the symmetry energy and the
neutron skin thickness, the neutron thickness �Rnp of 208Pb is determined in the vicinity of 0.201 fm, which is
compatible to the very recent measurement.
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I. INTRODUCTION

The accurate calculation of nuclear masses (or binding
energies) is one of the most central issues not only in nu-
clear physics but also in nuclear astrophysics [1], due to
its fundamental role acted in the nuclear theory. In very re-
cent years, although the measurement of nuclear masses is
constantly improved by the development of experimental fa-
cilities like CERN and HIRFL-CSR [1–5], it is rather difficult
for directly or indirectly measuring masses of unstable nuclei
towards the dripline. For example, those nuclear masses are
still experimentally unknown for many nuclei participating
in the rapid proton (rp) and the rapid neutron (r) capture
processes [1]. Therefore, the theoretical mass models are
urgently requested to provide very reliable and precise ex-
trapolations when it comes to these unknown but attractive
regions. At present, the available experimental mass data have
been well reproduced by various global mass models, such as
the Weizsäcker-Skyrme (WS*4) [6], Duflo-Zuker (DZ) [7,8],
Hartree-Fock-Bogoliubov (HFB) [9,10], finite range droplet
model (FRDM) [11,12], and so on, with the root mean square
deviation (RMSD) from 300 keV to 600 keV.

Especially, the RMSD, between the calculated nuclear
masses and measured ones, has been reduced by 10–40%
for some of the above models by taking into account the
radial basis function approach or the mirror nuclei constraint
[13–15]. In addition, the increasingly popular neural networks
or machine learning strategies have lead the precision of
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mass predictions into a higher level [16–19]. However, one
question would naturally arise: Is the ability of extrapola-
tion proportional to the decreasingly RMSD for these mass
models? Whatever the answer is, there indeed exists serious
problems. On one hand, despite the quite good agreement
between theory and experiment in known mass regions, the
difference of extrapolated values, from current mass formulas,
can be up to tens of MeV for those nuclei far way from the
β stability line or in the superheavy mass regime [10,19–
21]. On the other hand, there are still obvious gaps between
the evaluated and measured “byproducts” of masses, like the
separation energy or the decay energy, which may be caused
by the overfitting of algorithms or missing physics in mass
models.

To conquer the above dilemmas, one possible solution may
be taking the decay energies into the fitting process of mass
models, aiming at one more constraint to make the prediction
reliable and avoid the overfitting problem from a new perspec-
tive. In the meantime, α decay spectra have been exploited
as a unique tool in recognizing the very neutron-deficient
nuclei plus the superheavy nuclei [22–26]. With these in
mind, the α decay energy is considered as another target in
the present study, when determining the coefficients of the
mass model. This can give a more accurate prediction on α

decay energy, which will be very valuable for the proposal on
the future synthesis of short-lived α emitters. Of course, one
can imagine that the corresponding masses should be worse
matched against the experimental values at that time. In other
words, the mass model has to meet the multi-objective design
problem, which will be somewhat figured out as shown in the
following. As for the mass model, the DZ10 method is chosen
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here due to its relative simplicity and accuracy. Besides the
microscopic term based on the shell model picture, the DZ
model also incorporates the macroscopic part mapped from
the liquid drop model. The symmetry energy term of finite
nuclei in the latter has been subtly connected with the sym-
metry energy of nuclear matter. Additionally, the very recent
measurement on the neutron skin thickness of 208Pb, from
the PREX collaboration, is expected to stringently restrict
the nuclear equation of state, i.e., the slope of the symmetry
energy coefficient [27]. Based on the dipole polarizability,
the Coulomb energies or the displacement energies of mirror
nuclei and so on, extensive efforts have been actually devoted
to the extraction of the significant neutron skin thickness
[28–31] before that. It is of physical interest to see what will
happen to these crucial quantities, namely the slope parameter
and the neutron skin thickness, after the present reexamina-
tion of the symmetry term derived from the systematics of
α decay energy plus the binding energy. Specifically, a brief
introduction of the DZ10 framework is given in Sec. II, and
the refining procedure via the measured α decay energies is
then described along with the detailed results. In Sec. III, one
can see the consequent influence on the symmetry energy and
the thickness of neutron skin. A summary is given in the last
section.

II. DZ10 FRAMEWORK AND ITS ADJUSTMENT
TO THE α DECAY ENERGY

The DZ10 formula, as mentioned above, consists of four
macroscopic terms and six microscopic monopole ones,
namely [8,20],

BDZ = BLD + a5(M + S) − a6
M

ρ

+ a7s3 − a8
s3

ρ
+ a9s4 + a10d4 (1)

with

BLD = a1VC − a2VT + a3VT S + a4VP

= a1
−Z (Z − 1) + 0.76[Z (Z − 1)]2/3

A1/3
(
1 − 0.25 T 2

A2

)
− a2

T (T + 2)

A2/3ρ
+ a3

T (T + 2)

A2/3ρ2
+ a4

2 − T/A

ρ
, (2)

where ρ = A1/3[1 − 0.25 T 2

A2 ]
2

is the scaling factor, and the
isospin term is taken as the form T = |N − Z| [8]. Given that
the macroscopic part is kind of rooted from the traditional
liquid droplet (LD) model, these terms are labeled together
as BLD, which contains the Coulomb, symmetry, surface sym-
metry, and pairing energies. Note that the pairing term VP has
been restricted to even-even nuclei, due to the present require-
ment about the α emitters. Different from the conventional LD
or macro-micro mass models, the volume and surface energies
are actually included in the so-called mater term M + S as
well as M

ρ
. As for the remaining terms, the s3, s3

ρ
, and s4

present the spherical term, while the last term d4 comes from
the nuclear deformation. The details and physics about the
DZ10 model can be found in Refs. [7,8,21]. Those parameters

ai are mainly determined by fitting the experimental α decay
energy Qα , while the previous target, namely the measured
mass, will be partially satisfied. Based on the DZ10 mass
formula, the Qα can be calculated as the mass difference
between the parent nucleus and the decay products,

Qα = BDZ (Z − 2, N − 2) − BDZ (Z, N ) + Bα, (3)

where Bα is taken as the experimental binding energy of
4He. Regardless of whether this equation is trivial, one can
combine it with the DZ10 formula, namely Eq. (1), to restrain
the parameter set ai, by adjusting the available experimental
α decay energies. Considering that the DZ10 model is well
analytically expressed, the above Qα formula can be expected
to be reduced via the total differential approximation to the
first order,

Qα ≈ ∂BDZ

∂Z
�Z + ∂BDZ

∂A
�A + Bα, (4)

where �Z = −2, �A = −4. It is very easy to perform the
differentiation for the BLD part. However, it seems to be im-
possible to take the derivative of the rest monopole terms,
which is caused by the fact there are summed terms plus the
cross-shell situations. Hence a slightly modified version of
Eqs. (3) and (4) can be

Qα ≈
(

∂BLD

∂Z
�Z + ∂BLD

∂A
�A

)
+ Bα

+ Bmic(Z − 2, N − 2) − Bmic(Z, N ), (5)

where the binding energy Bmic is from the microscopic
monopole part. For convenience, the adjustments of the DZ10
to the α decay energy via Eqs. (3) and (5) are, respectively,
denoted as “Case I” and “Case II”. The experimental Qα

values are selected from the g.s. to g.s. transitions of 275 even-
even nuclei in the latest AME2020 [32]. With the help of the
differential evolution algorithm [33], the set of parameters ai

for the two cases are separately obtained and listed in Table I.
Note that although the fitting target is settled as the α decay
energy at present, one additional and necessary requirement is
that the final parameters should correspond to the minimum
σB in the last series of iterations towards the convergence.
In the meantime, the iteration was performed for more than
104 times plus the various initializations to get the optimized
parameter set in the DZ10 mass formula as possible as we can.
This is implemented in the “Case I”, which is beneficial for the
refinement of mass formulas and the subsequential analysis
on the equation of state (EOS) as discussed in the following
section. The original parameter set, determined from the mass
data [8], is also shown in the second column of the same
table for comparison. The last two lines of the table separately
present the RMSD of Qα and binding energies for the chosen
mass region beyond A = 100 with the form

σ =
√∑N

i=1(Aexp − Atheo)2

N
, (6)

where the quantity A means the α decay energy or the binding
energy B. As one can see from Table I, the RMSD of Qα is
as expected to decrease (more than 30%) after the refinement
in the present two cases. The agreement between theoretical

064308-2



REFINING THE NUCLEAR MASS MODEL VIA THE α … PHYSICAL REVIEW C 104, 064308 (2021)

TABLE I. The parameters of the DZ10 mass model. For com-
parison, the original parameters from Ref. [8], by fitting the AME03
mass, are listed in the second column. The last two columns are,
respectively, the new parameters determined by fitting the α decay
energies with Eqs. (3) and (5). The experimental values of Qα are
taken from the latest AME2020 [32]. The RMSD values of the Qα

and the binding energy are also given in the last two lines for the
presently focused region above A = 100.

Parameters Original Case I Case II

a1 0.707 0.703 0.692
a2 37.515 37.776 38.561
a3 53.351 54.992 61.814
a4 6.199 4.023 3.611
a5 17.766 17.734 17.742
a6 16.314 16.207 16.647
a7 0.478 0.342 0.359
a8 2.183 1.525 1.580
a9 0.022 0.022 0.024
a10 41.388 39.189 35.104

σQα
0.511 0.358 0.365

σB 0.762 0.725 3.803

B values and experimental ones becomes worse for “Case II”,
while the σB is slightly lower in “Case I” than that from the
original parameter set. The latter unexpected situation may
come from the efficiency of the adopted fitting algorithm.
Another important factor is that the original parameter set, as
mentioned in Ref. [8], is determined from the AME03, while
the present fitting is adjusted to the recent AME20 [32] with
the concentration on the α emitters. For a better insight, the
discrepancies between calculation and measurement are also
displayed in Fig. 1 for the selected α emitters. An interest-
ing point is that the DZ10 mass formula seems to produce
a relatively large deviation from the experimental baseline
in the superheavy mass region, no matter which version of
parameters is employed. This may be caused by the fact the
shell structure are different from the traditional scenario em-
ployed in the DZ model, which cannot be fully covered by
the present spherical monopole Hamiltonian [20]. With the
above in mind, let us pay special attention to the obtained
parameters. When the α decay energy is taken as another
matching target, some new parameters, corresponding to the
pairing, spherical, surface symmetry, and deformation ener-
gies, are quite different in contrast with the original ones. As
additional information, we have performed the fitting process
aimed at the single α decay energy, in which the parameters
would change more drastically. In this sense, when separately
fitting two objective quantities, the involved coefficients in
the same model (DZ10) behave in a different manner. One
may conclude that these coefficients in the inaccurate mass
model are overfitted to pursue the single accuracy, leading the
introduction of the missing physics into the fitted parameters
rather than in the complete physical picture. The ability of
extrapolation in mass models (at least in DZ10) appears to be
ambiguous particularly for those nuclei near the dripline of the
nuclide chart. Hence the balance between multi-objectives,
i.e., the binding energy and the α decay energy, may be

FIG. 1. Difference between experimental values and theoretical
evaluations obtained from the DZ10 model for three different kinds
of parameters. The blue circle and the red cross, respectively, corre-
spond to the α decay energy and the binding energy for heavy nuclei
beyond A = 100.

instrumental to avoid the overfitting and improve the predic-
tive power of current mass formulas. As mentioned before,
we have made an attempt in this direction. The more rigid
multiconstraints on the mass model is in progress. Before
proceeding to the next section, it is noted that the parameters
in “Case II” bring us the large RMSD and the unreasonable
trend of binding energy. However, one should notice that the
one-order approximation has been employed in the Qα fitting,
while these parameters are directly put back into the binding
energy evaluations. This may be the main reason why the σB

is so much higher in “Case II”. Yet, it is hoped that this case
can be an initial step towards an analytical tool for the quick
and accurate Qα calculator serving the experimental design.

III. SYMMETRY ENERGY

In previous studies, α decay has been treated as a probe
into the symmetry energy or the incompressibility of nuclear
matter (NM). This is actually a natural story as shown in the
following logic. The symmetry energy term of the nuclear
mass is found to contribute greatly to the α decay energy
[26,34,35]. On the other hand, the coefficient of the symmetry
term in finite nuclei has been revealed to be in a sophisticated
relationship with the symmetry energy of NM [36,37]. In this
sense, it is interesting to see the new results on the symmetry
energy of NM when the DZ mass formula is directly adjusted
to the α decay energy plus the harmony with the binding
energy.

The EOS of the asymmetric nuclear matter, defined as the
energy per nucleon, is e(ρ, δ) = e(ρ, 0) + S(ρ)δ2 + O(δ4)
with the nucleon density ρ = ρn + ρp plus the isospin asym-
metry δ = (ρn − ρp)/ρ. As compared to the well-known
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energy per nucleon of the symmetric nuclear matter e(ρ, 0),
the ambiguousness or say challenge comes from the isospin
asymmetry term [38–40]. If ignoring the higher term in the
EOS, the key point is the symmetry energy coefficient S(ρ),
which can be expanded to the second order by

S(ρ) = S(ρ0) + L

(
ρ − ρ0

3ρ0

)
+ Ksym

2

(
ρ − ρ0

3ρ0

)2

, (7)

where S(ρ0) is the symmetry energy coefficient at the NM sat-
uration density. The slope parameter L = 3ρ

∂S(ρ)
∂ρ

|ρ0 and the

curvature parameter Ksym = 9ρ2 ∂2S
∂ρ2 |ρ0 are the fundamental

factors to govern the behavior of symmetry energy coefficient
as well as the EOS. Extensive efforts have been devoted to
elucidating the S(ρ) code or these vital parameters L and
Ksym [38–44]. Starting from the extraction of transport model
or the systematics of energy density functional [38–40,45],
several specific formulas of S(ρ) are proposed to explore the
its density dependence around the saturation density ρ0. Three
of them, employed here, are listed as follows:

S(ρ) = S(ρ0)

(
ρ

ρ0

)γ

, (8)

S(ρ) = 12.5

(
ρ

ρ0

)2/3

+ C1

(
ρ

ρ0

)γ

, (9)

S(ρ) = 17.47

(
ρ

ρ0

)2/3

+ C1

(
ρ

ρ0

)
+ C2

(
ρ

ρ0

)1.52

. (10)

When it comes to the determination of the two constants
of each above formula, one requires two conditions. As
mentioned in Ref. [35] and references therein, the S(ρ0) is
relatively well known, which can be a reliable condition.
Considering that the symmetry energy coefficient in the EOS
equals to that in the mass of finite nuclei [36], namely S(ρA) =
asym(A), the asym value of the typical nucleus 208Pb can of-
fer another factor to confirm the S(ρ) expression. The asym

in the nuclear mass, as suggested in the traditional droplet
model, is usually written as asym(A) = S(ρ0)/(1 + κA−1/3)
or approximately asym(A) = S(ρ0)(1 − κA−1/3) (used here).
The symmetry energy coefficient S(ρ0) of NM is identically
adopted here, which can be readily put forward from the
asymptotic situation asym(A → ∞) = S(ρ0). In the present
study, the symmetry energy coefficient in the DZ10 formula is
actually expressed as asym(A) = a2 − a3A−1/3. After inserting
the detailed values of a2 and a3 from the original and the
“Case I” sets, as listed in Table I, we can obtain easily the
remaining parameters in Eqs. (8), (9), and (10). To proceed
this, one necessary quantity is the density of 208Pb. Given
a series of calculations based on the energy density func-
tionals [36], this input ρ208 is fixed in the range of 0.093
fm−3–0.105 fm−3. The slope L and curvature Ksym parame-
ters are accordingly determined by the derivative of the NM
symmetry energy coefficient, which are shown in Table II. In
the meantime, the neutron skin thickness, as a subtle bridge
between the finite nuclei and the asymmetric nuclear matter,
is receiving special attention due to its unique role played
in the studies of nuclear structure and astrophysics [46–49].
Based on the systematics of microscopic many-body calcu-

TABLE II. Three resulting quantities L, Ksym, and �Rnp of 208Pb,
based on the symmetry energy coefficient in the DZ10 mass formula.
Note that three S(ρ ) expressions, namely Eqs. (8), (9), (10), are
employed for the proceeding extraction.

Quantity S(ρ ) Original Present

L (MeV) Eq. (8) 64.5 ± 8.5 67.5 ± 8.5
Eq. (9) 65 ± 8 67.5 ± 8.5
Eq. (10) 55.5 ± 12.5 59.5 ± 12.5

Ksym (MeV) Eq. (8) −80 ± 4 −80 ± 5
Eq. (9) −78 ± 2 −78 ± 3
Eq. (10) −211 ± 57 −202 ± 58

ΔRnp (fm) Eq. (8) 0.196 ± 0.012 0.201 ± 0.013
Eq. (9) 0.197 ± 0.011 0.201 ± 0.013
Eq. (10) 0.183 ± 0.018 0.189 ± 0.018

lations, the neutron skin thickness of atomic nuclei is found
to be in a linear relation with the slope parameter L in S(ρ),
i.e., �Rnp = 0.101 + 0.00147L [46]. In this way, the resultant
values of �Rnp are also presented in the table for 208Pb.
The neutron skin thickness of 208Pb is very recently reported
as �Rnp = 0.283 ± 0.071 fm from the PREX II [27] and
�Rnp = 0.278 ± 0.035 fm from the proton scattering [50],
which is slightly more compatible with those extracted from
the “Case I” as compared to the original situation aimed at the
mass. On the other hand, as stated in Refs. [44,51], the Sρ0

is fixed as 38.1 ± 4.7 MeV if the neutron skin thickness of
208Pb is adopted from the PREX II, which is consistent with
the present extraction, namely the a2 value. On the whole, the
obtained values of one certain quantity in Table II are close but
different with each other for the two former referred cases.
Again, it may be more reasonable to extract the information
on the symmetry energy from the systematics of binding en-
ergies when proceeding the multi-objective optimization on
the mass formulas. Can the latter be another kind of “more is
different”?

IV. SUMMARY

In conclusion, the α decay energy is considered as an al-
ternative optimized objective of the modern model of nuclear
masses, in which the DZ10 mass formula is employed to
implement this kind of theoretical experiment. During this
procedure, besides the subtraction of the DZ10 binding energy
of daughter nuclei from that of parent nuclei, the macroscopic
part are approximated under the first order to pursue a more
quick calculator of α decay energies. Whichever case of these
two options is switched, the accuracy of evaluating the α

decay energy is largely improved plus the partial concord
with the nuclear masses. The clear discrepancies between the
present DZ10 parameter sets from both the mass and the Qα

and the original ones based on the B value hint the existence
of overfitting problem in current nuclear mass formulas. This
study, as an initial step towards the multi-objective optimiza-
tion for masses, is expected to further refine modern mass
models and make their extrapolations compatible and reliable
serving the astrophysical demand. On the other hand, the reex-
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amined symmetry energy coefficients of finite nuclei provide
another constraint on the density dependence of symmetry
energy coefficient in the EOS of nuclear matter, leading to new
results on the involved slope and curvature parameters. The
consequent �Rnp (around 0.201 fm) of 208Pb is comparable
with the new experimental result �Rnp = 0.283 ± 0.071 fm,
which may in turn be supportive for the present treatment on
the determination of coefficients in mass formulas via the α

decay energy besides the binding energy.
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