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Closed-shell effect in two-neutrino double-β decay for f p shell nuclei
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Large scheme shell-model calculations are conducted for the two-neutrino double-β (2νββ) decay of the
f p (0 f7/2, 0 f5/2, 1p3/2, 1p1/2) shell nuclei. 25 2νββ processes are considered, of which seven 2νββ processes
are either observed or candidates. The calculated half-lives, nuclear matrix elements (NMEs), strength function
(SF) distributions, and phase space factors are shown. The calculated results agree with the experimental data
and reveal that for the transitions involving a doubly, semimagic nucleus or only the nonmagic nuclei, the SF
distributions are visibly different. This outcome indicates that the NMEs of the 2νββ processes are significantly
influenced by the closed-shell effect.
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I. INTRODUCTION

The 2νββ decay process is a second-order weak-
interaction process that has the most extended lifetime for
all of the observed nuclear radioactive processes [1]. Ap-
proximately 90 nuclei are believed to undergo 2νββ decay,
including decays for the β− side (2ν2β−) and the mixed β+
and electron capture types (2νβ+/EC, which includes 2ν2β+,
2νβ+EC, and 2νECEC), whereas the half-lives for only 14 of
these nuclei have been observed with direct or geochemical
measurements [2,3]. Although 2νββ decay is rare [4], this
process is meaningful and it has attracted extensive research
attention in previous studies [3–15]. The decay rate of the
2νββ decay can be written as a product of a phase space factor
(G2ν) and a squared nuclear matrix element (NME) (M2ν), as
expressed in Eq. (1) [16]:[

t2ν
1/2

]−1 = G2ν |M2ν |2, (1)

where G2ν is well known and depends on the decay energy to
a great extent [17,18]. The NME is affected by the involved
nuclear states, the study of which has led to a better under-
standing of the nuclear structure. Moreover, theorists predict
the neutrinoless double-β (0νββ) decay. The mere discovery
of 0νββ decay will undoubtedly confirm that a neutrino is
a Majorana particle (a neutrino is its own antiparticle) and
that the lepton number is not conserved in the weak process,
therefore profoundly influencing the concept of fundamental
physics [19]. In addition, the measurement of 0νββ decay is
the most practical way to determine the mass of a neutrino
provided that the associated nuclear matrix element (M0ν) is
well understood. However, the accurate calculation of the M0ν

is not well settled at present. Different nuclear many-body
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predictions of the M0ν differ from each other by a factor of two
and such indeterminacy cannot be neglected. Furthermore,
the famous gA problem exists. This problem may be caused
by the nuclear many-body correlations or the many-nucleon
weak currents being missed, which will make the situation
even worse [19]. With reliable experimental data, the 2νββ

process is the process that is the closest to the 0νββ process
and provides a valuable benchmark to calibrate the nuclear
model calculations [4].

From the viewpoint of the nuclear shell-model, the 2νββ

decay for the f p shell nuclei is of special interest. In this re-
gion, seven nuclei are believed to be 2νββ emitters and all of
the decays involve a magic nucleus (Table I). It is well known
that the magic number, which corresponds to the appearance
of the closed-shell effect, is a crucial factor for the nuclear
structure [20]. Since the NMEs of 2νββ decay depend on the
structure of the implicated nuclei, it is plausible to suggest that
the NME will be affected by the closed-shell effect.

Within the f p shell, the doubly magic nucleus 48Ca has
a large Q value (4.268 MeV), which results in a relatively
short half-life and which has attracted extensive investigations
with theoretical and experimental approaches [14,21–24]. The
half-life for the 2ν2β− decay of the 48Ca nucleus is well
known, and numerous calculations about the 2νββ and 0νββ

NMEs have been conducted [14,21,25,26]. Additionally, the
abundances of the nuclei 58Ni and 64Zn are large (68.08% for
58Ni and 49.17% for 64Zn) [27], which is a significant advan-
tage for experimental observation. Although the nuclei 58Ni
and 64Zn decay to the 2νβ+/EC direction, which is more dif-
ficult to measure, experiments have been conducted [28,29].
Recently, breakthroughs in 2νβ+/EC experiments have been
achieved, and the half-lives for the 2νECEC of the nuclei
82Kr and 126Xe have been determined [3,30]. Thus, 2νECEC
of the nuclei 58Ni and 64Zn may be measured in the near
future. The 2νββ decay of the nucleus 70Zn is also of interest.
Within the f p shell, the nucleus is defined as a semimagic nu-
cleus. However, in the f pg (0 f5/2, 1p3/2, 1p1/2, 0g9/2) shell,
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TABLE I. The 2νββ emitters in the f p shell whose transitions
involve a doubly magic nucleus and six semimagic nuclei. It should
be noted that in the f p shell, 70Zn with N = 40 is by default a
semimagic nucleus.

Property 2νββ Magic number involved

Doubly magic 48
20Ca28 → 48

22Ti26 Z = 20, N = 28

Semimagic 46
20Ca26 → 46

22Ti24 Z = 20
50
24Cr26 → 50

22Ti28 N = 28
54
26Fe28 → 54

24Cr30
58
28Ni30 → 58

26Fe32 Z = 28
64
30Zn34 → 64

28Ni36
70
30Zn40 → 70

32Ge38 N = 40

the nucleus is treated as a nonmagic nucleus. It would be
especially meaningful to compare the results of 70Zn for these
two different model spaces.

In this research, shell-model calculations are conducted for
the 2νββ decay for nuclei within the f p shell. Decays for
both the 2ν2β− and mixed 2νβ+/EC types are considered.
Three distinct effective interactions are employed to ensure
the reliability of the calculations. The theoretical half-lives,
phase space factors, and NMEs are shown and discussed in
detail. By analyzing the SF distributions, it is concluded that
the closed-shell effect significantly influences the NME of
2νββ decay.

II. OUTLINE OF THE THEORETICAL FRAMEWORK

A. Formulas for the 2νββ decay

It is well known that the half-life of the 2νββ decay is
determined by the phase space factor G2ν and the NME M2ν ,
as expressed in Eq. (1). In this research, both of the 2ν2β−
and the 2νβ+/EC (2ν2β+, 2νβ+EC, and 2νECEC) types are
considered. The evaluation of the G2ν is simple. The formulas
in Ref. [16] are used to calculate the G2ν of 2ν2β− and the
formulas in Refs. [16,31,32] are used for the 2νβ+/EC. The
axial-vector coupling constant gA, for which the G2ν is pro-
portional to its fourth power, is important in the calculation.
The widely used value gA = 1.27 [26,33] is adopted in the
calculations.

The situation for the M2ν is much more complicated in that
it depends on the decay mode and the angular momentum of
the final state [31]. In this research, since only the ground state
is considered, the M2ν can be simplified as

Mα
2ν =

∑
m

MmFα
m . (2)

The summation is for all the intermediate 1+ states and the
superscript α denotes the specific type of decay. In the frame-
work of the nuclear shell-model, the quantity Mm (for the
transition to the ground state) has the form of [16,31,34]

Mm = 〈0+
f ‖

∑
a

σaτ
±
a ‖1+

m〉〈1+
m‖

∑
b

σbτ
±
b ‖0+

i 〉 (3)

with τ− (τ+) as the isospin lowering (raising) operator cor-
responding to 2ν2β− (2νβ+/EC), the summation will go
through all possible nucleons. The quantities Fα

m in Eq. (2)
are the energy denominators that depend on the type of the
2νββ. For the transitions to the ground state, Fα

m can be cast
in the form of [31,35]

F 2β−
m = F 2β+

m = (
�m + 1

2W0
)−1

, (4)

Fβ+EC
m = (

�m − εb1 + 1
3W β+EC

0

)−1

+ (
�m + 2

3W β+EC
0

)−1
, (5)

F ECEC
m = (

�m − εb1 + 1
2W ECEC

0

)−1

+ (
�m − εb2 + 1

2W ECEC
0

)−1
, (6)

where

�m = (Em − Mic
2)/(mec2),

W0 = (Mic
2 − E f )/(mec2),

W β+EC
0 = W0 + εb1,

W ECEC
0 = W0 + εb1 + εb2. (7)

In Eq. (7), Em and E f are the energies of the intermediate
and daughter nuclear states, respectively. The symbol Mi is
the mass of the parent nucleus and me represents the electron
masses. The expression εb = (mec2 − Bi )/mec2 represents the
total energy for the captured electron, where Bi is the binding
energy of the absorbed electron [31,32].

B. Discussion of the shell-model calculations

To include more nuclear many-body correlations, in shell-
model calculations, a large model space is preferred if the
computation ability is sufficient. Thus, all the calculations are
conducted in the whole f p shell-model space to ensure the
quality of the results. Additionally, effective interaction is of
great importance in shell-model calculations. Three widely
used interactions GX1A [36,37], KB3G [38], and FPD6 [39]
are used to calculate the wave functions of the nuclei being
studied.

Based on Eqs. (2) and (3), the calculation of the NME
involves all the intermediate 1+ states. However, some of
the model spaces are huge and it is not practical to include
all the possible 1+ states. We consider 100 intermediate 1+
states in the calculations of the NME. The convergence of
the NME is of great importance and it should be carefully
discussed. Thus, the accumulations of the normalized NME
are plotted in Fig. 1. It is obvious that when the number of
accumulated 1+ states exceeds 70, the fluctuations in all the
curves are very small, which indicates the convergence of the
NME. We also notice that the nuclear structure community
has explored much larger model spaces for the 2νββ decay
of 48Ca. Kostensal and Suhonen calculate the 2νββ decay of
the 48Ca in f p shell using the GX1A effective interaction [6],
for which all the 9470 intermediate states are considered and
a quenching factor q = 0.77 is employed. The NME yields
0.0511 MeV−1. Based on the same parameters, the results for
100 intermediate states produce 0.0530 MeV−1, which differs
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FIG. 1. Accumulation of the normalized NMEs.

from Ref. [6] by only approximately 4%. Thus, the NME is
considered to be well converged.

According to Eq. (7), the energy of the intermediate state
plays a vital role in the calculation of the NME. In this work,
this value is shifted due to the experimental value of the
lowest 1+ state [40]. Additionally, the famous gA problem
is encountered in the shell-model calculations [19], which
refers to the systemic over-prediction of the single-β and
2νββ matrix elements. Usually, a quenching factor is used
as a correction factor of the nucleon many-body interac-
tions. The widely used value q = 0.744 [41] is adopted in
this work.

III. RESULTS AND DISCUSSION

Within the f p shell, seven nuclei are regarded as 2νββ

emitters. Among them, only the half-life of the nucleus 48Ca is
measured. With the most extended half-life for all the nuclear
radioactive processes ever observed, the half-life is one of the
most exciting features for 2νββ decay. In this work, three
different effective interactions are induced to calculate the
half-life for all of the emitters. Table II compares the theoreti-
cal results for the half-lives with the experimental data. The Q
values adopted in the calculations and the averaged energies
for the top intermediate 1+ state E (1+

100) are listed. As a
clear illustration, the half-lives of the 2νββ are also presented
in Fig. 2, for which all the data are derived from Table II.

FIG. 2. Half-lives of the 2νββ emitters being studied in the log10

frame. The red circles, blue triangles, and pink diamonds represent
the calculated results based on the GX1A, KB3G, and FPD6 effective
interactions, respectively. The hollow black squares represent the
experimental results.

These results from different effective interactions are consis-
tent with each other and they agree with the experimental
data. The half-lives of the nuclei 58Ni and 70Zn are predicted
to be 8.06 × 1023 and 1.41 × 1023 years, respectively (using
GX1A), which are relatively short and may be observed in the
near future. This is especially true for 58Ni, whose abundance
is quite large (60.08%). As clearly shown in Eq. (1), the
half-life of the 2νββ decay is determined by the NME and
the phase space factor G2ν . The calculation of the NME is
essential for the theoretical research of the 2νββ decay. For
the 2νβ+/EC decay, the formulas for the G2ν and the NME of
2β+, β+EC, and ECEC are different. As a clear illustration,
the value of the NMEs (in the natural unit with the electron
mass equal to 1) and the G2ν for different nuclei are listed in
Table III in detail.

As can be seen from Table III, the results based on different
effective interactions are consistent. The NMEs for 2νβ+EC
and 2νECEC are very close. Owing to the energy denominator
[Eqs. (4)–(7)], the NMEs are approximately two times the
scale of the NME for 2ν2β+. For most cases, the half-life of
the 2νβ+/EC decay is determined by the 2νECEC. Thus, the
NMEs for 2ν2β− and 2νECEC are plotted, as shown in Fig. 3.

TABLE II. The half-lives of the 2νββ emitters in the f p shell, along with the averaged energies of the top intermediate 1+ state E (1+
100)

and the Q values adopted in the calculations.

Q value Half-life (yr) E (1+
100)

Nucleus Type (keV) GX1A KB3G FPD6 Expt. (MeV)

46Ca 2β− 988.4 2.41 × 1024 3.20 × 1024 2.27 × 1024 10.82
48Ca 2β− 4268.08 3.99 × 1019 4.97 × 1019 2.49 × 1019 6.4+0.7

−0.6(stat )+1.2
−0.9(syst ) × 1019 [21] 11.08

5.6 ± 1.0 × 1019 [27]
50Cr 2β+ 1169.6 4.73 × 1025 6.21 × 1025 4.00 × 1025 >1.3 × 1018 8.65
54Fe 2β+ 680.3 2.10 × 1026 1.83 × 1026 1.46 × 1026 >4.4 × 1020 7.71
58Ni 2β+ 1926.4 8.09 × 1023 5.59 × 1023 6.18 × 1023 >2.1 × 1021 6.45
64Zn 2β+ 1094.9 4.27 × 1024 6.69 × 1024 5.13 × 1024 >7.0 × 1020 6.44
70Zn 2β− 997.1 14.1 × 1022 6.94 × 1022 12.7 × 1022 10.76
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TABLE III. Phase space factors G2ν and NMEs of 2νββ decay for the nuclei being studied.

|M2ν
GT |

Nucleus Process G2ν (yr−1) GX1A KB3G FPD6

46Ca 2β− 1.24 × 10−22 0.0578 0.0501 0.0595
48Ca 2β− 4.17 × 10−17 0.0245 0.0220 0.0310
50Cr 2β+ – 0.0651 0.0569 0.0709

β+EC 3.34 × 10−30 0.132 0.115 0.143
ECEC 1.25 × 10−24 0.130 0.114 0.142

54Fe 2β+ – 0.0937 0.100 0.113
β+EC – 0.189 0.203 0.227
ECEC 1.36 × 10−25 0.187 0.201 0.225

58Ni 2β+ – 0.0814 0.0978 0.0931
β+EC 3.04 × 10−24 0.166 0.202 0.191
ECEC 4.35 × 10−23 0.163 0.196 0.186

64Zn 2β+ – 0.121 0.0966 0.110
β+EC 1.04 × 10−32 0.250 0.200 0.230
ECEC 4.01 × 10−24 0.242 0.193 0.221

70Zn 2β− 3.24 × 10−22 0.148 0.211 0.162

According to Eq. (2), the NMEs are determined by the
structures of the parent, medium, and daughter nuclei. How-
ever, the formulas for 2ν2β− and 2νECEC are significantly
different and a direct comparison is not helpful for gaining
insights into the nuclear structure. To probe the relationship
between the closed-shell effect and the NME, we present the
NMEs for 2ν2β− and 2ν2β+ in Fig. 4. The decay of 48Ca
involves a doubly magic nucleus and the rest of the decays
only involve a semimagic nucleus. It is clear that if the decay
process involves a doubly magic nucleus, the corresponding
NME will have a smaller value than others.

To explore the reason for this outcome and to make the
results more convincing, we also calculate some hypothetical
transitions in the f p shell. The NME can be seen in Fig. 5,
where the red squares, blue triangles, and pink stars repre-
sent the transition involving a doubly, semi- magic nucleus,
and only the nonmagic nuclei, respectively. Nevertheless, for
decay involving a doubly magic nucleus, the NMEs become
visibly smaller.

FIG. 3. The NMEs of 2ν2β− and 2νECEC for different nuclei,
where the red circles, blue triangles, and pink diamonds represent
the calculated results for the GX1A, KB3G, and FPD6 effective
interactions, respectively.

As a further exploration, we also examine the SF distri-
butions for the NMEs. Figure 6 shows the normalized SF
as a function of the energy of intermediate states. The SF
distributions can be classified into three categories:

I. The strengths are highly fragmented and strongly cancel
each other out; see Fig. 6(a).

II. The strengths are concentrated into very few states that
are close to the single-state dominates (SSD) [4]; see Fig. 6(b).

III. The strengths are highly fragmented but they rarely
cancel each other out; see Fig. 6(c).

According to the above classifications, two quantities are
employed to describe the SF distributions. The standard
deviation (SD) of the normalized SF is

SD =
√∑

i(SFi − SF)2

n − 1
/SF. (8)

The “difference” between the SD and the standard deviation
for the absolute value of the normalized SF can then be

FIG. 4. The NMEs for the 2ν2β+ and 2ν2β− decays in the log2

frame. The decay of 48Ca involves a doubly magic nucleus and the
rest of the decays involve semi-magic nuclei only.
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FIG. 5. The NMEs for 2ν2β+ and 2ν2β− decays of the f p shell
nuclei.

written as

difference = SD −
√∑

(|SFi| − |SF|)2

n − 1
/|SF|. (9)

For case I, both the SD and the “difference” are considerable.
For case II, the SD is significant, but the “difference” is small.
For case III, both the SD and the “difference” are relatively
small. Taking the ideal SSD (belonging to case II) as an
example, for 100 intermediate states (n = 100), the SD will
be 10, and the “difference” should be zero. We present the
SD and the “difference” for all the nuclei being studied in
Table IV and we depict them in Fig. 7. It is evident that for
transitions involving a doubly magic nucleus, both the SD and
the “difference” are significant, which means that the transi-
tions belong to the category of case I and suggests the solid
canceling nature of the SF distribution of the transitions. Since
the Ikeda sum rule limits the total Gamow-Teller strength, this
cancellation leads to a depression of the NME. It should be
noted that the SF distribution for the doubly closed-shell nu-
cleus 68

28Ni40 is quite different from that of the others. However,
extensive studies have shown the semimagic nature [42,43] of
68Ni. The calculated results in this research also support this
concept.

For the case where the transitions involve a semimagic
nucleus, the SD is relatively large and the “difference” is
widespread. Therefore, the SF distribution belongs to cases
I or II. The only exception is the 2νββ decay of 64Zn, whose
daughter nucleus 64

28Ni is reported to have shape coexistence
at zero spins. This shape coexistence is interpreted to origi-
nate from the monopole tensor force [44] that shifts effective
single-particle energies and weakens resistance against de-
formation. The low-lying intruder states in 64Ni are referred
to as Type II shell evolution (the shell evolution inside the
same nucleus) [45]. Thus, the nucleus 64Ni is considered to
be exceptional and the calculated result shows its non-magic
feature, which is worthwhile for further investigations.

The situations for the nonmagic nuclei are the most com-
plicated and we further divide these situations into two
categories. For the nuclei whose proton or neutron numbers
are between 20 and 28 (Non-1 in Fig. 7 and Table IV), the SF

TABLE IV. The values of the SD and the “difference” [defined
by Eqs. (8) and (9)] for the 2νββ decay of the nuclei being studied.

Type Transition SD Difference

Doubly 48
20Ca28 → 48

22Ti26 10.85 7.25
48
28Ni20 → 48

26Fe22 10.51 6.80
56
28Ni28 → 56

26Fe30 10.23 6.86
68
28Ni40 → 68

30Zn38 9.52 2.10

Semi 44
22Ti22 → 44

20Ca24 9.15 3.97
46
20Ca26 → 46

22Ti24 8.96 5.42
50
24Cr26 → 50

22Ti28 7.76 4.56
52
22Ti30 → 52

24Cr28 7.64 1.73
52
26Fe26 → 52

24Cr28 6.74 4.06
54
26Fe28 → 54

24Cr30 6.81 3.31
58
28Ni30 → 58

26Fe32 7.25 4.00
64
30Zn34 → 64

28Ni36 4.28 1.27
66
28Ni38 → 66

30Zn36 6.10 2.33
70
30Zn40 → 70

32Ge38 8.34 1.31

Non-1 46
24Cr22 → 46

22Ti24 7.07 1.97
48
24Cr24 → 48

22Ti26 6.48 3.11
48
26Fe22 → 48

24Cr24 6.95 4.21
50
26Fe24 → 50

24Cr26 8.01 1.38
54
22Ti32 → 54

24Cr30 6.74 2.26
56
22Ti34 → 56

24Cr32 8.05 1.08

Non-2 66
32Ge34 → 66

30Zn36 4.21 0.94
68
32Ge36 → 68

30Zn38 3.85 1.21
68
34Se34 → 68

32Ge36 3.49 1.15
70
34Se36 → 70

32Ge38 4.23 1.29
70
36Kr34 → 70

34Se36 4.03 0.47

f pg 64
30Zn34 → 64

28Ni36 4.40 0.82
70
30Zn40 → 70

32Ge38 4.56 0.24

distributions are very similar to the cases of the semimagic
nucleus. The reason for this is that from the viewpoint of
the naive shell model, the valence protons/neutrons for these
nuclei are distributed only in the 0 f7/2 orbit. This orbit
itself forms a closed-shell, and it is difficult for these valence
protons/neutrons to exit to other orbits. Thus, these nuclei in
particular have properties similar to the semimagic nuclei. For
the rest of the nonmagic nuclei (non-2 in Fig. 7 and Table IV),
both the SD and the “difference” are small, so the nuclei
belong to the category of case III.

The 2νββ decay of 70Zn is of particular interest. One
can calculate this transition in either the f p or f pg
(0 f5/2, 1p, 0g9/2) shell-model space. In the f p shell, 70Zn is
defined as a semimagic nucleus, while in the f pg shell it is
nonmagic. We also calculate the 2νββ decay of 70Zn and 64Zn
in the f pg shell-model space using the JUN45 effective inter-
action [46]. The results are presented in Fig. 7 and Table IV as
well (in the f pg part). The calculated NMEs from the f p and
f pg shells for 70Zn are almost the same [35]. However, the SF
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FIG. 6. The normalized strength distribution as a function of the energy of the intermediate states.

distributions are not consistent with each other. The calculated
results from the f p shell show no difference between 70Zn and
the other semimagic nuclei, while calculations from the f pg
shell present the nonmagic character of 70Zn. Reference [47]
shows that the inclusion of the 0g9/2 orbit to account for the
nonmagic nature of 70Zn explains this discrepancy. Indeed,
the results from the f pg shell are much more reliable. The
2νββ decay of 64Zn can also be calculated within the f p or
f pg shell-model space. The theoretical SF distributions from
these two spaces are consistent with each other and suggest
the nonmagic nature of the 64Ni.

Thus, it can be concluded that for transitions involving a
doubly, semimagic nucleus or only the nonmagic nuclei, the
SF distributions are significantly different. This result strongly
supports the assumption that the closed-shell effect has a
significant impact on the 2νββ decay. In contrast, 2νββ decay
can be a powerful tool for exploring shell evolution and some
other nuclear shell effects.

IV. SUMMARY AND CONCLUSION

We calculate the 2νββ decay for the f p shell nuclei in
the entire 0h̄ω shell-model space with three distinct effective

FIG. 7. The relationship between the SD and the “difference”
for the 2νββ decay of the nuclei being studied. The situations are
distinct for the transition involving a doubly, semimagic nucleus, or
only the nonmagic nuclei.

interactions, and we discuss the influence of the closed-shell
effect. It is found that the SF distributions are distinct for
the transition involving a doubly, semimagic nucleus or only
the nonmagic nuclei. For cases involving a doubly magic nu-
cleus, the strengths are highly fragmented and largely cancel
each other out, leading to a depression of the NME. For a
transition involving a semimagic nucleus, the strengths ei-
ther destroy each other or are concentrated to a few states.
For a transition involving only nonmagic nuclei with valance
protons/neutrons only in the f7/2 orbit, the SF distributions
are very close to the semimagic case, which is due to the
large shell gap of N or Z = 28. The strength distributions
for the rest of the nonmagic nuclei are highly fragmented,
but the cancellation is minimal. This result suggests that the
closed-shell effect has a significant influence on the 2νββ

decay. The calculated results present the semimagic nature
of 68

28Ni40 which is consistent with other works. In previous
studies, 64

28Ni36 has been reported to have an unexpectedly
complex landscape of coexisting shapes. Our results show
that this nucleus has the feature of being nonmagic, which is
worthy of further investigation. We believe that research about
the 2νββ process can also be an effective way to explore the
shell evolution.
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