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Landscape of the island of stability with self-consistent mean-field potentials
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Incorporating effective nucleon mass from the noncovariant energy-density functional, the Schrödinger-
equivalent central and spin-orbit mean-field potentials are determined and used in the microscopic-macroscopic
method to calculate the ground-state shell corrections in superheavy nuclei with the charge numbers
Z = 112–126. The island of stability of superheavy nuclei is found to be rather flat and looks like one of coral
reef origin due to the interplay between the proton shells at Z = 114 and 120, and neutron shells at N = 174 and
184, respectively. The shape coexistence in superheavy nuclei depends on spin-orbit potentials and can affect the
spectrum of α decay. The one-quasiparticle spectra, isomeric states, and possible α-decay energies are predicted
in the nuclei of α-decay chains of 295119 and 295–297,299120.
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I. INTRODUCTION

Experiments on the synthesis of superheavy nuclei (SHN)
with charge numbers Z = 112–118 [1–11] reveal the exis-
tence of an island of stability for the heaviest nuclei. Although
the present data do not allow us to fix the center and boarders
of this island, they provide some clue for a theory to predict
what the island of stability looks like: whether it is a shape
resembling a volcanic island of a well-centered distribution
of stable SHN, or forms a “coral reef” with stable SHN dis-
tributed over an archipelago of binding energy peaks.

The structure of SHN is well described and predicted either
with microscopic-macroscopic (MM) approaches [12–14] or
with self-consistent many-body methods [15–22]. While the
MM approaches rely strongly on the parametrization of
single-particle potential and nuclear shape, the self-consistent
methods start from energy-density functionals (EDFs). The
EDF method is numerically rather involved, especially if
deformed nuclei are treated. For exploratory studies of the
SHN, the MM method has the clear advantage of allowing
rather quick, but reliable estimates of the shell evolution as
a function of mass (charge) number. We know that in the
region of SHN the MM approaches [12–14] mainly indicate
the proton shell closure at Z = 114, while the nonrelativistic
and relativistic [relativistic mean field (RMF)] self-consistent
approaches predict stronger shell effect at Z = 120–126. To
improve the description of low-lying quasiparticle states, the
parameters of the phenomenological single-particle potentials
were adjusted in Refs. [23–25] accordingly. After this modifi-
cation the proton shell closure drifts also in the MM approach
from Z = 114 to Z = 120.

Because of different starting points of MM and self-
consistent methods, there is a problem of explaining the
difference in their predictions for the SHN properties. This

observation points to the connection between the MM
and EDF approaches. In Refs. [26,27], the MM and self-
consistent methods have been related by incorporating the
self-consistently derived central Hartree-Fock-Bogoliubov
(HFB) mean-field potentials [28,29] into the MM method. A
general scheme has been provided for converting the central
mean-field potentials obtained from the nonrelativistic and co-
variant EDFs into the Schrödinger-equivalent single-particle
potentials, appropriate for the MM method. These central
potentials are defined under the constraint that we obtain
an effective wave equation with a kinetic energy operator
containing only a constant mass term in order to comply
with the MM method. Thus, the task was to project the
density-dependent effective mass contributions from the ki-
netic operators to the potential, while retaining the essential
features of the microscopic self-consistent mean fields. In
Refs. [30,31], the mean-field potential was extracted from the
EDF based on the Gogny D1S force.

In Refs. [26,27], the spin-orbit single-particle potentials
were not obtained from the nonrelativistic EDF but taken
phenomenologically. The relativistic EDF provides us with a
functional form of spin-orbit potentials that are closely related
to the corresponding effective masses. In Ref. [32], we defined
the spin-orbit mean-field potentials in terms of the effective
masses derived from a Giessen EDF [28,29] and showed that
with these spin-orbit potentials the shell effects are slightly
stronger at Z = 114 than at Z = 120. However, the island of
stability is rather flat and looks like an island of coral reef
origin due to the interplay between the proton and neutron
shell closures.

Compared to Ref. [32], in the present paper more details
of calculations and results will be presented to relate the
self-consistent and MM approaches. One of our aims is the ex-
traction of the single-particle central and spin-orbit potentials
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from the self-consistent nonrelativistic Giessen EDF-plus-
HFB theory [28,29] and the comparison of them with those
used in the MM approaches [12–14]. In this way one can
reveal the reason for the difference between the predictions
of these approaches. If the phenomenological MM approach
provides a better description of the experimental data, then
this comparison can indicate the way to improve the EDF.
Another aim is to use these extracted central and spin-orbit
potentials in the MM approach and to predict the nuclear
properties of SHN with charge numbers Z = 112–126. The
question is how the spin-orbit interaction affects the center
and border of the island of stability and the shape coexistence
in SHN. Note that knowledge of the nuclear properties of
SHN is important for finding the optimal reactions for their
production and the α-decay modes for their identification.

The article is organized as follows. In the next section,
the theoretical approach is applied to extract the central and
spin-orbit single-particle potentials from the non-relativistic
Giessen EDF-plus-HFB theory [28,29]. In Sec. III, the MM
approach is briefly introduced. In Sec. IV, the extracted
single-particle potentials are used in the MM approach to
find the ground-state shell corrections in nuclei with charge
numbers Z = 112–126 and to determine the region of nuclei
with the strongest shell effects. For the SHN, the energy
dependencies of the ground-state level-density parameters are
calculated with the mean-field potentials extracted from the
self-consistent approach (dashed lines) and ones from the MM
approach [14]. The shape coexistence in SHN is discussed in
relation to its effect on the spectrum of α decay. The one-
quasiparticle spectra of SHN in the α-decay chains of 295119
and 295,297,299120 are considered to search for isomeric states
and possible α-decay energies. The relationship between
the effective mass and spin-orbit potential is derived in the
Appendix. Finally, we summarize our work in Sec. V.

II. EXTRACTION OF CENTRAL AND SPIN-ORBIT
MEAN-FIELD POTENTIALS FROM NONRELATIVISTIC

GIESSEN EDF-PLUS-HFB THEORY

The phenomenological central potentials of Wood-Saxon
(WS) shape and corresponding spin-orbit potentials with var-
ious sets of parameters [12,33–39] are often used in the MM
approaches. The parameters are adjusted to known proton
and neutron separation energies by assuming an overall mass
dependence of the potential radii according to the A1/3 law.
The shell evolution as reflected by the single-particle ener-
gies is then used as the microscopic input, adding, so to
speak, quantum fluctuations to the macroscopic bulk of nu-
clear masses. At the moment it is difficult to test the best WS
parametrization for nuclei beyond Z = 114 due to insufficient
experimental data.

In addition to the phenomenological parametrization, it is
possible to extract the single-particle potentials from EDFs,
which are suitable for a good description of well-studied
nuclei. The transformation of the central and spin-orbit mean-
field potentials obtained from the nonrelativistic EDF into
the Schrödinger-equivalent single-particle potentials is ap-
propriate for use in the MM method. Thus, the task is to
project the density-dependent effective mass contributions

from the kinetic operators to the central single-particle poten-
tials, while retaining the essential features of the microscopic
self-consistent mean fields [26,27].

In Refs. [28,29], the covariant Lagrangian EDF was con-
structed in ab initio manner by using an interaction energy
density obtained from Dirac-Brueckner-Hartree-Fock G ma-
trices in asymmetric nuclear matter. The density-dependent
contact pairing interactions in the proton-proton and neutron-
neutron channels, respectively, are derived from the Bonn-A
NN interaction, leading to state-dependent pairing gaps. The
validity of the EDF used here is confirmed by a theoreti-
cal analysis and successful descriptions of the data all over
the mass table, not only of nuclear ground states but also
of spectral properties of stable and exotic nuclei; e.g., see
[29,40–43].

Because the proton (q = Z ) and neutron (q = N ) self-
energies �q(k, ρ) are density-dependent [29], there are the
renormalization of nucleon masses m∗

q in the HFB approach.
As a result, the self-consistent approaches lead to single-
particle potentials given in nonrelativistic formulation by

Uq(ρ) =Vq(ρ) + V (ls)
q (ρ)

=
h̄2k2

Fq

2mq

(
1 − mq

m∗
q

)
+ �q

(
kFq , ρ

) + V (ls)
q (ρ) (1)

depending on the nuclear density ρ. Here, kFq is the wave
number at the Fermi surface, mq is the bare nucleon mass, and
V (ls)

q (ρ) is the spin-orbit single-particle potential written here
separately from the central single-particle potential Vq(ρ).
With a radial-dependent effective mass the equation for the
single-particle wave function ψq is as follows:(

−∇ · h̄2

2m∗
q (r)

∇ + Vq(r) + V (ls)
q (r) − εq

)
ψq(r) = 0. (2)

This equation differs from the Schrödinger equation in the
phenomenological approaches because it contains the density-
dependent effective mass m∗

q (r). Reducing Eq. (2) to the
standard Schrödinger equation as in Refs. [26,27], we obtain(

− h̄2

2mq
∇2 + Uq(r) + U (ls)

q (r) − εq

)
ψq(r) = 0, (3)

where

Uq(r) = Vq(r) + h̄2

2mq
μq(r)k̄eff + 3

5

(
1 − m∗

q (r)

mq

) h̄2k2
Fq

(r)

2m∗
q (r)

.

(4)

The expressions for k̄eff and μq(r) are given in Refs. [26,27]
as

k̄eff =−1

2
μq + 3

8k3
Fq

[
kFq

√
1

4
μ2

q + k2
Fq

(
1

4
μ2

q + 2k2
Fq

)

− 1

16
μ4

qarcsinh

(
2kFq

μq

)]
(5)

and

μq(r) = d ln(m∗
q (r)/mq)

dr
.
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Because of the density dependence of m∗
q in the self-

consistent approach, there is a repulsive correction term
to the bare self-consistent mean-field potential Vq. So, the
Schrödinger-equivalent central mean-field potential Uq is less
deep than the potential Vq and has to be compared with the
corresponding phenomenological central single-particle po-
tential. With the correction on the self-consistent potential,
the Schrödinger-equivalent potential Uq can be regarded as
the central potential for the Schrödinger equation with bare
nucleon mass.

In Eq. (2), we write separately the spin-orbit potential
which arises from the corresponding part of the nonrelativistic
EDF. In thenon-relativistic EDF this part, which is defined in
terms of the isoscalar and isovector interactions and corre-
sponding spin currents, requires some parameters. However,
in the RMF the spin-orbit potential consistently appears and
it is strictly related to the difference of scalar S and vector
V fields while the central potential Vq = S + V (see the Ap-
pendix). Thus, in the RMF theory the central and spin-orbit
single-particle self-energies are determined in an unified man-
ner by the same set of scalar and vector fields. The quantity
relevant for the spin-orbit potential is the effective mass m∗

q ,
including the Dirac mass and the sum of scalar and vector
Dirac self-energies (plus a minor state-dependent constant
energy term) [26,27]. In the nonrelativistic limit m∗

q becomes
the effective Schrödinger mass. This allows us to exploit a
well-known relation,

U (ls)
q (r) = m∗

q (r)

mq
V (ls)

q (r) = − 1

mq

1

r

d ln(m∗
q (r)/mq)

dr
l · s, (6)

of covariant mean-field theory and define the Schrödinger-
equivalent spin-orbit mean-field potentials in terms of effec-
tive masses derived from the nonrelativistic Giessen EDF
[28,29] (Appendix). In Eq. (6), l and s are in the units of h̄.
So, the spin-orbit single-particle potentials can be found with
Eq. (6) using the dependence of m∗

q (r) on the radial coordinate
r. Note that this definition of U (ls)

q (r) in the noncovariant the-
ory differs from the usual practice. As shown for the first time
in the Appendix, the relationship between the effective mass
and spin-orbit potential imposes a strict correlation between
the parameters of the Skyrme EDF.

III. MM APPROACH

The central and spin-orbit single-particle potentials found
from the nonrelativistic Giessen EDF-plus-HFB theory are
employed in the MM approach [44,45] to find the shell-
corrections and the binding energies at the ground states of
SHN. The potential energy is calculated as the sum of two
terms,

U = ULDM + δUmic. (7)

The first term in (7) is a smoothly varying macroscopic energy
(the Coulomb and surface energies) calculated with the liquid-
drop model. The second term δUmic contains the shell Esh and
pairing corrections.

Although the parameters of WS form factors are extracted
from the self-consistent model for the spherical nuclei, they
are relevant when considering the nuclear deformation in

the MM model. The equilibrium deformation of the nucleus
corresponds to the position of the corresponding minimum
on the potential energy surface U . The calculations account
for deformation effects, assuming axial symmetry. The shape
of a deformed nucleus is described by a set of multipole
parameters βλ (λ � 2). As found, the considered isotopes of
nuclei with Z = 118–126 are almost spherical while the nuclei
with Z = 112–116 are slightly deformed with the parameters
of quadrupole deformation β2 � 0.15, closely resembling the
values predicted in Ref. [14]. For nuclei with Z < 110, the
absolute values of microscopic corrections obtained in our
calculations are close to those obtained in Refs. [12–14].
Also, the description of the single-particle spectra and nucleon
density profiles are rather good [27,46,47]. With our MM
approach one can calculate the energy Qα of α decay and
structure properties of SHN [25–27,38].

IV. RESULTS AND DISCUSSIONS

For the present large-scale MM calculations, we use
the central spin-independent HFB mean-field potentials (4)
and effective masses from the nonrelativistic Giessen EDF
[26–29]. Employing these effective masses and Eq. (6), we
obtain the spin-orbit mean-field potentials. Then the central
and spin-orbit single-particle potentials are fitted in a conve-
nient forms and used in the MM approach to find the shell
corrections in the ground states of nuclei with Z = 112–126.

A. Parametrization of single-particle potentials extracted
from nonrelativistic Giessen EDF-plus-HFB theory

1. Central single-particle potentials

The central single-particle potentials (isoscalar plus isovec-
tor) extracted from the nonrelativistic Giessen EDF-plus-HFB
calculations are fitted with the WS form factors [26,27]

Uq(r) = V 0
q

1 + exp[(r − Rq)/aq]
,

where V 0
q = −(58.3 ± 32 N−Z

A ) MeV, Rq = r0qA1/3, and r0N =
1.24 fm, r0Z = 1.25 fm, aN = 0.68 fm, aZ = 0.75 fm for the
heavy nuclei considered. Here, the plus and minus signs cor-
respond to q = Z and q = N , respectively. The values of r0q

obtained are smaller than (close to) those of the phenomeno-
logical WS potential in Ref. [14] ([33]). The values of aq are
relatively close in all approaches.

The self-consistent calculations result in 3–11 MeV deeper
potential wells than those used in the phenomenological WS
parametrizations. For example, in comparison with the WS
potential extracted from the self-consistent approach, in the
MM model [14] the depth V 0

q = −(49.6 ± 42.66 N−Z
A ) MeV

of the WS potential used is smaller for the heaviest nuclei.
For example, the HFB results in V 0

Z = −64.354 MeV and
V 0

N = −52.25 MeV for 296120, but the values −57.67 and
−41.53 MeV, respectively, follow from Ref. [14]. So, the
isospin dependence of the mean-field potential is stronger in
the MM model [14]. In the expressions asym

(N−Z )2

A for the
macroscopic symmetry nuclear energy, the coefficient asym

is related to the isospin-asymmetric part V1 of the potential
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FIG. 1. The calculated values of 41.5 ln(m∗
q (r)/mq ) for protons

(a) and neutrons (b) of the spherical nucleus 272Ds are shown by
symbols. The results of a fit by the WS form factors are shown by
solid lines.

depth V 0
q = V0 ± V1

N−Z
A , V1 = asym [48]. In the “universal”

WS potentials [49] as well as in the WS potentials used in the
quasiparticle-phonon model (QPM) [33,34], the value of V1 is
about 40 MeV. If the “universal” WS potentials are used to fit
the single-particle spectra for magic nuclei [50], the value of
V1 becomes about 33.6 MeV. The WS potentials with almost
the same values of V1 were suggested in Ref. [35].

2. Spin-orbit single-particle potentials

For spherical nucleus 272Ds, the dependencies of
41.5 ln[m∗

q (r)/mq] on r [see Eq. (6)] are presented in Fig. 1.
In spite of the hump at small r, these dependencies are well
approximated by the WS form factors. There are similar
humps in the central single-particle potentials [26,27] which
mainly affect only the states with small orbital quantum
numbers l whose wave functions are maximal at small r and
which are less important for the shell effects in the heavy
nuclei considered. Because the spin-orbit single-particle
potential is defined by the derivative of ln[m∗

q (r)/mq] with
respect to r [see Eq. (6)], it has the largest value near the
nuclear surface (at least three times larger that the maximal
absolute value of d

dr ln[m∗
q (r)/mq] at small r). Shell effects

turn out to be most sensitive to the spin-orbit strengths at the
nuclear surface.

For the spin-orbit single-particle potentials, we use Eq. (6)
in parametrized form as follows:

U (ls)
q (r) = −κq

1

r

d

dr

V 0
q

1 + exp[(r − R′
q)/a′

q]
l · s, (8)

where the constants κN = 0.27 fm2 and κZ = 0.19 fm2, a′
N =

0.46 fm and a′
Z = 0.435 fm, and the radii R′

q are calculated
with r′

0N = 1.19 fm and r′
0Z = 1.18 fm. As in Ref. [14], the

parameters r′
0q differ from r0q and r′

0q < r0q. However, a′
q <

aq in our case, that also follows from the RMF calculations
in Ref. [26]. Indeed, the sum and difference of scalar and
vector potentials result in the differences of r0q and aq from r′

0q

and a′
q, respectively. As follows from Eq. (8), the spin-orbit

strength is proportional to κq/a′
q: the smaller the effective

mass in the center of nucleus and the smaller the diffuseness
a′

q, the stronger the spin-orbit potential. So, the spin-orbit
potential is strongly related to the function m∗

q (r).

B. Level-density parameters of SHN

In comparison with the phenomenological approach the
self-consistent ones result in a deeper central mean-field
potentials. The deeper potential well leads to smaller level
density near the Fermi surface and could change the shell cor-
rection to the binding energy. The level-density parameters a
are calculated as in Ref. [51]. In Fig. 2, they are compared with
those obtained for shallower potential well used in Ref. [14].
As seen, the deeper potential well results in smaller a by about
15%. So, in the calculation of the survival probabilities for
SHN the value of level-density parameter should be consistent
with the mean-field potentials used.

C. Quasiparticle levels

One-quasiparticle levels are calculated with the superfluid
nuclear model using the variation principle and single-particle
states in the extracted mean-field potentials at equilibrium
deformation parameters β2 and β4. The blocking effect is
taken into consideration. The one-quasiparticle energies are
strongly affected not only by the mean-field single-particle
levels, but by the residual pairing and quasiparticle-phonon
interactions. These interactions are taken into consideration
with the quasiparticle phonon model [33,34]. In the calcu-
lations, the quadrupole and octupole phonons are taken into
account.

1. Actinides

To evaluate the quality of the description of one-
quasiparticle spectra with the mean-field potential extracted
from the self-consistent consideration, we compare the cal-
culated spectra for 243Cm, 251Cf, 247Bk, and 251Es with the
available experimental data [52] and those obtained with the
phenomenological WS potential (Figs. 3 and 4). The phe-
nomenological WS potentials [38,44] with V 0

q = −[54.25 ±
39.6(N − Z )/A] MeV, r0N = 1.26 fm, r0Z = 1.24 fm, aN =
a′

N = 0.74 fm, aZ = a′
Z = 0.645 fm, κN = 0.45, and κZ =

0.32 were adopted for the best description of the low-lying
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FIG. 2. Energy dependencies of the ground-state level-density
parameters calculated with the mean-field potentials extracted from
the self-consistent approach (dashed lines) and the ones from
Ref. [14] (solid lines) for nuclei 288Fl (a), 292Lv (b), and 300120 (c).

quasiparticle states. The potential for protons (neutrons) is
about 3 MeV (6 MeV) shallower. While aN < aZ in our case,
in the phenomenological WS potential aN > aZ . As seen in
Figs. 3 and 4, the phenomenological WS potentials result
in a better description of the experimental data. However,
the mean-field potentials extracted from the self-consistent
approach provide quite a satisfactory description of one-
quasiparticle spectra. The same conclusion was also reached
in Ref. [30].

2. SHN of α-decay chains with 295119 and 295,297,299120

The one-quasiparticle spectra of odd-mass nuclei with Z =
119 and 120, which can be produced in complete fusion

FIG. 3. Calculated energies of low-lying one-quasineutron states
(WS-SO) in 243Cm and 251Cf are compared with the available experi-
mental data [52] and those (WS) obtained with the phenomenological
WS potentials (see text).

reactions, are of special interest. In Fig. 5, the calculated
one-quasiproton spectra and α decays from the ground and
possible isomeric states are shown in the nuclei of the α-decay
chain of the 295119 nucleus. As seen in Fig. 5, the values
of Qα in 279Rg, 283Nh, and 287Mc are reproduced well. Note
that the calculated Qα values in even-even SHN are also in a
good agreement with the experimental data. For example, for
the α decay of the nuclei 284Cn, 288Fl, and 292Lv we obtain
Qα = 9.87, 10.18, and 10.64 MeV, respectively, while the
experimental values are 9.60, 10.07, and 10.776 MeV [3,53].

Definition of the spin-orbit interaction different from [45]
leads here to some changes of the ground-state deformations
and order of one-quasiparticle states. As in Ref. [45], there
is low-lying isomeric state 1/2−[510] in 295119, and two α-
decay lines are possible in this nucleus (Fig. 5). The obtained
difference of Qα results in about two orders of magnitude
different half-lives. However, the α decay of 291Ts is less

FIG. 4. The same as in Fig. 3, but for one-quasiproton states in
247Bk and 251Es.
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FIG. 5. Calculated energies of low-lying one-quasiproton states
in the indicated nuclei of the α-decay chain of 295119. The calcu-
lated values of Qα are for the ground-state-to-ground-state α decays.
The α decays with �K = 0 and �K �= 0 are traced by solid and
dashed arrows, respectively. The experimental values of Qexp

α are
from Refs. [1,3].

hindered in the present calculation. One can also see the
stronger shell effects in 283Nh than those in Ref. [45].

The possible α-decay chain of 295120 nucleus is presented
in Fig. 6. In comparison to the results of Ref. [45], the α-decay
from the ground state is unhindered The α decay from the
isomeric state 15/2−[707] in 295120 occurs if this state lives
longer than 0.3 ms, which is unlikely taking into account its
position at 0.72 MeV and coupling with other states. The α

decay of 295120 with Qα = 12.22 MeV likely occurs in Tα ≈
0.8 ms, that is much shorter than the expected half-life 0.1 s
for spontaneous fission [54]. As in Ref. [45], the interruption
of the α-decay chain in Fig. 6 is expected below 279Cn.

As seen in Figs. 6 and 7, there are stronger shell effects
when the neutron number approaches N = 174 (the deformed
neutron subshell). The α decay of 297120 is hindered because
the state 1/2+[620] in 293Og has energy larger than 0.8 MeV.

FIG. 6. The same as in Fig. 5, but for the α-decay chain of 295120.

FIG. 7. The same as in Fig. 5, but for the α-decay chain of 297120.

The isomeric 1/2+[611] state of 293Og is likely populated in
the α decay of 297120. So, the α decay of 293Og can be delayed
or have two lines in Fig. 7. As in Ref. [45], the α decay from
the ground state of 289Lv is strongly hindered. The α decay
can also occur from the isomeric state 1/2+[611] 289Lv if it
lives longer than 15 ms. The interruption of α-decay chain in
Fig. 7 is expected below 285Fl.

The possible α-decay chain of 299120 is presented in Fig. 8.
As seen, the α decays of 299120 and 295Og are hindered be-
cause of the positions of corresponding states in the parent
nuclei. For example, the α decay of 295Og likely occurs to the
ground state 1/2+[611] of 291Lv because the state 1/2+[620]
is located at the much higher energy at 1.27 MeV. The varia-
tion of ground-state deformations (β2 = 0.019, 0.1, and 0.136
for 299120, 291Lv, and 287Fl, respectively) leads to the same
quantum numbers for the ground states of these nuclei.

As found, in 296,298,300120 the two-quasiparticle isomeric
states with K > 4 have energies larger than 1 MeV. The lowest
two-quasiproton 9−

π (13/2+[606] ⊗ 5/2−[503]) isomeric state

FIG. 8. The same as in Fig. 5, but for the α-decay chain of 299120.
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FIG. 9. The calculated ground-state shell correction energies in
nuclei of the α-decay chain containing 295119. Our results (closed
circles) obtained with the MM method using the self-consistent
mean-field potentials are compared to the microscopic corrections
from the FRDM2012 [12] (open squares) and MM2020 [14] (open
triangles) The lines are drown to guide the eye.

is in 296120 at 1.065 MeV. In 292Og, the state 9−
π is at energy

1.226 MeV. The α decay to this state occurs if the isomeric 9−
π

state in 296120 lives longer than 6 ms.

D. Shell effects in α-decay chains with Z = 119 and 120 nuclei

The crucial link between the microscopic and macroscopic
approaches to nuclear structure is the shell correction energy
[55]. Using the central and spin-orbit mean-field potentials
extracted here from the self-consistent approach, in addition
to Ref. [32] we calculate the ground-state shell corrections for
the nuclei of α-decay chains containing the SHN 295119 and
295–297,299,301,304120 (Figs. 9–11). In comparison to Ref. [26]
where the spin-orbit potentials were partially introduced phe-
nomenologically, the present spin-orbit potentials lead to a
slightly larger proton shell at Z = 114 than that at Z =
120. The maximum difference of proton shell corrections
in the considered nuclei with Z = 114 and Z = 120 reaches
about 1 MeV. The interplay between the proton and neutron
shell effects results in rather weak dependence of Esh in the
range of Z = 114–120. In the case of smaller isospin N − Z ,
the deformed neutron shell at N = 174 smoothes out the

FIG. 10. The same as in Fig. 9, but for nuclei of α-decay chains containing 295120 (a), 296120 (b), and 297120 (c).
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FIG. 11. The same as in Fig. 9, but for nuclei of α-decay chains containing 299120 (a), 301120 (b), and 304120 (c).

dependence of Esh on Z from 114 till 120 and shifts the
minimum of Esh to Z = 116. In the α-decay chains with
larger N − Z , the spherical neutron shell at N = 184 increases
the shell effect at Z = 120 and the dependence of Esh on Z
remains rather flat. The shell effects were 1–2 MeV stronger
at Z = 120 in Ref. [26], while the present calculations lead to
rather close values of Esh for nuclei with Z = 114–120. Be-
cause the phenomenological U (ls)

q (r) in Ref. [26] are weaker
(smaller κq/a′

q) by about 15% than the one used in the present
calculations [Uq(r) are the same], one can conclude that minor
change of the spin-orbit potentials can shift the minimum of
the shell correction energy from Z = 114 to Z = 120.

For comparison, in Figs. 9–11 we present the microscopic
corrections obtained with the FRDM2012 [12] and MM2020
[14] models. Overall, there is a qualitative agreement on the
evolution of Esh(Z, N ) over whole range from Z = 112 to
Z = 126. The FRDM2012 model results are slightly closer to
ours. A common feature of the three approaches, including
the present one, is the rapid decrease of shell effects and
accordingly of the nuclear stability beyond Z = 120. Based
on the calculations presented, we expect enhanced shell ef-
fects at (Z = 120, N = 184), while in Refs. [12,14] (Z = 114,
N = 184) is favored.

In the MM models [25,38,45], the phenomenological
single-particle potentials result in the increase of the shell
effects toward Z = 120 nucleus. However, the shell effects
in nuclei with Z = 114–118 remain quite large. So, there are
certain intervals of parameter values of the phenomenological
mean-field potentials in the MM approaches which endorse
the stronger shell effects at Z = 120 rather than at Z = 114.
Note that in Refs. [25,38,45] the spin-orbit single-particle
potentials were phenomenologically adjusted for a better de-
scription of nuclear structure of well studied heavy nuclei.
As shown below, the description of these nuclei with the
spin-orbit potentials obtained here remains satisfactory.

In all MM approaches considered, including the present
one and that in Refs. [25,38,45], the competition between
proton and neutron shell effects at Z = 114–120 acts like a
stabilization effect, inducing a rather weak dependence of Esh

on the charge number Z . So, these approaches predict that the
island of stability is more like an island of coral reef origin
than a volcanic one. This landscape of the island of stability is
also supported by the experiment. Indeed, no discontinuity in
Qα and lifetimes was observed in nuclei beyond Fl [1–3].

Note that the MM approaches mentioned describe well the
known energies of α decays and, thus, the binding energies.
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FIG. 12. Contour plots of the potential energy of 286,290Fl as functions of quadrupole β2 and hexadecupole β4 deformation parameters.
The energies are counted from the potential energy of the corresponding spherical nucleus. The potential minima are marked by crosses. The
potential minima at positive β2 are about 2.5 MeV deeper than those at β2 < 0.

Also the self-consistent approaches are suitable to explain
the experimental data. The strong difference in the results is
obtained only for nuclei beyond Og. Therefore, only future ex-
perimental results could indicate the most reliable approach.

E. Shape coexistence in SHN

In nuclei with Z = 114–120, the potential energy surfaces
as functions of β2 are rather flat near the ground states and
have minima at positive and negative β2 [38,56]. For example,
in Fig. 12 for 286,290Fl there are two minima which differ in
energy by approximately 2.5 MeV and are at opposite signs of
quadrupole deformations. The deeper minima with the largest
|Esh| corresponds to the ground state. For 296120, the minima
are at almost the same energy (Fig. 13). With increasing N
towards 184, two minima almost coincide and the nucleus

becomes spherical (see the case of 300120). So, the shape
coexistence phenomenon in SHN is well seen in our axial
calculations. The depths and positions of the potential minima
depend on the spin-orbit potential used. In comparison to the
present calculations, the potential minimum at negative β2

is deeper in Ref. [38]. If two potential minima are close in
energy, the α decays to the states with the same quantum
numbers but built in different minima could have different en-
ergies. This effect can create an additional line in the spectrum
of α particles emitted.

V. SUMMARY

The central and spin-orbit mean-field potentials were
extracted from the self-consistent nonrelativistic Giessen

FIG. 13. The same as in Fig. 12, but for nuclei 296,300120. The potential minima at positive β2 are only about 0.1 MeV deeper than those at
β2 < 0.
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EDF-plus-HFB theory [29]. Special attention was paid to con-
straining the mean-field spin-orbit potentials by exploiting a
well-known relation of covariant mean-field theory. As found,
the noncovariant self-consistent approach provides deeper
central single-particle potentials than those used in the known
MM models [12,14]. The spin-orbit single-particle potentials
extracted appear to be of a form like those in phenomeno-
logical studies, with comparable strength constant but smaller
diffuseness and radius parameters.

The single-particle spectra in SHN are rather dense, and
small change of spin-orbit strength leads to important con-
sequences. We revealed that the spin-orbit strengths mainly
define the position of the proton shell closure in SHN.
As shown, 15% stronger spin-orbit interaction can shift the
proton shell from Z = 120 to Z = 114. Because the posi-
tion of proton shell closure in SHN is very sensitive to
the spin-orbit strength, its experimental indication will allow
us to correct the radial dependencies of nucleon effective
masses.

To relate the self-consistent and MM approaches, the ex-
tracted microscopic mean-field potentials were used in the
MM method for calculating the shell correction energies in
the nuclei of α-decay chains containing SHN 295119 and
295–297,299,301,304120. With these mean-field potentials we ob-
tained quite strong shell effects in nuclei with Z = 114–120
due to the interplay between the proton shells at Z = 114 and
120 and neutron shells at N = 174 and 184, respectively. A
central result obtained is the influence of the neutron shell
structure on the position of the next double magic nucleus
after 208Pb. The shift of the proton shell closure from Z = 114
to Z = 120 was clearly seen with increasing the neutron num-
ber from N = 174 to N = 184. As in Refs. [12,14], the nuclei
are expected to be quite unstable beyond Z = 120. Thus, the
island of stability looks like an island of coral reef origin with
the border Z = 114–120 and N = 174–184. This prediction
of the border supports the attempt to produce nuclei with
Z = 119 and 120 and to check if they belong to the main reef
of the island of stability.

The singe-particle potentials extracted from the self-
consistent approach were used to calculate the α-decay
energies and one-quasiparticle spectra in actinides and SHN
of α-decay chains containing 295119 and 295,297,299120. One
can conclude from our work that the approaches, which de-
scribe well the structure of actinides, indicate quite strong
shell effects at Z = 120. Another conclusion is that spin-orbit
interaction affects the shape coexistence and, correspond-
ingly, the spectrum of α decay in the SHN, for example, in
286,290Fl and 296,300120. The isomeric states (i.e., 1/2+[611] in
289Lv, 1/2+[611] in 293Og, 1/2−[510] in 295119, 15/2−[707]
in 295120, and 9−

π (13/2+[606] ⊗ 5/2−[503]) in 296120) and
expected α-decay energies in the SHN and the interruptions
of α-decay chains were predicted. These results seem to be
important for analyzing the experimental spectra of α decay.

From the comparison with available experimental data, we
conclude that the Giessen EDF used in the paper is good
enough to describe nuclear properties and can serve as a
basis for further improvement. Because of the relationship
established between the self-consistent and MM approaches,
perhaps the EDF can be modified to result in mean-field

central and spin-orbit potentials close to those in the success-
ful phenomenological models.
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APPENDIX

In the Skyrme mean-field Hamiltonian for symmetric nu-
clear matter [m∗

q (r) = m∗(r), mq = m, and V (ls)
q = V (ls)] with

density ρ(r) [57,58],

m∗(r) =
(

1

m
+ 3t1 + (5 + 4x2)t2

8
ρ(r)

)−1

(A1)

and

V (ls)
Sk (r) = 3

4
W0

1

r

dρ(r)

dr
l · s (A2)

are the effective mass and spin-orbit potential, respectively.
Here, ti (i = 1, 2), x2, and W0 are the parameters used in the
Skyrme EDF.

In the RMF, the projection onto the upper component of the
Dirac function results in the Schrödinger equation [15] with
the effective mass (in units h̄ = c = 1)

m∗ = m − 1
2 [V − S] (A3)

and the spin-orbit term

V (ls) = 1

(2m)2
(∇vls) · (p × σ ), (A4)

where

v(ls) = m

m∗ [V − S] = 2m

m∗ (m − m∗). (A5)

In the case of spherical symmetry, the spin-orbit term has the
well-known form

V (ls)(r) = 1

2m2

1

r

dvls(r)

dr
l · s

= 1

r

d (m∗(r))−1

dr
l · s. (A6)

Equating the Skyrme and RMF effective masses and spin-
orbital potentials

V (ls)
Sk (r) = V (ls)(r), (A7)

we obtain the relationship

W0 = 1
6 [3t1 + (5 + 4x2)t2] (A8)

between the constants of the Skyrme Hamiltonian. Equation
(A8) can be also written as

3

4
W0ρ(r) = 3t1 + (5 + 4x2)t2

8
ρ(r) = 1

m∗ − 1

m
. (A9)

Thus, we reduce the number of constants and obtain the
Skyrme spin-orbit potential in the form of Eq. (A6).

Equation (A9) results in a strong correlation between the
value of W0 and the parameters t1, t2, and x2. For SkM∗

064303-10



LANDSCAPE OF THE ISLAND OF STABILITY … PHYSICAL REVIEW C 104, 064303 (2021)

[59], SLy4 [60], and T43 [61] parametrizations of EDF,
W0 = 130, 123, and 153.103 MeV fm5, respectively, while

Eq. (A9) leads to W0 = 92.5, 152.35, and 144 MeV fm5,
respectively.
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