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We explore the constraints on the three-nucleon force (3NF) of chiral effective field theory (χEFT) that are
provided by bound-state observables in the A = 3 and A = 4 sectors. Our statistically rigorous analysis incorpo-
rates experimental error, computational method uncertainty, and the uncertainty due to truncation of the χEFT
expansion at next-to-next-to-leading order. A consistent solution for the 3H binding energy, the 4He binding
energy and radius, and the 3H β-decay rate can only be obtained if χEFT truncation errors are included in the
analysis. The β-decay rate is the only one of these that yields a nondegenerate constraint on the 3NF low-energy
constants, which makes it crucial for the parameter estimation. We use eigenvector continuation for fast and
accurate emulation of no-core shell model calculations of the few-nucleon observables. This facilitates sampling
of the posterior probability distribution, allowing us to also determine the distributions of the parameters that
quantify the truncation error. We find a χEFT expansion parameter of Q = 0.33 ± 0.06 for these observables.

DOI: 10.1103/PhysRevC.104.064001

I. MOTIVATION AND GOALS

In low-energy effective field theories (EFTs) of many-
body systems, three- and higher-body forces inevitably arise
because they capture the effect of degrees of freedom not
resolved in the EFT [1–3]. In the variant of chiral EFT
(χEFT) without an explicit Delta resonance, three-nucleon
forces (3NFs) first appear in the Hamiltonian at third order
(next-to-next-to-leading order, NNLO) in the EFT expansion.
This first contribution depends on two parameters, called cD

and cE , not already determined by nucleon-nucleon (NN) or
pion-nucleon (πN) scattering. The terms proportional to cD

and cE , together with the venerable Fujita-Miyazawa term [4],
form the dominant piece of the 3NF in χEFT [5,6]. This 3NF
has small, but important, effects in light nuclei and helps drive
saturation in heavier systems and symmetric nuclear matter
[7]. But—as in any EFT—cD and cE must be estimated from
data, either using experimental measurements or theoretical
sources. Doing that reliably, with error bars that account for
all uncertainties, is key to accurate use of χEFT forces in
computations of nuclei.
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In this work, we carry out parameter estimation for cD and
cE within a Bayesian framework. We explore the constraints
on cD and cE provided by several observables: the triton
and 4He particle binding energies, the 4He particle charge
radius, and the Gamow-Teller matrix element of the triton,
as extracted from tritium β decay. In addition to the standard
treatment of uncertainties in the experimental measurements,
we also account for model discrepancy [8,9] by considering
the uncertainty in the χEFT Hamiltonian itself. In particular,
we include χEFT truncation errors in the parameter estima-
tion using a statistical model applied previously in the NN
sector [10,11]. A novel feature of our analysis is that we em-
ploy eigenvector continuation (EC) [12] to implement rapid
sampling [13,14] of a multidimensional posterior, and hence
obtain joint probability distributions for cD, cE , and the EFT
expansion parameter, Q. The fits of the NN and πN parame-
ters that are inputs to our calculations also have uncertainties;
we propagate the uncertainties from NN but not from πN (see
Sec. II E). The outputs from the parameter estimation are not
single values for cD and cE but multidimensional posterior
probability density functions (pdfs). These—referred to as
“posteriors” hereafter—can be used to identify correlations
and to propagate uncertainties to observables.

This is not an exhaustive study of parameter estimation
for these 3NF parameters. Rather our goal is to examine the
implications of using particular combinations of observables
for constraining cD and cE while exemplifying statistical best
practices [10], in particular the inclusion of EFT truncation
errors as a guard against overfitting. There are several recent
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and ongoing efforts seeking analogous constraints, which can
provide complementary information, and many of our conclu-
sions reinforce those of other authors. In particular, we build
on the use of tritium β decay in Refs. [15,16] (cf. Ref. [17]
for an analysis in χEFT with explicit �(1232) degrees of
freedom) and compare our results to the cD-cE posteriors
found using other observables such as Nd scattering [18] and
neutron-α scattering [19].

In Sec. II we describe our Bayesian strategy for estimating
cD and cE : our choice of likelihood and prior distributions,
including our optimization of the input NN force. Then in
Sec. III we discuss details of the few-body methods used
to compute observables and introduce the EC emulators
that make our comprehensive parameter-estimation process
feasible. Results are given in Sec. IV, first for the most
comprehensive fit of the 3NF parameters and then using con-
straints provided by individual observables. We identify the
induced correlations, infer knowledge of the EFT expansion,
and display the range of χEFT predictions obtained from
our cD and cE posterior. Our takeaway points and avenues
for future work are summarized in Sec. V. An open-source
Python package fit3bf accompanies this article [20] and can
be used to reproduce all the figures herein.

II. BAYESIAN STRATEGY

Our aim is to determine 3NF low-energy constants (LECs)
{cD, cE } from experimental data yexp. The few-body observ-
ables in yexp are the mass and radius of 4He, and the mass
and β-decay rate of 3H. The Bayesian approach we implement
can account for all sources of uncertainty: from data, from the
theoretical model, and from the calculational methods [10,21].
Some of these will not be treated in this work because they are
either negligible (e.g., emulator error; see Sec. III B) or more
work needs to be done to properly include them (πN LECs;
see Sec. II E). The largest source of uncertainty is the χEFT
truncation error, but we also account for the experimental and
the few-nucleon solver uncertainties. Our use of emulators
makes the observable calculations required for Markov chain
Monte Carlo (MCMC) sampling rapid enough that we can
fully account for NN uncertainties and incorporate truncation
uncertainty in a Bayesian fashion.

In this section we first detail our approach to assessing
truncation errors [22,23]. We then write down the forms for
the posterior and prior, before describing how the convergence
pattern of A = 3 and A = 4 observables provide information
on the truncation error. The section closes with a description
of how the NN LEC values and uncertainties that are input to
our calculation are obtained.

A. Including EFT truncation error

We follow a Bayesian approach for the consistent incor-
poration of all higher-order terms in the EFT [23]. Let yth(�a)
be the prediction of some observable y at a fixed order in the
EFT and for fixed values of LECs �a. Here, �a includes the NN
LECs along with cD and cE . Dependence on the πN LECs
is left implicit throughout; see Sec. II C. We account for the
presence of theory and experimental uncertainties δyth and

δyexp by writing [8–10]

yexp = yth(�a) + δyth + δyexp. (1)

That is, the theoretical value differs from the measured value
because of both experimental uncertainties and discrepancies
in the theory. For the measurement errors δyexp we assume
a Gaussian error term that is uncorrelated between observ-
ables. However, this assumption has little impact on our
results because experimental errors are small relative to theory
uncertainties.

The distribution of the theory discrepancy δyth also follows
a Gaussian distribution [22]. It depends on two dimensionless
parameters related to the EFT convergence pattern. The first is
the EFT expansion parameter Q, which is a number in (0, 1)
and governs the factor by which each correction should shrink
in a well-constructed EFT. The model encodes the expectation
that the first omitted term in a χEFT of order k is of order
yref c̄ Qk+1, where yref is the known characteristic size of the
observable y [11,22]. The second dimensionless parameter is
then c̄. It governs the magnitude of the relative correction at
each order after we have accounted for Q.

For a given c̄ and Q the error due to all terms beyond O(Qk )
in the EFT can be summed and used to create a covariance
matrix between observable i and observable j. In this work we
assume that there are no correlations between the EFT errors
for the observables of interest, thus the covariance matrix is
diagonal [10]:

(�th )i j =
[

(yref c̄ Qk+1)2

1 − Q2

]
δi j . (2)

We view this as the simplest form of �th that models the effect
of higher-order terms in the χEFT expansion. There are cer-
tainly other plausible forms of �th that invoke correlated EFT
uncertainties, e.g., we could assume the fourth-and-higher or-
der contributions to these observables are correlated according
to the pattern of correlations observed between them at lower
orders; cf. Refs. [23–25]. As we mention in Sec. V below,
exploring the impact of more sophisticated forms of �th on
the results is an avenue for future work. Practitioners who
wish to examine such possibilities themselves should find it
straightforward to do so using the open-source Python pack-
age fit3bf that accompanies this article [20].

B. The pdf for cD and cE

The form of the experimental and theory uncertainties and
the relation (1) are sufficient to determine that the likelihood
is given by

pr(yexp | �a, �, I ) = N [yth, �]. (3)

This likelihood is a multivariate Gaussian pdf, defined by
central values from theory, yth, and the covariance matrix
� ≡ �exp + �method + �th, where we have also included a
term �method that describes the uncertainty of our few-nucleon
solver. Here, the combination �exp + �method is a diagonal
matrix given by the column of adopted errors in Table I.
The precision of our few-nucleon calculations is discussed in
Sec. III. The covariance matrix could be extended to include
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TABLE I. Results at LO, NLO, and NNLO for the observables used in various combinations to form our likelihood: the binding energies of
the 3H and 4He states, the rms (point-proton) radius of 4He, and the β-decay comparative half-life of 3H. Experimental data are from [45–48].
Non-negligible uncertainties in the last digits are then given in brackets. Adopted uncertainties are the larger of those and uncertainties from the
calculational method used to solve the Schrödinger equation. Note that corrections have been applied to experimental data to obtain the third
and fourth “observables,” as described in the text. The 〈NNLO〉ppd results were obtained by averaging over the Bayesian posterior predictive
distribution (ppd) for the EFT predictions; see Eq. (24) and Fig. 4. The 68% highest posterior density (HPD) credible regions of the NNLO
predictions are shown in the �NNLOppd column.

LO NLO 〈NNLO〉ppd Experiment Adopted uncertainty �NNLOppd

E (3H) (MeV) −5.65 −8.38 −8.52 −8.482 [45] 0.015 [−8.613, −8.453]
E (4He) (MeV) −24.08 −30.21 −28.19 −28.296 [46] 0.005 [−28.670, −27.853]
r(4He) (fm) 1.27 1.33 1.45 1.4552(62) [47] 0.0062 [1.4414, 1.4634]
f T1/2 (s) 1127.3 1129.6(3.0) [48] 3.0 [1109.1, 1150.9]

a term from the emulators, but we do not do that here as those
errors are negligible.

If the truncation error parameters c̄ and Q appearing in
�th are known from prior information then this likelihood,
together with priors on �a, defines the posterior probability
density to be computed. Although there is some evidence that
suggests Q ≈ 0.3 [25–27], we use uninformative assumptions
so as not to bias our results unnecessarily. We handle this by
treating c̄ and Q as additional random variables; that is, we
assign priors to them and learn their posterior distributions in
tandem with the LECs.

The full joint pdf for all these parameters of interest then
follows from Bayes’ theorem:

pr(�a, c̄2, Q | yexp, I ) ∝ pr(yexp | �a, �, I )pr(�a | I )

× pr(c̄2 | Q, �a, I )pr(Q | �a, I ), (4)

where the distributions for c̄2 and Q are explained in Sec. II D.
We obtain the left-hand side of Eq. (4) using MCMC sam-
pling. It is then simple to look at projections of these samples
for the set of variables one is interested in. This is equivalent
to integrating out (or marginalizing over) the other parameters.
This allows us to compute a posterior for cD and cE without
assuming that the NN LECs or the truncation error parameters
are known in advance. The prior information I that determines
the factors in Eq. (4) other than the likelihood, i.e., the prior
pdfs, will be discussed in the next subsections.

C. Priors for the NN and 3N LECs

The prior information I includes NN scattering data, spe-
cific values of the πN LECs, and naturalness for cD and cE .
The prior on �a ≡ {cD, cE , �aNN} then factorizes into a prior on
the NN LECs, �aNN, and one on the 3NF LECs, cD and cE :

pr(�a | I ) = pr(cD, cE | I )pr(�aNN | I ), (5)

pr(cD, cE | I ) = N [0, ā2], (6)

pr(�aNN | I ) = N [μNN, �NN]. (7)

The bespoke analysis of NN data described in Sec. II E pro-
duces a Gaussian posterior that is our prior on �aNN for this
3NF analysis. We denote the mean and covariance matrices
obtained in Sec. II E by μNN and �NN. We adopt a Gaussian

for the 3NF LEC prior [28,29]. Its width is chosen as ā = 5.
We have found that this value of ā is sufficiently large that it
does not meaningfully impact our full results [10].

A fit in which the πN LECs were also constrained by
NN and few-body data could be described using the same
formalism, by expanding the vector �a so that it includes the
three πN LECs that appear in the NN potential.

D. Priors for the truncation-error parameters

We now develop the pdf pr(c̄2, Q | �a, I ) that enters in
Eq. (4). This distribution is obtained from two distinct sources
of information: (1) the order-by-order pattern of terms in the
EFT expansion—knowledge of which is implicit in the con-
ditioning on �a, I—and (2) the prior information on c̄2, Q. If
there were no reliable convergence pattern, or if we happened
to be fitting an EFT at leading order, then this pdf would
simply reduce to the prior on c̄2, Q. For a detailed explanation
of this approach, see [23], the appendices in particular.

Let us begin with a description of how the convergence
pattern for yth enters our analysis. Again, yth consists of the
mass and radius of 4He, and the mass and β-decay rate of 3H.
For the LO-NLO correction, we have in principle the results
in Table I. However, the shift from LO to NLO in the nuclear
binding energies is large, being 100% of the LO value in many
cases. This is because these states are weakly bound, i.e.,
〈T 〉 and 〈V (0)〉 are each much larger in size than the energy,
E , of the 3H or 4He eigenstate. Therefore while 〈V (2)〉 	
〈V (0)〉, in accord with χEFT counting, 〈V (2)〉 can still be a
sizable fraction of the leading-order eigenenergy, E (0). How-
ever, E (3) − E (2) ≈ 〈V (3)〉, therefore the NNLO shift of the
eigenenergy should provide information on the expansion pa-
rameter. Since the radii of weakly bound states are correlated
with the distance they lie from the nearest particle-removal
threshold [30–33] the (large relative) shift in that observable
at NLO also does not give straightforward information on the
convergence of the χEFT expansion.

Meanwhile, the convergence pattern for f T1/2 of 3H is
irregular: f T1/2 receives zero correction at relative order Q,
while the one-body-operator corrections at O(Q2) produce
a <1% effect. But a significant alteration to the LO re-
sult comes when two-body axial currents appear at O(Q3)
[16]. The statistical model employed here assumes a regular
order-by-order convergence of observables. More work, e.g.,
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a simultaneous treatment of corrections to the trinucleon wave
function and the Gamow-Teller operator, is needed to under-
stand why f T1/2 does not have such a convergence pattern.
But, in the meantime, the order-by-order behavior of f T1/2 is
not consistent with our statistical model, so we do not use it to
develop the pdf pr(c̄2, Q | �a, I ). The information on the χEFT
convergence pattern that goes into that pdf is from a subset of
the order-by-order χEFT predictions: the NLO-NNLO cor-
rections for E (4He), r(4He) and E (3H).

Now the NLO-NNLO corrections for these observables
vary with �a. The NLO observable calculations are performed
using the NLO optimum for the NN LECs (see Sec. II E). But
the NNLO observables depend on �a, so we should infer the
NNLO LECs and the truncation error parameters simultane-
ously during the NNLO fit.

We follow [23] and use a scaled inverse chi squared distri-
bution for the prior pr(c̄2 | I ) ∼ χ−2[ν0, τ

2
0 ]. This pdf depends

on two hyperparameters ν0 and τ 2
0 that are chosen at the begin-

ning of the analysis. (The prior pdfs we take for c̄2 and Q are
shown as the blue lines in Fig. 5.) Because this is a conjugate
prior, the posterior distribution is obtained analytically as

pr(c̄2 | Q, �a, I ) = χ−2[ν, τ 2(�a, Q)]. (8)

The updating formulas for the hyperparameters are [23]

ν = ν0 + Nobsnc, (9)

ντ 2(�a, Q) = ν0τ
2
0 +

∑
n,i

c2
n,i(�a, Q), (10)

where i indexes the Nobs observables, n indexes the nc lower
order coefficients used to estimate the truncation error, and the
observable coefficients are given by

cn,i(�a, Q) = y(i)
n (�a(n) ) − y(i)

n−1(�a(n−1))

yref Qn
. (11)

The notation �a(n) describes the LECs found at the nth order
EFT fit. For NNLO, these are the �a that are varied in the fit,
whereas for NLO these are fixed at the optimum from the
NLO fit.

With these updated hyperparameters in hand we can then
obtain the unnormalized Q posterior:

pr(Q | �a, I ) ∝ pr(Q | I )

τ ν
∏

n QNobsn
. (12)

The fact that Eq. (12) is unnormalized would not usually
be a problem for estimating Q. But the normalization factor
depends on �a because the NLO-NNLO correction depends
on �a. The set of LECs �a is the quantity we are trying to
estimate in Eq. (4), so we must be careful to include this
factor. We quickly normalize Eq. (12) at each MCMC step
by precomputing 70 Gaussian quadrature locations Qi and
weights. Additional speedup is realized by parallelizing the
calls to Eq. (12) across the Gaussian points Qi.

The last ingredient we need is then the prior pr(Q | I ) that
goes into the convergence-pattern analysis. To formulate that
we note

(i) Q is restricted to the range (0, 1);

(ii) for properties of low-energy bound states we expect
χEFT to converge with Q less than 1/2 [25–27].

We encode this as a weakly informative beta distribution
B(Q | a = 3, b = 5), which provides a slight bias towards Q <

0.5 and has support only for Q ∈ (0, 1).
With pr(Q | �a, I ) and pr(c̄2 | Q, �a, I ) in hand the desired pdf

is straightforwardly obtained via the product rule for condi-
tional probabilities:

pr(c̄2, Q | �a, I ) = pr(c̄2 | Q, �a, I )pr(Q | �a, I ). (13)

E. Prior for NN LECs from NN scattering data

We acquire values for the NN sector LECs �aNN at LO,
NLO, and NNLO by performing a new fit to np and pp
scattering data in the 0 < E � 290 MeV range gathered
from the Granada 2013 database [34,35]. As the LEC C̃nn

1S0
is unconstrained by the scattering data we also include the
empirical 1S0 nn scattering length aN

nn = −18.95 ± 0.40 fm
and effective range rN

nn = 2.75 ± 0.11 fm [36]. The optimiza-
tion procedure maximizes the likelihood function defined in
Eq. (3). Fully specifying the likelihood requires us to pick val-
ues for c̄ and the NN observable expansion parameter QNN(p);
these are set to c̄ = 1 and QNN(p) = max(mπ , p)/�b, where
mπ is the pion mass, p is the center-of-mass momentum of the
NN system, and �b = 600 MeV. A set of reference values yref

are also required, for which we use the experimental values.
Three πN LECs (c1, c3, and c4) enter at NNLO. While

these LECs could in principle be determined in the same way
as the NN LECs, a more precise determination is possible
by performing a Roy-Steiner analysis of πN scattering data
[37,38]. Here we keep the ci’s fixed to the central values
from a Roy-Steiner analysis performed by Siemens et al. [39]
as we focus on the uncertainties from the NN sector. The
covariance matrix for the πN LECs provided in Ref. [39]
could straightforwardly be included as prior information in
Eq. (7), provided the cross-correlation between the πN and
NN LECs were known. The fixed values of the ci’s are shown
in Table II in Appendix B.

The result of an optimization can (and usually does) de-
pend strongly on the choice of starting point �a0. A previously
found optimum—produced by performing a fit to phase shifts
using POUNDerS [40,41] optimization—serves as a basis for
choosing a starting point. We choose �a0 by randomly perturb-
ing a subset of the previously found parameter values.

With the setup complete we run the optimization using
the first-order Levenberg-Marquardt algorithm. This is re-
peated 600 times using different starting points. One or more
candidate optima are chosen and used as starting points to
the second-order Newton-CG method, which increases the
precision of the found optimum. The final optimum is then
chosen as the set of LECs �a∗

NN which produces the maximum
likelihood value. The resulting values for the LECs agree well
with findings from similarly regulated potentials [36,42] and
are shown in Table II.

To estimate the covariance matrix �NN of the NN LECs
�aNN we follow the method detailed by Carlsson et al. in Sec.
II G of Ref. [43]. The resulting Gaussian pdf (7) is shown in
green in Fig. 2. The Hessian needed to compute the covariance
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matrix, and the first- and second-order derivatives used by the
optimization algorithms, are computed to machine precision
using automatic differentiation [44].

III. FEW-NUCLEON-PHYSICS IMPLEMENTATION

The likelihood in Eq. (3) is centered at the model pre-
dictions yth for few-nucleon (A = 3, 4) observables. To make
those predictions we apply the no-core shell model (NCSM)
[49] in a relative-coordinate harmonic-oscillator (HO) ba-
sis and solve the few-nucleon Schrödinger equation with
two- and three-nucleon interactions employing the isoscalar
approximation as presented in Ref. [50]. The model-space di-
mension is determined from the truncation in total number of
HO excitations Nmax. The eigenenergy of the resulting Hamil-
tonian matrix is a variational estimate of the total binding
energy while the eigenfunctions can be used to obtain other
observables.

We obtain converged ground-state observables using h̄ω =
36 MeV and Nmax = 40(18) for A = 3(4) since we employ a
rather soft chiral interaction at NNLO. Specifically we use a
nonlocal momentum-space regulator function as in Eqs. (5)
and (6) of Ref. [43] with cutoff � = 450 MeV and n = 3. For
4He we obtain ground-state energies and point-proton radii
that are converged within � 5 keV and � 0.002 fm compared
to larger-basis calculations.

A. Few-nucleon observables of interest

The first two observables we consider are the binding ener-
gies of 3H and 4He. Determining these from precisely known
masses yields errors on the binding energies of a few eV or
less. This is negligible compared to errors from the method
used to calculate the bound states. Therefore in Table I we take
“adopted errors” for these two observables of 15 keV (width
of the 68% credibility interval given the 20 keV accuracy of
the isoscalar approximation for the 3H binding energy quoted
in Ref. [50]) and 5 keV (NCSM basis truncation) respec-
tively. Ultimately, both of these are dwarfed by the truncation
error.

We also compute the point-proton radius, here denoted r,
for 3H and 4He and relate it to the measured charge radius via
[51]

r2 = r2
ch − r2

p − N

Z
r2

n − r2
DF − �r2, (14)

where r2
p (r2

n ) is the proton (neutron) mean-squared charge
radius, Z (N) is the proton (neutron) number, and r2

DF =
3h̄2/(4M2

p ) ≈ 0.033 fm2 is the Darwin-Foldy correction [52].
There are two-body-current and further relativistic corrections
to r(4He) at orders beyond NNLO in χEFT, but these are
accounted for by the truncation uncertainties in our likelihood,
so we set �r2 = 0. We use rp = 0.8783(86) fm and r2

n =
−0.1149(27) fm2 [47]. We do not use the 3He binding energy
or point-proton radius for inference because they are highly
correlated with the corresponding 3H observables: 100% cor-
related in the limit of isospin-symmetric interactions.

Furthermore, we use the triton half-life to provide a con-
straint on the nuclear force from an electroweak observable.
We follow the approach by Gazit et al. [15] and compute the

triton half-life from the reduced matrix element for EA
1 , the

J = 1 electric multipole of the axial-vector current:〈
EA

1

〉 ≡ ∣∣〈3He
∥∥EA

1

∥∥3H
〉∣∣. (15)

Due to the χEFT link between electroweak currents in nuclei
and the strong interaction dynamics [15,53,54], this matrix
element has a term proportional to cD, the LEC that also
determines the strength of the one-pion-exchange plus contact
interaction diagram of the 3NF. (Note, though, that Krebs
has recently pointed out that this connection is broken at
subleading order by commonly used regulation procedures
[55].) The experimental value for the comparative half-life,
f T1/2 = 1129.6 ± 3 s [48],1 leads to an empirical value for
〈EA

1 〉 = 0.6848 ± 0.0011 [15] via the relation

f T1/2 = K/G2
V

(1 − δc) + 3π ( fA/ fV )
〈
EA

1

〉2 , (16)

with K/G2
V = 6146.6 ± 0.6 s, fA/ fV = 1.00529, and the

isospin-breaking correction δc = 0.13%.
Results at LO, NLO, and NNLO for these four A = 3, 4 ob-

servables, together with the experimental numbers, are given
in Table I. The NNLO results in this table are the mean
values obtained from the posterior predictive distribution; see
Eq. (24) and Fig. 4.

B. Efficient emulators for few-nucleon observables

Although we are studying A = 3, 4 systems using soft
interactions, the matrix representations of the NCSM Hamil-
tonians for the few-nucleon states that we analyze still reach
dimensions of approximately 104 × 104. With a Lanczos algo-
rithm it takes about one minute, using a single CPU, to obtain
the energies and corresponding wave functions for the systems
of interest. It takes a few hours of computation on a single
node to fully sample the posterior pdf pr(cD, cE | yexp, I ).

To enable more rapid iterations of our exploratory data
analysis, we employ eigenvector continuation (EC) [12] to ef-
ficiently and accurately emulate [13] the �a dependence of the
few-nucleon observables listed in Table I. The high accuracy
achieved is demonstrated by the smallness of the differences
between the emulator and the NCSM result; see Fig. 1.
The evaluation of the posterior is dramatically accelerated
via the EC emulators such that each parameter sample only
takes ≈ 10 ms on a single-threaded CPU with a correspond-
ing speed-up for sampling the relevant parameter space of
LECs. In addition, the construction of a set of model-specific
emulators allows others to easily reproduce, and modify, our
statistical analysis.2

1Reference [16] uses the value f T1/2 = 1134.6 ± 3 s, obtained
from Simpson’s tritium β-decay measurement [56]. The difference
between the two f T1/2 numbers is larger than the stated error in
either. Here we select the Akulov-Mamyrin result, but the tools we
have developed and provide make it straightforward to re-do the
analysis using either the Simpson value or a compromise f T1/2 with
an error inflated so it is large enough to accommodate both results.

2The NCSM emulators and statistical models can be obtained or
created via our open-source Python package fit3bf [20].
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FIG. 1. Differences between evaluations using the Schrödinger-
equation solution and those using the EC emulator for the four
observables of interest at 100 validation points. These differences
are several orders of magnitude smaller than the adopted errors in
Table I. Note that the ground state energies from the emulator are
guaranteed to be an upper bound on the exact energies, but the other
observables have no such constraint.

The EC approach to emulation is described in Ref. [13];
to be self-contained, we briefly outline the method here. Con-
sider one quantum system that we want to emulate, such as
the triton. The A-nucleon Schrödinger equation can be written
as

H (�a)|ψ (�a)〉 = E (�a)|ψ (�a)〉, (17)

where |ψ (�a)〉 and E (�a) denote the ground-state and its energy,
and the implicit �a dependence has been brought forward.
We then diagonalize the Hamiltonian H (�a) for NEC different
values of �a, and collect the NEC ground-state wave functions
|ψi〉 into a matrix X ,

X ≡
⎛
⎝ | | |

|ψ1〉 |ψ2〉 · · · ∣∣ψNEC

〉
| | |

⎞
⎠, (18)

which does not depend on �a. Then we project the Hamiltonian
to a subspace spanned by the NEC wave functions via

H̃ (�a) = X †H (�a)X. (19)

Because the chiral Hamiltonians H that we use depend lin-
early on �a, this projection can be performed once for each
term and stored to quickly construct H̃ (�a).

To construct an emulator for |ψ (�a)〉 and E (�a), we solve the
NEC × NEC generalized eigenvalue equation

H̃ (�a)β(�a) = Ẽ (�a)Nβ(�a), (20)

where N = X †X is the norm matrix with elements Ni j =
〈ψ (�ai )|ψ (�a j )〉. The generalized eigenvalue Ẽ is an approx-
imation to the true eigenenergy. The length-NEC vector of
coefficients β(�a) found by solving Eq. (20) could then be used
to reconstruct the approximate wave functions via |ψ (�a)〉 ≈
Xβ(�a), but these are not needed in practice. Instead, to eval-
uate expectation values of observables Ô other than nuclear
spectra, one computes

〈Ô(�a)〉 = 〈ψ (�a)|Ô(�a)|ψ (�a)〉
≈ β(�a)†[X †Ô(�a)X ]β(�a). (21)

If Ô(�a) is linear in �a then the terms in X †Ô(�a)X can again be
computed once and stored prior to sampling. For the β-decay
transition, we generalize Eq. (21) to the case where the right
and left Xβ(�a) come from the initial- and final-state emula-
tors, respectively. This is the first application of EC emulation
to a nuclear transition.

It was shown in Ref. [13] that Ẽ approximates E extremely
well even with a small number of training vectors. Although
the Hamiltonian eigenvector originally resides in a Hilbert
space of very large dimension, the eigenvector trajectory pro-
duced by continuous changes of the Hamiltonian matrix can
be accurately represented in a space of very low dimension.
For this reason we can construct fast and accurate emulators
for all observables that we study, including the β-decay tran-
sition (see Fig. 1).

As already noted, to construct a computationally efficient
EC emulator requires that we can write the subspace-projected
Hamiltonian as a linear combination of the continuous param-
eters that we are interested in. For example, considering only
the cD and cE dependence, we can express the chiral NNLO
Hamiltonian as

H (cD, cE ) = H (const) + cDV (1π-ct) + cEV (3N-ct), (22)

where we partitioned the Hamiltonian into three pieces: all
contributions that are constant with respect to variation of
cD and cE (H (const)), the one-pion-exchange plus contact
(1π -ct) interaction between three nucleons, and the pure
three-nucleon contact (3N-ct). Having obtained NEC linearly
independent training vectors |ψi〉 for each state of interest, we
construct each subspace-projected matrix [denoted with tildes
as in (19)] in

H̃ (cD, cE ) = H̃ (const) + cDṼ (1π-ct) + cEṼ (3N-ct) (23)

only once prior to sampling, which greatly speeds up the
subsequent matrix algebra. Equipped with the subspace basis,
we can also project the operators for the point-proton radius
of 4He and triton β decay.

When sampling over both NN and 3N LECs (for a total of
13 dimensions), we use NEC = 50 training points. For the 3NF
LECs, we simply use a Latin hypercube design in the range
[−5, 5]. For the NN LECs, we start with a Latin hypercube
design in the range [−1, 1]. We then map each training point
pi to the plausible range of LECs according to μNN + �

1/2
NN pi

with μNN and �NN the mean and covariance determined in
Sec. II E. The resulting set of points form our training LECs,
and are displayed in Fig. 2.
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FIG. 2. The EC training points in the space of NN LECs com-
pared to the input priors for our few-body analysis. The green curves
represent the marginal prior distributions, with the ellipses denoting
95% credibility regions. Each dot is a training point; the marginals
are approximately uniformly distributed. The values quoted above
the diagonal are means and standard deviations from Table II.

FIG. 3. The posterior of cD and cE fitting to all four few-body
observables and marginalizing over c̄2, Q, and the NN LECs. The
black histograms and contours correspond to the pure MCMC sam-
ples. The red curves and ellipses follow from a fit of a multivariate
t distribution tν (m, S) as described in the text. Filled areas in the
marginals denote one standard deviation of the fit distribution, which
contains 86% of the probability mass, not 68% like a Gaussian.
Contours represent the one and two standard deviations of the best
fit tν (m, S).

IV. BAYESIAN PARAMETER ESTIMATION FOR
cD, cE , Q, AND c̄

Figure 3 shows the joint posterior for cD and cE as ob-
tained from MCMC sampling of the full posterior (4). This
LEC posterior has been marginalized over �aNN as well as the
truncation error parameters c̄ and Q. The evaluation was done
using fixed ā = 5, although the final posterior is concentrated
so close to zero that ā could be taken to larger values without
influencing the results. The data likelihood (3) contains the
four few-nucleon observables listed in Table I. We sample the
posterior using the affine invariant MCMC ensemble sampler
emcee [57] using 50 walkers with 50 000 iterations per walker
following 2000 warmup steps.

The joint distribution in Fig. 3 is best represented by a
multivariate t distribution. The emergence of a t distribution
is a generic feature of statistics problems that are linear in
the parameters and involve variance estimation—as explained
in Appendix A—and the linear correlations seen in Fig. 7
strongly support that this problem is approximately linear in
cD and cE . None of this is surprising: the 3NF is a perturbative
correction in χEFT and the values of cD and cE that turn out
to be relevant are small. (For another recent discussion of the
benefits of a perturbative treatment of cD and cE see Ref. [58].)

We fit a parametrized distribution to the cD, cE samples by
maximizing their likelihood given that they are multivariate t
distributed tν (m, S). The best fit is obtained with ν ≈ 2.8 de-
grees of freedom, a mean vector m = [−0.0047 −0.1892],
and scale matrix of

S =
[

0.250 0.043
0.043 0.008

]
.

This yields an accurate description of the one-dimensional
cD and cE posteriors and of their joint pdf at one standard
deviation. The two standard deviation contour in the two-
dimensional LEC pdf is harder to match. This distribution has
moderately heavy tails; a Gaussian is not a good approxima-
tion.

The parameters cD and cE are strongly correlated. The
covariance matrix is νS/(ν − 2), corresponding to a correla-
tion coefficient ρ ≈ 0.96. The strength of this correlation is
similar to what was found in Baroni et al. [16] and Kravvaris
et al. in Ref. [19]. In contrast, in Ref. [18] Epelbaum et al.
employed SCS potentials and found the triton-binding-energy
constraint led to cD and cE being anticorrelated. The way
that this correlation is connected to the wave function of the
three-nucleon system and the short-distance behavior of the
NN force is an interesting subject for future study.

The consistency of our parameter estimation can be as-
sessed by studying the model posterior predictive distribution
(ppd)

ppd = {yth(�a) : �a ∼ pr(�a | yexp, I )}. (24)

The ppd is the set of all predictions computed over likely
values of the LECs, i.e., drawing from the posterior pdf for
�a. Figure 4 shows the ppd for the target few-nucleon ob-
servables, evaluated from the full posterior (4). In practice,
the ppd is evaluated via sampling and we use the MCMC
samples of the full posterior for this purpose. The four target
experimental values are within one standard deviation for
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FIG. 4. The posterior predictive distribution from sampling over
the LECs found in Fig. 3, with units as in Table I. The red distribu-
tions come from a fit of a multivariate t distribution to the data (see
Appendix A). The filled regions of the one-dimensional plots repre-
sent one standard deviation of the marginal t distributions. The filled
contours of the joint distributions denote the one- and two-standard-
deviation regions of the multivariate t , and the black contours denote
the corresponding HPD regions from the samples. The markers and
black horizontal and vertical lines denote the experimental values.

all of the marginals, while all but one pair of values are
within one-standard-deviation regions for the bivariate joint
distributions. For the 3H - 4He joint distribution the target is
instead within the two-standard-deviation region. We reiterate
that the probability mass enclosed in these intervals does not
correspond to Gaussian intervals due to the heavy tails of the
distribution.

Because we simultaneously sample the 3NF LECs and the
parameters associated with our model for truncation errors,
we also have access to the (joint) posterior for those parame-
ters, Q and c̄. This posterior is shown in Fig. 5 as the black
histogram. It should be compared to the prior distribution
represented by the blue curve and described in Sec. II D. Both
the NLO to NNLO shift in observables and the discrepancies
with data of the NNLO χEFT predictions inform the pdf
for c̄ and Q. Together, the constraints yield Q = 0.33 ± 0.06,
which is an uncertainty of about 20%. An ongoing analysis
by the LENPIC Collaboration suggests Q = {mπ }eff/�b with
{mπ }eff ≈ 200 MeV and �b ≈ 600–650 MeV, a very similar
value for Q [25–27]. The preferred values of c̄ are of order
1: the one-dimensional 68% Bayesian credible interval is
c̄ ∈ [0.87, 1.44]. This validates the naturalness assumptions
encoded in the truncation-error model. There is a nonlinear
correlation between c̄ and Q, presumably because the pattern
of EFT convergence constrains the combinations c̄Q3 (from
NLO to NNLO) and c̄Q4 (NNLO uncertainties).

If one could assume reasonable values for �a a priori, then
an alternative approach to this evaluation of the Q-c̄ posterior
via sampling is to use the mean value of the shift in observ-

FIG. 5. The prior and posterior distributions for c̄ and Q. The
blue line denotes the uncorrelated prior distribution with c̄2 ∼
χ−2[ν0 = 1.5, τ 2

0 = 1.52] and Q ∼ B(a = 3, b = 5). The black pos-
terior is obtained by conditioning on the NLO-NNLO shift at each �a
value in the sampler. It also folds in information about the size N3LO
effects need to have to yield agreement with the data. From this we
obtain Q = 0.33 ± 0.06. If we instead updated from the prior to the
posterior via the mean value for the shift obtained from the fit, then
we would have obtained the red curve.

ables from NLO to NNLO to update the pdf for c̄ and Q; see
Eqs. (8)–(12). Updating using the mean values from the ppd
and the NLO numbers in Table I yields the red curves for Q
and c̄ in Fig. 5. These differ from the sampling results in two
ways. First, in the sampling results the NLO-to-NNLO shift is
computed for each sample separately. The value of c3, and
hence that of τ 2 and c̄2, depends on �a, and so is different
for each member of the MC Markov chain. However, since
the ppd of all the observables that inform the convergence
pattern is quite narrow, this �a dependence is a small effect.
The samples in Fig. 5 also account for the requirement that
the sizes of the NNLO errors are statistically consistent. The
combination c̄Q4 determines the variance of our NNLO pdfs.
Incorporating NNLO variance estimation in our c̄-Q estimate
brings the central value of Q down slightly compared to what
is obtained if only the NLO-to-NNLO shift in observables is
considered.

If truncation errors are not included in the analysis then
the individual constraints from all four observables disagree
by several σ , see Fig. 6(a), where NN LECs are also held
fixed.3 Consequently, obtaining a posterior with �th = 0

3In the absence of a prior these posteriors extend very far in both
directions, since the problem is approximately linear and each band
represents the constraint on two parameters from one datum. But the
prior on �a [Eq. (6)] regulates these one-dimensional structures once
values of cD and cE ≈ ā are reached.
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FIG. 6. Constraints on cD and cE from single-observable fits both without (a) and with (b) EFT truncation errors included. The regions are
determined by computing 39% HPD intervals, which would correspond to 1σ intervals for a two-dimensional Gaussian. The NN LECs are
fixed to their prior values for these plots, as they make little difference to the overall fit. There is no mutual overlap of the truncation-error-free
posteriors, which would make a simultaneous fit difficult and unreliable. On the other hand, the right-hand panel makes it clear that there is
no inconsistency in the theory here, once truncation errors are accounted for. (Note that in the right-hand panel c̄ and Q are fixed. If they were
allowed to vary as in the full fit, then there is not enough information to accurately constrain these posteriors.) All but the f T1/2 observable
provide essentially identical information about the cD, cE fit, which makes it a crucial observable to include.

becomes both difficult and unreliable. In particular, the errors
adopted for the two binding energies in Table I lead to such
tight constraints that the resulting values of cE differ by many
σ , at least in the region where the f T1/2(3H) datum is also
reproduced.

The contrast when truncation errors are added to the analy-
sis is striking; see Fig. 6(b). In this case, the constraints due to
all four observables can be satisfied simultaneously. Note that
we have fixed Q = 0.33, c̄ = 1, rather than marginalizing over
Q and c̄ as we did to obtain Fig. 3. With only one observable
in the likelihood there is not enough information to determine
cD, cE , Q, and c̄ simultaneously. The NN LECs are also held
fixed for this portion of the analysis because their effects are
hardly distinguishable here. The concordance region where
all four data are simultaneously reproduced is qualitatively
similar to the result obtained via MCMC sampling as in Fig. 3,
though fixing c̄ and Q produces credibility intervals that are
narrower than they should be, and turns tails that should be t
distributed back into Gaussians.

Pairs of the triton and 4He binding energies and the 4He
radius have conventionally been used in past optimizations of
cD and cE . But Figs. 6(a) and 6(b) make it clear that all three
of these observables are correlated: they do not provide com-
plementary constraints on the 3NF LECs. The triton β-decay
rate—or some other non-degenerate observable—is essential
to accurate estimation of cD and cE [18,19,25,59]. To make
this point clear Fig. 7 shows the cD-cE posterior for four pairs
of observables (once again with c̄ = 1, Q = 0.33 and fixed
�aNN). The one-dimensional nature of the information obtained

on the 3NF LECs under a poor choice of observable pair is
most drastic for E (3H) and E (4He) (upper-left panel). These
two binding energies are, of course, correlated: few-body uni-
versality predicts that once the three-body binding energy is
known the four-body binding energy can be accurately pre-
dicted [60–62]. Between them E (3H) and E (4He) constrain
only the combination cE − 0.2cD. Any information on the
individual LECs comes only from the prior, which truncates
the posterior once |cD| ≈ 5. The situation is almost as bad if
the E (3H) binding energy and the r(4He) radius are used to
constrain the 3NF (upper-right panel) (cf. the similar posterior
from these two observables found in Ref. [19]).

The triton half-life constrains the value of cD well, but
leaves cE essentially unconstrained [15]. Therefore, it pro-
vides a complementary constraint, as observed in Ref. [59]
(lower-left and lower-right panels), greatly reducing the range
of allowed cD values. That in turn sharpens the estimate of
cE because of the correlation induced through an energy or
radius. Using the 4He binding energy and the triton half-life
provides essentially the same information as fitting to all four
observables. Of the observables we consider, these are the
two that best constrain the short-distance pieces of the 3NF.
There is little additional information added by the other two
observables.

V. SUMMARY AND OUTLOOK

The present work is part of an ongoing effort to develop,
apply, and evaluate Bayesian statistical methods for effective
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FIG. 7. Posteriors found by including only subsets of the few-
body observables in the likelihood (3) while holding �aNN and
truncation parameters fixed (c̄ = 1, Q = 0.33). In each panel the fit
to all four observables, again with fixed truncation parameters, is rep-
resented by the dashed line, and is shown for comparison. We choose
to show the 39% HPD interval, which corresponds closely to 1σ

because these distributions are approximately Gaussian. Posteriors
conditioned on the triton half-life give particularly well-constrained
3NF parameters, whereas the others are unconstrained along a linear
combination of cD and cE . The fit to E (4He) and f T1/2 produces
almost the same posterior as the fit to all four observables. Because
the truncation parameters c̄ and Q are fixed—for the same reasons
as in Fig. 6(b)—these posteriors appear more constrained than is
justified by our true prior knowledge.

field theories of nuclei. Our immediate target is the estimation
of the LECs cD and cE that characterize short-distance effects
in the leading three-nucleon force in χEFT. Performing this
“fit” means finding the joint posterior distribution of these
LECs given a selected set of experimental data yexp and a spec-
ification of prior information, I , namely pr(cD, cE | yexp, I ). In
this analysis, I includes knowledge about the LECs as well as
the χEFT truncation error model developed in Refs. [10,23].
The prior for cD and cE is chosen to be naturally sized, the
�aNN prior was determined from NN scattering data up to 290
MeV, and the πN LECs were fixed to the central values from
the Roy-Steiner analysis. The resulting posterior is shown in
Fig. 3.

We focus on how different combinations of experimental
observables impact the posterior. We present results for one
χEFT Hamiltonian and constrained its parameters using a
set of four nuclear properties: the triton binding energy and
half-life, and the 4He binding energy and charge radius. We
do not span all possible Hamiltonian regularization schemes
and input properties. However, our Bayesian framework ac-
counts for experimental and theoretical errors and enables

the identification of correlations and the direct propagation of
uncertainties to observables. Extending the results is straight-
forward via our open-source Python package fit3bf [20],
which can reproduce all results shown in this work.

The Bayesian strategy and the details of the statistical
model are laid out in Sec. II, building on previous work.
The likelihood in Eq. (3) is determined by the form of the
experimental and theory uncertainties to be a multivariate
Gaussian. The prior information specifies NN and πN LECs,
as well as the uncertainties from the NN fit (omitting the πN
uncertainties here because we do not account for correlations
with NN observables). The truncation error model for the EFT
has been developed and validated elsewhere. All assumptions
are explicit and therefore testable.

We compute a joint posterior the LECs cD, cE , �aNN, and
truncation error parameters c̄ and Q. The posterior for cD

and cE —unconditional on �aNN, c̄, and Q—is obtained via
marginalization. Sampling of such an extended joint poste-
rior is characteristic of a full Bayesian analysis. It is made
convenient and efficient here by the use of EC emulators (see
Sec. III B).

Here are the takeaway points from this investigation:

(i) For 3NF parameter estimation, do not only use ob-
servables that are related by universality. The triton
and α-particle binding energies and the 4He radius
provide very similar constraints on cD and cE be-
cause they are related by universality; see Fig. 6(b).
Consequently any pair of them only determines one
linear combination of the 3NF LECs; see Fig. 7.
In contrast, the triton half-life provides a new con-
straint. When paired with the 4He binding energy it
essentially saturates the information available from
this set of observables. These results support the
previous conclusions of Lupu et al. [59]. It will be
interesting to make similar correlation comparisons
using the three-body scattering input advocated in
Refs. [18,25] or the information on nα scattering
used for 3NF LEC estimation in Refs. [19,63].

(ii) The LECs cD and cE are strongly correlated. The
contours in the joint posterior manifest a correlation
of ρ ≈ 0.96 for the χEFT Hamiltonian used in this
investigation, see Fig. 3. A similar degree of correla-
tion was found by Baroni et al. [16] and Kravvaris
et al. [19]. Using SCS potentials, Epelbaum et al.
[18] also find strong correlation, but the orientation of
the cD-cE contours in that study is opposite. Different
choices of regularization scheme and scale affect the
relationship between cD and cE , but the details of this
correlation remain to be investigated.

(iii) EFT truncation errors must be included for a complete
quantification of uncertainties. Truncation errors fuzz
up the constraints from individual observables, af-
fecting the size of credibility regions in the cD and
cE posterior. They do not affect the correlation.
This is evident in comparing single-observable fits in
Fig. 6(a) (no truncation error) to those in Fig. 6(b)
(including truncation error). A consistent solution
for all considered observables is only obtained when
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truncation errors are included; without these errors, a
simultaneous fit is problematic. Similar conclusions
regarding the impact of truncation errors on the cD-cE

posterior were found using a smaller basket of A = 3
and A = 4 observables and a slightly different NN
potential in Ref. [19].

(iv) The impact of including NN LEC uncertainties on the
cD-cE posterior is small. That of πN LECs remains to
be assessed. If truncation errors are included but NN
uncertainties are omitted, the changes in the posterior
are almost undetectable. The πN LECs were held
fixed at the central values obtained in the Roy-Steiner
analysis of Ref. [39]. Ideally the πN LECs c1, c3, and
c4 would also be included in the set of parameters be-
ing sampled, so that the impact of their uncertainties
on the cD and cE inference could be determined, and
constraints on them from A = 3 and A = 4 observ-
ables assessed. This was not feasible for the present
work because the correlations between the πN and
the NN LECs were not available. But our framework
can accommodate the incorporation of πN LECs in
the vector �a. This is of particular interest because
those LECs appear in the leading χEFT 3NF.

(v) The EFT expansion parameter is Q ≈ 1/3 for these
observables. The distribution for Q in Fig. 5 peaks
at 0.33 with a 20% uncertainty, which is consistent
with general χEFT considerations for the few-body
observables used and with other estimations [25–27].

(vi) χEFT provides a statistically consistent description of
these few-body observables. The predictions of χEFT
with the LEC values learned from four few-body
observables reproduce these observables to within
the χEFT uncertainty. We verify this by propagat-
ing the LEC samples from MCMC sampling to the
observables; the resulting posterior predictive distri-
bution (ppd) is shown in Fig. 4. We indeed used these
observables in the fit, but the ppd demonstrates that
χEFT can describe all four consistently, as long as
truncation errors are included in the inference for �a
and thereby propagated to the ppd.

(vii) Not all distributions are Gaussian. The joint distri-
bution for cD and cE in Fig. 3 is best represented
by a multivariate t distribution. Its tails are not well
approximated by a Gaussian. In Appendix A we
show why a t distribution naturally emerges for these
observables.

The Bayesian framework and statistical best practices we
have exemplified, together with the computational capabilities
enabled by EC emulators, provide a strong foundation for
future work. Full Bayesian parameter estimation and prop-
agation of uncertainties to all calculated observables is now
feasible. Future avenues for parameter estimation with A = 3
and A = 4 observables include comparing χEFT Hamiltoni-
ans with different ultraviolet regulators and with delta degrees
of freedom, including πN LECs in the set of �a, identifying
and testing complementary input observables, and applying
truncation error models where the convergence pattern is cor-
related across observables [23,24].
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APPENDIX A: LINEAR MODELS WITH VARIANCE
ESTIMATION; OR, WHY THINGS LOOK t

There are two types of distributions: those that are Gaus-
sian and those that are not. This is an Appendix about those
that are not.

We will show that the t distribution emerges as the pos-
terior for the 3NF LECs because of two key facts. First, the
observables are approximately linear in cD and cE , and so
at fixed Q and c̄ the posterior for cD and cE is Gaussian.
Second, when Q and c̄ are estimated the tightest constraint
on them comes from the variance in the theory covariance
matrix in Eq. (2). Marginalizing over Q and c̄ to get the cD

and cE posterior therefore corresponds to marginalizing over
the variance. In linear parameter estimation problems with
variance estimation the parameters are typically t distributed,
for the reasons we now articulate.

Suppose that the order k contributions to observables of
interest y are linearly related to the EFT parameters �a that
appear at that order. This is approximately true if subleading
corrections are perturbative, as long as k does not correspond
to the EFT’s leading order. In this situation the theoretical
discrepancy due to truncation error, ε, will be additive: That
is,

yk (�x) = �x · �a + ε. (A1)

If we have N O(Qk ) observables that we are using to extract y

yk = X �a + ε, (A2)

where it is important to remember that the nuclear matrix
elements X that relate the LECs to the observables must be
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of O(Qk ) if the power counting is to be valid.4 We then write
the truncation error as

pr(ε | c̄2, Q) = N [0, c̄2Q2(k+1)]. (A3)

This assumes that the truncation error is the same for all
observables; this assumption can be relaxed if needed by
promoting Q to a matrix or including another matrix factor
(say, yref y

T
ref ; see [23]).

Further progress requires priors on �a and c̄2. We follow
Melendez et al. [23] and place a normal-inverse-chi-squared
prior on this tuple

pr(�a, c̄2) = Nχ−2
[
�μ0,V0, ν0, τ

2
0

]
, (A4)

which implies that

pr(�a | c̄2) = N [�μ0, c̄2V0], (A5)

pr(c̄2) = χ−2
[
ν0, τ

2
0

]
. (A6)

The normal inverse χ2 prior is a conjugate prior and thus the
posterior is the same type of distribution but with updated pa-
rameters �μ, V , ν, τ 2. The derivation for these new parameters
can be found in [23]; here we repeat the results:

pr(�a | c̄2, yk, Q) = N [�μ, c̄2V ], (A7)

pr(c̄2 | yk, Q) = χ−2[ν, τ 2]. (A8)

where

�μ = V
[
V −1

0 �μ0 + X T yk/Q2(k+1)], (A9)

V = [
V −1

0 + X T X/Q2(k+1)
]−1

, (A10)

ν = ν0 + N, (A11)

ντ 2 = ν0τ
2
0 +(yk−X �μ0)T [Q2(k+1)1 + XV0X T ]−1(yk − X �μ0).

(A12)

The limit in which the c̄2 prior is uninformative occurs when
V −1

0 → 0. Taking that limit is made easier in Eq. (A12) via
the Woodbury matrix identity:

[Q2(k+1)1 + XV0X T ]−1 = 1

Q2(k+1)

[
1 − XV X T

Q2(k+1)

]
V0→∞−→ 1

Q2(k+1)
[1 − X (X TX )−1X T ],

(A13)

where we have used Eq. (A10) for the limit V0 → ∞ in the
last line.

In the application being pursued in this work we have
�μ0 = 0, while c̄2V0 is analogous to ā2 in the Gaussian prior

4In general there is also a contribution to yk that is independent of
all the O(Qk ) LECs. We do not notate that here, but it can be included
by defining the left-hand side of Eq. (A2) to be the piece of yk that
depends on the LECs.

that we impose on cD and cE in order to regulate their poste-
riors. Meanwhile, X T X in Eq. (A10) includes terms of order
Q2k , making the second term in the square brackets of order
Q−2. This will dominate over the first term, V −1

0 , provided
that V0 is natural and the values of Q being marginalized
over correspond to a moderately convergent EFT. The �μ of
Eq. (A9) then takes the standard form for the solution of a
linear-regression problem.

Since the posterior for yk is a normal distribution—albeit
one with updated parameters—and the posterior for c̄2 is an
inverse-chi-squared distribution, it follows that marginalizing
over c̄2 (at fixed Q) yields a t distribution for yk; see Melendez
et al. [23] for details:

pr(�a | yk, Q) = tν[�μ, τ 2V ]. (A14)

And because this is a linear problem the posterior predictive
distribution for any of the observables y is also t :

pr(y | yk, Q) = tν[�x · �μ, τ 2(�xT V �x + Q2(k+1))]. (A15)

The emergence of a t distribution is a standard feature in
statistics problems in which the variance is unknown, and
hence must be estimated from data.

This, though, does not fully explain why our results for
the joint cD-cE pdf follow a t distribution, or at least a very
good approximation to one. That result was also marginalized
over Q. In the uninformative limit, i.e., ν0 → 0 and V −1

0 →
0, the subsequent integration over Q is trivial because the Q
dependence cancels out of Eqs. (A14) and (A15). Thus in this
limit the result that �a and y are t distributed persists even after
Q is marginalized over.

Insofar as our priors remain approximately uninformative,
results will still be t distributed. To marginalize over Q away

TABLE II. The NN parameter values from the optimization pro-
cedure described in Sec. II E. The indicated uncertainties of the NN
LECs (given in parentheses) correspond to the square root of the di-
agonal elements of the covariance matrix �NN described in Sec. II E.
The πN LECs c1, c3, and c4 with corresponding uncertainties are
gathered from Ref. [39].

LEC LO NLO NNLO

C̃1S0 −0.1115(2)

C̃np
1S0 −0.1508(3) −0.15263(8)

C̃ pp
1S0 −0.1504(3) −0.15200(7)

C̃nn
1S0 −0.1506(5) −0.1523(3)

C̃3S1 −0.0712(9) −0.151(2) −0.1784(8)
C1S0 1.458(9) 2.392(2)
C3P0 1.216(6) 0.999(4)
C1P1 0.66(3) 0.221(10)
C3P1 −0.239(9) −0.974(4)
C3S1 −0.74(1) 0.551(5)
C3S1-3D1 0.19(1) 0.437(6)
C3P2 −0.199(2) −0.6923(7)
c1 −0.74(2)
c3 −3.61(5)
c4 2.44(3)
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from this limit we note that the marginalization over c̄2 and Q
can be formulated as a marginalization of the normal distribu-
tion (A7) over the variance V ≡ c̄2Q2(k+1) and Q. The pdf that
enters the marginalization over V is then

pr(V ) ≡
∫

dQ dc̄2pr(Q, c̄2)δ(c̄2Q2k+2 − V ). (A16)

In our case pr(Q, c̄2) is the posterior for Q shown in Fig. 5.
The dominant part of this distribution can be approximated
by a pdf that depends only on c̄2Q2(k+1) and not on c̄2 and
Qk+1 independently. Comparison of the black histogram in
Fig. 5 with the red pdf for pr(c̄2, Q), which is an inverse χ2

distribution, suggests that

pr(c̄2Q2(k+1)) = χ−2(n, s2). (A17)

Here n and s2 differ from the ν and τ 2 that define the red
curve and were computed using Eqs. (9) and (10). Changing

variables in Eq. (A16) from Q to u = Qk+1 we obtain

pr(V ) ∝ 1

Vn/2+1
exp

(
−ns2

2V
)

. (A18)

To a good approximation the posterior for cD and cE is
a Gaussian with variance V . Marginalization over V of that
posterior for cD and cE against the pdf (A18) yields a t distri-
bution.

Therefore to the extent that EFT analyses in which Q and
c̄ are estimated mainly constrain the variance associated with
the theory uncertainty the emergence of a t distribution for
both the parameters and predictions is to be expected, as long
as the problem is approximately linear.

APPENDIX B: OPTIMIZED NN PARAMETER VALUES

The optimized values for the NN LECs �aNN are shown in
Table II. The table also includes the fixed values used for the
three πN LECs that enter at next-to-next-to-leading order.
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